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Fig. 1. Attribute-aware image generation results using ProSpect . Given a single input image or text prompts, our method can intuitively control visual attributes
such as material, style, content, and layout to generate a new image with the learned textual conditionings. Real image credits (from left to right): {Vojtech
Okenka, Taisuke usui, Pixabay}/Pexels (Free to use) [Pexels 2023], Paul Cezanne/The Art Institute of Chicago (CC0) [Art Institute of Chicago 2023], Georges
Seurat/The Barnes Foundation (CC0) [The Barnes Foundation 2023], {Rov Camato, Chevanon Photography}/Pexels (Free to use) [Pexels 2023].
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Personalizing generative models offers a way to guide image generation
with user-provided references. Current personalization methods can invert
an object or concept into the textual conditioning space and compose new
natural sentences for text-to-image diffusion models. However, representing
and editing specific visual attributes such as material, style, and layout
remains a challenge, leading to a lack of disentanglement and editability.
To address this problem, we propose a novel approach that leverages the
step-by-step generation process of diffusion models, which generate images
from low to high frequency information, providing a new perspective on
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representing, generating, and editing images. We develop the Prompt Spec-
trum Space P∗, an expanded textual conditioning space, and a new image
representation method called ProSpect. ProSpect represents an image as a
collection of inverted textual token embeddings encoded from per-stage
prompts, where each prompt corresponds to a specific generation stage
(i.e., a group of consecutive steps) of the diffusion model. Experimental
results demonstrate that P∗ and ProSpect offer better disentanglement
and controllability compared to existing methods. We apply ProSpect in
various personalized attribute-aware image generation applications, such as
image-guided or text-driven manipulations of materials, style, and layout,
achieving previously unattainable results from a single image input without
fine-tuning the diffusion models. Our source code is available at https:
//github.com/zyxElsa/ProSpect.

CCS Concepts: • Computing methodologies → Image processing.

Additional Key Words and Phrases: Image generation; Diffusion models;
Attribute-aware editing; Model personalization.
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1 INTRODUCTION
If we consider photography and painting as visual languages, we
can understand that each image encapsulates a unique perspective
or way of seeing. By harnessing the power of pre-trained diffusion
models designed for text-to-image generation, we obtain a versatile
method for influencing the synthesis process using natural language
commands. The utilization of these advanced generative models
not only allows for the creation of realistic and diverse images
but also enables users to personalize the output according to their
visual preferences. Recent personalization methods [Gal et al. 2023a;
Huang et al. 2023c; Kumari et al. 2023a; Ruiz et al. 2023] learn the
textual conditioning of a common concept from a set of images
and then use text prompts to create new scenarios that incorporate
the concept. However, representing specific visual attributes of a
single image remains a challenging problem for these concept-level
personalization methods.
We believe that each visual attribute (e.g., style, material, lay-

out, etc.) within an image has its own unique features. Attribute-
aware image generation, therefore, involves the representation,
disentanglement, and recombination of these visual attributes to
guide image synthesis and editing. The primary challenge lies in
disentangling the specific attributes of a single image, as they often
appear in combination. Additionally, recombining the attributes
without causing conflicts or distortions is difficult when performing
image attribute transfer tasks. By projecting image references into a
conditioned textual space (defined as P in Gal [2023a], see Fig. 2(a)),
text-to-image generation methods can conduct concept-level image
editing. However, generating single textual embedding across all
diffusion steps and U-Net structures limits the ability for visual
attribute disentanglement. In line with Gal et al. [2023a], Voynov
et al. [2023] observe that the shallow layers of the denoising U-
Net structures within diffusion models tend to generate colors and
materials, while the deep layers provide semantic guidance. In this

work, we conduct a detailed analysis of how textual conditioning
influences the generation process of diffusion models. We present
various visualization results to demonstrate that diffusion models
generate images in the order of layout→ content→material/style.
Our further analysis reveals that the generation order in a diffusion
model is correlated to the signal frequency of the corresponding
attribute, which is progressed from low to high. This insight paves
the way for obtaining better disentanglement of visual attributes in
diffusion models.
Inspired by this observation, we introduce Prompt Spectrum

Space P∗ (see Fig. 2(c)), an expanded conditioning space of P
that provides a new insight on the diffusion generation process
from the perspective of steps. Instead of treating all diffusion steps
as a whole, we consider several groups of consecutive steps as
different generation stages. Each stage corresponds to a unique
textual condition 𝑝𝑖 . We further propose a novel inversion and
condition method ProSpect, which learns token embeddings 𝑃 in
P∗ from a single image. Unlike previous methods that consider
the concept or image as a whole, ProSpect provides a new way to
represent an image in the perspective of frequency, which improves
flexibility and editability. Various visual attributes can be separated
from 𝑃 , enabling attribute-aware generation. Specifically, we group
the textual token embeddings 𝑝𝑖 into three classes, i.e., material/style
(high-frequency), content (medium-frequency), and layout (low-
frequency). By replacing them with embeddings of other images,
we can achieve attribute transfer, as shown in the 2nd row of Fig. 1.
Compared to previous personalization approaches, ProSpect offers
better transferability of diverse image visual attributes. Notably,
in the context of attribute-aware image-to-text generation tasks,
ProSpect demonstrates superior editability and fidelity, achieving
results that were previously difficult to obtain, as shown in the 3rd
row of Fig. 1. Figs. 2(b) and 2(d) show the differences between differ-
ent personalization methods applying to material controlling tasks,
including Textual Inversion [Gal et al. 2023a], DreamBooth [Ruiz
et al. 2023], and our ProSpect. Textual Inversion loses most of the
fidelity. Due to the lack of separation of content andmaterial, Dream-
Booth tends to generate cat-like objects in each image. ProSpect
separates content and material in the learning and conditioning
process and can generate a new image that is only loosely related
to the content of the reference image. Extensive experiments and
evaluations demonstrate the effectiveness of P∗ and ProSpect.

To summarize, our contributions are:

• We introduce a novel Prompt Spectrum Space P∗ that enables the
disentanglement of visual attributes from a single image. We also
reveal that the generation process of diffusion models depends
on the frequency of visual signals.

• We present Prompt Spectrum (ProSpect), a novel image represen-
tation and manipulation method that offers better controllability
and flexibility when processing visual attributes.

• Our experimental results demonstrate the effectiveness of P∗ and
ProSpect in various attribute-aware image generation tasks.

2 RELATED WORK
Text-to-image synthesis. Generative Adversarial Network (GAN)-

based architectures [Goodfellow et al. 2014] are widely used in
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Fig. 2. Differences between (a) standard textual conditioning in P and (c)
prompt spectrum conditioning in P∗. Instead of learning global textual
conditioning for the whole diffusion process, ProSpect obtains a set of
different token embeddings delivered from different denoising stages.
As shown in (b) standard personalization for T2I attribute-aware image
generation, Textual Inversion [Gal et al. 2023a] loses some of the fidelity,
and DreamBooth [Ruiz et al. 2023] generates cat-like objects in the
images. (d) ProSpect for attribute-aware generation shows that ProSpect can
separate content and material, and is more fit for attribute-aware T2I image
generation. Reference image credit: Pixabay/Pexels (Free to use) [Pexels
2023].

text-to-image models, which are trained on large sets of paired
image-caption data [Liao et al. 2022; Tao et al. 2022; Xu et al. 2018;
Zhang et al. 2021; Zhu et al. 2019]. However, GANs have a tendency
to suffer from mode collapse and their training at scale can be
challenging [Brock et al. 2019; Heusel et al. 2017]. Auto-regressive

models [Gafni et al. 2022; Ramesh et al. 2021; Yu et al. 2023] are
inspired by the success of language models and perform the task of
image generation by treating images as word sequences in a discrete
latent space [Esser et al. 2021]. This scheme allows for text guidance
during generation through conditioning on text-prefix or using text-
to-image similarity models [Crowson et al. 2022; Gal et al. 2022;
Kwon and Ye 2022] at test-time optimization. Recently, diffusion
models [Dhariwal and Nichol 2021; Nichol and Dhariwal 2021] have
emerged as the forefront of image generation. These models have
led to significant advances in text-to-image synthesis, achieving
more natural results with impressive diversity and fidelity [Balaji
et al. 2022; Chang et al. 2023; Huang et al. 2022a; Nichol et al. 2022;
Ramesh et al. 2022; Rombach et al. 2022; Saharia et al. 2022].

Personalization of generative models. The personalization of the
text-to-image generation model is the task of generating person-
alized content based on the pre-trained model. Gal et al. [2023a]
present a textual inversion method to find a pseudo-word to describe
the visual concept of a specific object. Gal et al. [2023b] further
design a word-embedding encoder to predict a new pseudo-word
that best describes the input concept. Li et al. [2023] invert the
real image to the linear mapping network in cross-attention layers.
Ruiz et al. [2023] implant a subject into the output domain of a
text-to-image diffusion model to synthesize it in novel views with a
unique identifier. Zhang et al. [2023b] propose an attention-based
inversion style transfer method called InST. Kumari et al. [2023b]
propose Custom Diffusion, which optimizes a few parameters in the
conditioning mechanism and can jointly train for multiple concepts
or combine several fine-tuned models. Huang et al. [2023c] propose
ReVersion for relation inversion, which aims to learn a specific
relation from images. Wen et al. [2023] introduce the concept of hard
prompts that use hand-crafted sequences of interpretable tokens
to elicit model behaviors. Voynov et al. [2023] present an extended
textual conditioning space P+ that consists of multiple textual
conditions, derived from per-layer prompts, each corresponding
to a layer of the denoising U-Net of the diffusion model. Tewel et al.
[2023] introduce Perfusion, a mechanism that locks cross-attention
keys of new concepts to their superordinate category, and a gated
rank-1 approach to control the influence of a learned concept.
Most of the aforementioned methods necessitate an image set

(three to five) as input or require model fine-tuning, and they aim to
learn a single concept in the image or represent the overall appear-
ance of the image. In contrast, our approach addresses the challenges
of obtaining multiple visual attributes from a single image, involving
the representation, disentanglement, and recombination of visual
attributes.

Image editing. Avariety of text-based image editingmethods [Bau
et al. 2021; Patashnik et al. 2021; Schaldenbrand et al. 2022] have
emerged with the development of powerful multi-modal models.
Enabled by diffusionmodels, approaches of different applications are
developed, such as single-image editing [Brooks et al. 2023; Huang
et al. 2023b; Kawar et al. 2023; Meng et al. 2021, 2022; Mokady
et al. 2023; Valevski et al. 2023; Wu et al. 2023; Zhang et al. 2023a],
style transfer [Huang et al. 2023d, 2022b; Jeong et al. 2023; Yang
et al. 2023b] and inpainting [Avrahami et al. 2022; Lugmayr et al.
2022; Yang et al. 2023a]. The Composer approach [Huang et al.
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Fig. 3. Experimental results showing that different image attributes correspond to different generation steps. (a) Results of removing prompts “a profile of a
furry parrot” of different steps. (b) Results of adding material attribute “yarn” and color attribute “blue”. (c) Results of removing style attributes “Monet” and
“Picasso”.
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+origami’
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Fig. 4. Prompt-based editing results. By changing the prompts conditioning
on different diffusion stages and keeping the layout-related prompts
unchanged, we can achieve the effect of prompt-to-prompt editing.

2023a] is most relevant to our work. This approach introduces a
generation paradigm that enables control over the output features,
while preserving synthesis quality and model creativity through
decomposing images into representative factors (e.g., spatial layout
and color palette) and training a diffusion model using these factors
as conditions for recomposition. However, they rely on additional
task-specific models to obtain image attributes, such as an edge
detection model for contour extraction, a pre-trained segmentation
model for extraction of instances and the corresponding masks,
etc. In contrast, we exclusively use a pre-trained diffusion model

to obtain the representation of corresponding attributes from the
input image, which provides a neat way to disentangle and control
visual attributes.

Many non-diffusion image editing methods encode images into a
latent space [Lee et al. 2020; Wang et al. 2023b,a; Zhang et al. 2023c].
StyleGAN [Karras et al. 2019] consists of a mapping network, which
maps latent codes to the latent spaceW, and a synthesis network,
which controls the feature statistics between different network
layers. Fine-grained control over semantic attributes in generated
images is achieved by manipulating different dimensions of the la-
tent vectors. With the ability of generating high resolution images of
high quality, StyleGAN and its followups [Gal et al. 2022; Karras et al.
2020] have become the advanced unconditional image generators.
FineGAN [Singh et al. 2019] disentangles the background, object
shape,and object appearance to hierarchically generate images of
fine-grained object categories. MUNIT [Huang et al. 2018] decom-
poses the image into a domain-invariant content code and a style
code that captures domain-specific properties, and achieves editing
by recombining the codes. SwappingAutoencoder [Park et al. 2020]
encodes an image into two independent components and enforce
that any swapped combination maps to a realistic image. Differently,
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Fig. 5. (a) The pipeline of ProSpect , which learns a set of token embeddings 𝑃 = [𝑝1, 𝑝2, ..., 𝑝𝑛 ]. (b) Illustrations of various attribute-aware image generation
tasks. Reference image credits: {Rostislav Uzunov, Lisa Fotios} /Pexels (Free to use) [Pexels 2023]. Style image credit (the 1st row): Paul Cezanne/The Art
Institute of Chicago (CC0) [Art Institute of Chicago 2023].

our approach encodes image attributes into the target text space and
represents attributes separately using different embeddings. Besides,
the above latent space traversal is usually limited to editing within
domains, in contrast, our method enables cross-domain editing.

3 METHOD
To illustrate our motivation, we start by analyzing the attribute
distribution of diffusion models using text-guided image generation
results. We aim to obtain multiple visual attributes from a single
image, thus we need to learn the range of the steps in which different
attributes are generated by the model.
Fig. 3 shows the results of removing or adding attributes at

different diffusion stages. In Fig. 3(a), removing a certain phase “a
profile of a furry parrot” in some steps will cause certain changes to
the generated image. Removing steps 100-400 significantly changes
the parrot’s appearance, but the new image retains the details and
feather layering. Removing steps 400-700 reduces the layering of
the parrot’s feathers. Removing steps 700-1000 blurs the parrot’s
fur and the luster of the beak is gone, while it can retain a similar
overall appearance to the original image. Fig. 3(b) demonstrates
the effect of adding an attribute in a specific stage. In the 1st row,
the sphere’s appearance remains unchanged when injected the
added concept “yarn” in steps 0-200, but the background layout and
colors are different, and adding it in steps 200-400 blurs the sphere’s
outline. Injecting “yarn” in steps 400-600 and steps 600-800 leads to
a more distinct texture. Adding “yarn” in steps 800-100 creates a
woolen texture on the sphere and reduces its reflection. The 2nd
row shows that the diffusion model is color-sensitive only at certain
stages. Fig. 3(c) shows the style removal results of impressionist
Claude Monet and abstract painter Pablo Picasso. We remove their

names at different stages, i.e., using only “a painting” to guide the
generation. Removing the style in steps 500-800 has little effect
on the Picasso-guided painting, but the Monet-guided painting
loses its brushstrokes. Conversely, removing steps 0-500 changes
the content of the paintings guided by “Monet”, but the style is
maintained, while the image guided by “Picasso” loses its style. We
recommend zooming in to see experimental results of Monet’s style.
In conclusion, the initial generation stages of the diffusion model
tend to generate overall layout and color, the middle stages tend
to generate structured appearances, and the final stages tend to
generate detailed textures.
Based on the above observations, we can edit the results by

changing the material, style, and content while keeping the layout
unchanged by changing the prompts that act on different steps. As
shown in Fig. 4, keeping the prompt “lemon cake” condition in the
initial stages, the image can be edited into different appearances.
Prompt-to-prompt [Hertz et al. 2023] report the observation of
similar effects and introduce a method that locks the corresponding
attention maps.

3.1 Prompt Spectrum Space
We use Stable Diffusion [Rombach et al. 2022] as the generative
backbone, which is built in the framework as Latent Diffusion Model
(LDM) [Rombach et al. 2022]. LDM is a diffusion probability model
that generates images by gradually denoising them.

Diffusion and denoising within an LDM typically take 1000 steps,
and the text conditions the model step by step. Previously, the
process of the textual conditions acting on the diffusion model
is regarded as a whole. In this work, we treat them as different
procedures. Specifically, we divide the 1000 steps of conditioning

ACM Trans. Graph., Vol. 42, No. 6, Article 244. Publication date: December 2023.
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Fig. 6. The visualization results of token embeddings 𝑝𝑖 obtained by
ProSpect . The results show that the initial generation step of the diffusion
model is sensitive to structural information (e.g., bird’s pose, pot’s shape). As
the number of steps increases, the obtained 𝑝𝑖 gradually captures detailed
information (e.g., the sideways head of the bird→ bird’s wing→ the texture
of the bird’s feathers).

into ten stages on average. Each stage corresponds to a unique
textual condition. The collection of textual conditions reside in the
CLIP [Radford et al. 2021] text-image space, their sizes are set to
𝑛 × 1 × 768 (𝑛 = 10 denotes the number of the stages). This way
of division is designed to keep a balance between efficiency and
quality.

We refer to the expanded space as Prompt Spectrum Space, denoted
as P∗. An illustration of how P and P∗ interact with text and
diffusion models is shown in Figs. 2(a) and 2(b). Thus, P∗ is defined
as:

P∗ = {𝑝1, 𝑝2, ..., 𝑝𝑛}, (1)

where 𝑝𝑖 represents the token embedding corresponding to the
conditional prompt of the 𝑖th stage of the generation process.

3.2 ProSpect
We aim to extend TI [Gal et al. 2023a] to P∗ by extracting a set of
textual token embeddings from an input image. To achieve this goal,
we present ProSpect, a method that maps an image to a collection of
corresponding textual token embeddings. The TI loss of LDM in P
space is formulated as:

L𝑇 𝐼 = E𝑧,𝑡,𝑝
[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑝𝜃 )∥22

]
, (2)

where 𝑝𝜃 is a learnable vector denoting the token embedding and
𝑧 ∼ 𝐸 (𝑥), 𝜖 ∼ N(0, 1). Similarly, the ProSpect loss of LDM in P∗

space is formulated as:

L𝑃𝑆 = E𝑧,𝑡,𝑝
[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑝𝑖 )∥22

]
, (3)
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Fig. 7. Statistical results of various attribute distributions at different
prompts.

where 𝑝𝑖 = 𝑃 (𝑡) is a learnable vector represents the token embed-
ding of stage 𝑖 , and 𝑃 = [𝑝1, 𝑝2, ..., 𝑝𝑛] is the set of textual token
embeddings in P∗ space.
As shown in Fig. 5(a), the token embedding is initialized to a

frozen 1 × 768 text embedding with a user input text (e.g., “cup”)
via the CLIP text encoder. It is then fed into a randomly initialized
hypernetwork and finally creates a 𝑛 × 1 × 768 embedding 𝑃 =

[𝑝1, 𝑝2, .., 𝑝𝑛]. Only the hypernetwork is trainable and the final 𝑝𝑖
is obtained by optimizing based on Eqn. (3). The training process
typically requires 1000-3000 iterations. Dropout is applied to prevent
overfitting and the rate is set to 0.1.

Attribute control during inference is achieved by replacing the 𝑝𝑖
representing different attributes with editing texts. For instance, in
Fig. 5(b), content personalization involves maintaining the content-
related 𝑝3 − 𝑝10 of image barn as “* in the jungle” and replacing
𝑝1 − 𝑝2 with “in the jungle” (without “*” ).

4 ANALYSIS OF PROMPT SPECTRUM SPACE

4.1 Visualization of Token Embeddings
We visualize the token embedding 𝑝𝑖 obtained via ProSpect by using
it as the condition of the entire stage of the diffusion model, i.e.,
𝑝1:10 = 𝑝𝑖 . Fig. 6 shows the corresponding visual results of 𝑝𝑖 for
four stages. It can be seen that the diffusion model acts different
optimizations to token embeddings 𝑝𝑖 at different stages to recon-
struct the given image. The token embeddings that are conditioned
on the initial stages are optimized to denote structure information,
and then gradually represent detailed information as the generation
steps increase. For instance, 𝑝2 tends to represent the layout or
content, while 𝑝8 tends to express the textures or brushstrokes. The
results indicate that different generation tendencies exist in different
stages of the diffusion model.

4.2 Visualization of Attribute Distribution
To evaluate the attribute distribution, we provide 30 pairs of attribute,
object combinations (e.g., “origami, cake”), including 10 pairs for
material, style, and layout, respectively. The object remains un-
changed while we record the impact of adding attribute at different
𝑝𝑖 . Additionally, we select 10 new objects to replace the original
object at different 𝑝𝑖 and record the impact of replacement on the
content. The results are shown in Fig. 7. Notably, adding attributes
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Table 1. CLIP-based evaluation results. The best numbers are in bold and the second best results are underlined.

Metric Text Similarity↑ Image Similarity↑
Method Reference ProSpect DreamBooth TI Reference ProSpect DreamBooth TI
Average 0.2479 0.3444 0.3334 0.3115 0.9128 0.7927 0.7987 0.7274
Min 0.2168 0.2869 0.2279 0.2371 0.8771 0.6899 0.6450 0.4471
Max 0.2767 0.3995 0.3666 0.3820 0.9541 0.929 0.8678 0.8688

Negative Error 0.0311 0.0575 0.1055 0.0743 0.0357 0.1027 0.1537 0.2803
Positive Error 0.0288 0.0551 0.0331 0.0705 0.0412 0.1363 0.0691 0.1414

Predicted Image

Fourier Spectrum

step=200 step=400 step=600 step=800 Full steps

Fig. 8. Analysis of images generated at different stages in the frequency
domain. The 1st row shows the predicted image obtained at different
denoising steps with the text prompt “a close-up photo of a parrot”. The
2nd row showcases the Fourier spectrum of each predicted image. As the
denoising process progresses, the high-frequency information contained in
the predicted image gradually increases. We enhance the contrast of the
Fourier spectrum for clarity.

or replacing content at a single 𝑝𝑖 may not significantly change the
output image. To ensure a faithful evaluation, we gradually increase
the intensity of the change until other attributes are affected.

4.3 Explanations
The experimental results demonstrate that a diffusion model gen-
erates images in the order of layout→ content→material/style. A
similar phenomenon has been observed in convolutional networks.
Voynov et al. [2023] noted that the U-Net structure of the diffusion
model has similar properties, with the shallow layer tending to
generate texture and color and the deep layer generating semantic
information. It is important to note that the deep receptive field size
of U-Net is larger than the shallow receptive field size, making the
hierarchical attribute distribution easy to comprehend. However,
this size difference dose not exist between steps of the diffusion
model, since the latent size is uniform across different stages.
The Fourier transform is a classic transformation widely used

in digital image processing. It transforms a signal from the time
domain into the frequency domain, facilitating the identification of
subtle features and the processing of challenging components.
Fig. 8 shows the Fourier spectrum of the diffusion process. As

the number of steps in the denoising process increases, the high-
frequency information contained in the image predicted by the

diffusion model gradually increases. This indicates that the model
tends to generate structural information at the beginning of the
denoising process, with details gradually increasing as the steps
increase. This phenomenon explains the generation order of the
diffusion model, which is caused by the signal frequency of the
corresponding attribute from low to high.

5 EXPERIMENTS
We demonstrate that ProSpect outperforms state-of-the-art text-to-
image personalization baselines in both fidelity and editability by
conducting both qualitative and quantitative evaluations. Moreover,
we apply ProSpect to diverse applications of material transfer, style
transfer, and layout transfer (as shown in Sec. 5.4), and perform
qualitative comparisons with related methods.

Methods for comparison. We optimize (1) Textual Inversion
(TI) [Gal et al. 2023a] with 5000 iterations and (2) InST [Zhang
et al. 2023b] with 1000 iterations on Stable Diffusion 1.4 [Rombach
et al. 2022], both as recommended by the authors. We train (3)
DreamBooth [Ruiz et al. 2023] for 400 steps. The resulting images of
(4) Perfusion [Tewel et al. 2023] and (5) XTI [Voynov et al. 2023] are
borrowed from their papers.We use the official pre-trainedmodels of
(6) InstructPix2Pix [Brooks et al. 2023], (7) JoJoGAN [Chong and
Forsyth 2022], (8) CAST [Zhang et al. 2022], and (9) StyTr2 [Deng
et al. 2022].

Test dataset. For fair comparison, we use nine concepts from pre-
vious papers, including cat, teddy bear, cat statue, pot, sculpture, col-
orful teapot, red teapot, elephant, clock, and three concepts of faces.
For each concept, we use three easy prompts (changing background)
and three difficult prompts (changing pose/clothes/views/etc.). Each
image-prompt pair is used to generate four results. In total, we
obtain 288 images for each method.

Implementation details and timing statistics. In all of our experi-
ments, we use Stable Diffusion 1.4 [Rombach et al. 2022] with the
default hyperparameters and set a base learning rate of 0.001. We
employ a DDIM sampler with diffusion steps 𝑇 = 50 and guidance
scale 𝑤 = 7.5. We use a frozen CLIP model in Stable Diffusion as
the text encoder network. The texts are tokenized into start-token,
end-token, and 75 non-text padding tokens. The training process
on each image takes approximately 20 minutes using an NVIDIA
GeForce RTX3090 with a batch size of 1, significantly less than the
more than 90 minutes required for TI. The synthesis process takes
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Fig. 9. Comparisons with state-of-the-art personalization methods including Textual Inversion (TI) [Gal et al. 2023a], DreamBooth [Ruiz et al. 2023], XTI [Voynov
et al. 2023], and Perfusion [Tewel et al. 2023]. The bold words correspond to the additional concepts added to each image (e.g. the 3rd column in (a) shows the
result of “A standing cat in a chef outfit”, the 6th column in (b) shows the result of “A tilting cat wearing sunglasses”). XTI and Perfusion are the latest published
methods and the model have not been released yet. The resulting images of XTI and Perfusion are borrowed from their paper, so the results of adding concepts
are not shown. Our method can faithfully convey the appearance and material of the reference image with better controllability and diversity.

about three seconds, depending on the number of diffusion steps
taken.

5.1 Quantitative Evaluation
We use two metrics to conduct quantitative evaluations. Specifi-
cally, we compute the pair-wise CLIP cosine similarity between the
reference images and the generated images as image similarity to
evaluate content fidelity. In addition, we use the CLIP similarity
between all generated images and their textual conditions as text
similarity to evaluate the editability.

Table 1 shows the corresponding quantitative evaluation results
of our method and two baseline methods. The Reference column of
text similarity calculates the cosine similarity between the reference
image and the various text condition, which can be regarded as
the lower bound score. The Reference column of image similarity
calculates the cosine similarity between the image contains the
same object and the reference image, which can be regarded as
the groundtruth score. TI [Gal et al. 2023a] fails to preserve object
appearance, while DreamBooth tends to overfit the reference image.
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Fig. 10. Comparision with DreamBooth [Ruiz et al. 2023] on personalized
one-shot portrait generation. Our inversion based method can better
preserve the character identity in the input image.

Though a higher fidelity score it gets, the editability is not satisfac-
tory. Our method achieves a better balance of object fidelity and
editability without fine-tuning the model.

5.2 Qualitative Evaluation
As shown in Fig. 9, we compare our method with four SOTA per-
sonalization methods, i.e., TI [Gal et al. 2023a], DreamBooth [Ruiz
et al. 2023], XTI [Voynov et al. 2023], and Perfusion [Tewel et al.
2023]. We use concepts from previous papers for fair comparison
and unbiased evaluation. We add additional texts shown in bold to
each set of images to demonstrate the flexibility of our method.
DreamBooth can well depict the conceptual appearance in the

reference image, but tends to overfit to the reference image, resulting
in a lack of editability. As shown in the results of “a (standing) cat
in a chef outfit” in the second row, TI fails to maintain the object’s
appearance and generates normal cats. DreamBooth can generate
a standing cat, but the background is blurred, and the cat’s paw is
confused with the human hand. Our results can generate a standing
cat with a kitchen as the background and maintain the details of
the cat’s paws.

The results of “a (tilting/walking/close-up photo of a) cat wearing
sunglasses” show that DreamBooth can generate a cat with sun-
glasses, but cannot change the cat’s posture or zoom-in/zoom-out.
Our method, shown in the third row, can generate high-fidelity
concepts while maintaining diversity and flexibility. ProSpect not

only puts sunglasses on the cat but also allows it to show its walking
posture and close-up details.
In the results of “a teddy is playing with a ball in the water”,

Perfusion and DreamBooth can generate teddy bear, ball, and water,
but they are not interacting with each other. Our method can show
the posture of the teddy bear touching and throwing the ball, and
the teddy bear can float on the water or half-submerge in the water.
In the results of “a teddy (walking/dancing/wearing suits) in

Times Square”, XTI cannot accurately maintain the appearance of
the teddy bear, and DreamBooth cannot change the posture of the
teddy bear. Our method can reproduce the appearance of a teddy
bear while walking, dancing, and wearing a suit, always in the
background of Times Square.

Our method is also capable of personalized one-shot portrait gen-
eration. Fig. 10 shows the comparison results between our method
and DreamBooth [Ruiz et al. 2023]. Our method can manipulate
attributes such clothing, hairstyle and artistic styles of the input
portrait while preserving the identity.

5.3 User Study
We evaluate our method in attributes-aware image generation,
alongside three SOTA personalization methods, i.e., TI [Gal et al.
2023a], DreamBooth [Ruiz et al. 2023], and InST [Zhang et al. 2023b].
A total of 66 participants took part in the survey, including 42
researchers in computer graphics or computer vision (CGCV), 24
university students (others). The user study is divided into three
parts, including personalized objects, material guidance, and style
guidance.

User Study I. In the content-aware image generation survey, TI
and DreamBooth are used as the baseline methods. The same 12
concepts in quantitative evaluation, each with two different prompts
are used. The objective of the personalization task, which is to
generate a new image with the same concept as the reference image
while also matching the provided text condition, is introduced to
the participants. For each question, the participants are shown a
reference image and a text condition (e.g., “a photo of the same cat
wearing sunglasses”) and are asked to choose the option that best
matches the task objective from three randomly ordered options,
each corresponding to a method. ProSpect receives 51.97% (CGCV
52.14%, Others 51.67%) of the preferences, while TI acquires 10.30%
(CGCV 9.76%, Others 11.25%), and DreamBooth obtains 37.72%
(CGCV 38.09%, Others 37.08%). Thus, ProSpect exhibits better per-
formance in human preference when compared to the two baseline
methods.

User Study II. In the material-aware image generation survey,
DreamBooth is used as the baseline method, and the participants are
introduced that the objective of the task is to generate a new image
composed of materials from the reference image while matching
the provided text conditions. Eight material references with three
results each are used. For each question, the participants are shown
reference images and corresponding text conditions (e.g., “a snail
made of the material in this image”) and are asked to select one of
two options that best matches the task objective. ProSpect receives
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Fig. 11. Material-aware image generation results. We compare ProSpect with two state-of-the-art methods for this task, i.e., a personalized image generation
approach DreamBooth [Ruiz et al. 2023] and an image editing approach InstructPix2Pix [Brooks et al. 2023]. Our method shows better fidelity and editability
than those two alternative baselines.
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Fig. 12. Style-aware image generation results. We compare ProSpect with four state-of-the-art style transfer methods, including InST [Zhang et al. 2023b],
JoJoGAN [Chong and Forsyth 2022], CAST [Zhang et al. 2022], and StyTr2 [Deng et al. 2022]. Our method better preserves the identity information of the
content image than the diffusion-based method InST while generating better brush strokes than other GAN-based and encoder-based methods. Style image
credits (the 1st and 2nd rows in (a)): {Amedeo Modigliani, Katsushika Hokusai}/The Art Institute of Chicago (CC0) [Art Institute of Chicago 2023].

66.36%’s preference (CGCV 68.57%, Others 62.50%) and DreamBooth
obtains 33.64% (CGCV 31.42%, Others 37.50%).

User Study III. The SOTA style transfer method InST [Zhang et al.
2023b] is the baseline method in the style-aware image generation
survey. Eight style references are used for this study, each with
one style transfer result and one T2I result. We evaluate both the

style-guided text-to-image generation task and the style transfer
task. The participants are introduced that the objective of the task
is to generate a new image consistent with the style of the reference
artistic image while also being consistent with the content of the
provided textual condition/content image. For each question, the
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Fig. 13. Layout-aware image generation results. ProSpect can generate an image with the same layout of an layout reference image by using a text prompt or
a content reference image.

participants are presented with either a style image and a corre-
sponding text condition (e.g., “a painting of Einstein drawn in the
style of the reference image”) or a pair of style and content images,
and are asked to select one of two options that best matches the task
objective. ProSpect outperforms InST by receiving 61.67% (CGCV
61.19%, Others 62.50%) the preference of compared with InST’s
38.33% (CGCV 38.80%, Others 37.50%).

5.4 Applications
In this section, we demonstrate the effectiveness of our approach in
various attribute-aware image generation tasks, including material-
aware image generation, style-aware image generation, as well as
layout-aware image generation.

Material-aware image generation. Our approach is well-suited for
material-aware image generation tasks, including material transfer
between images, image material-guided text-to-image generation,
and image material editing with text. Results shown in Fig. 11
demonstrate the high visual quality and flexibility of our method.
Fig. 11(a) shows the results of material transfer, where our method
can transfer materials between semantically unrelated objects (e.g.,
gears and teacups, apples, and dandelions). Fig. 11(b) shows the
material-guided text-to-image generation using a reference image,

which we compare with a state-of-the-art personalization method
DreamBooth [Ruiz et al. 2023]. DreamBooth requires both prompt
learning and model fine-tuning, making it prone to overfitting
on specific images and lacking flexibility with single-image input.
Our method, however, can guide image generation using refer-
ences with unrelated materials (e.g., rings and snails, teapot, and
beetle), demonstrating superior editability. Fig. 11(c) shows the
results of modifying an image’s material with natural language. We
compare our method with a state-of-the-art image editing method
InstructPix2Pix [Brooks et al. 2023], which works on semantically
related images (e.g., hummingbird to peacock feather) but fails
on semantically unrelated modifications (e.g., teddy to origami).
Unlike InstructPix2Pix, our method can edit images into completely
unrelated materials while retaining their overall appearance and
background.

Style-aware image generation. Our method is also effective for
generating artistic images. The material in a realistic image reflects
high-frequency information, while strokes and shapes reflect the
same in an artistic image. Using a similar approach to material trans-
fer, we can perform style transfer and style-guided text-to-image
generation. Fig. 12(a) shows the results of style-guided text-to-image
generation, where our method learns the style from a single artistic
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Fig. 14. Results of multi-attribute-aware image generation with ProSpect .
(a) Each reference offers one kind of visual attribute, and we combine them
progressively to generate joint results by mixing the triplet references. (b)
Each reference indicates two kinds of visual attributes, and we mix two
references by taking the material/layout/style attribute from individual
references and scaling the range of content conditions.

image and generates new images that are semantically different (e.g.,
“an astronaut landing on a planet”) or more vivid in content (e.g., “a
man rowing a boat while a dolphin jumps out of the water”), while
accurately reproducing the reference image’s style. Fig. 12(b) shows
the results of style transfer, comparing it with the state-of-the-art
diffusion-based style transfer method InST [Zhang et al. 2023b], the
GAN-based method JoJoGAN [Chong and Forsyth 2022], encoder-
decoder-based method CAST [Zhang et al. 2022], and ViT-based
method StyTr2 [Deng et al. 2022]. Since InST considers the overall
appearance of an image as a condition and lacks disentanglement of
style and content, the generated image often lacks identity. JoJoGAN
needs to align the face key points of the content image and style
image, so some special styles may cause artifacts and distortions (as
shown in the 1st row), and the generated images may have content
in-consistency (as shown in the 2nd row). CAST and StyTr2 fail to
transfer the shape changes and large brushstrokes. Our method
produces more realistic strokes (e.g., the hair in 1st and 3rd rows),
fewer artifacts (e.g. the 2nd row), and better-maintained identity.

Layout-aware image generation. Layout is a core element of pho-
tography that determines the quality of a photo. The low-frequency
information of an image reflects its layout. By learning this infor-
mation, our method can use the layout of a single given image
to guide text-to-image generation and transfer the layout of an
image to another image. Fig. 13(a) shows the results of layout-
guided text-to-image generation, where our method learns complex

Reference
Images

‘a sculpture * 
wearing a sombrero’

‘a * sculpture* 
reading a book’

O
ur

s
D

re
am

Bo
ot

h

‘app icon of a * 
sculpture’

‘an oil painting of a * 
sculpture’

Fig. 15. Comparison of results by training with a small number of images.

(b) Case II: Similar Objects in the Background 
’origami’

Content
Reference

Material 
Reference

Content
Reference

Material 
Reference

’stone’

(a) Case I: Domain Gap 

Fig. 16. Examples of failure cases. (a) Results of transferring materials
between images with large domain gaps. (b) When the image background
is composed of similar objects sharing the same frequency information,
attribute editing may be applied to the entire image.

composition (e.g., “a spoon of strawberry cupcake”) and guides
the generation of semantically unrelated content (e.g., strawberry
cupcake and rock) from a reference image. Fig. 13(b) displays the
results of layout transfer for landscape and still-life images. Our
method can transfer the “centering” and “reflection” features of
a photo to another landscape image (see the second column in
Fig. 13(b)) and transfer complex object layouts to another still-life
image.

Multi-attribute-aware image generation. In Fig. 14, we combine
attributes from multiple images to guide the generation process. In
Fig. 14(a), the layout, content, and style are guided by three reference
images. Results for a landscape example are shown in the left pink
pyramid. The first row displays reference images, the second row
displays results using dual-attribute guidance, and the bottom row
shows the result using triple-attribute guidance. The bottom result
maintains the relative position of the flowers and architecture in the
layout image, has the three-floor building structure from the content
reference, and replicates the appearance of Chinese architecture
from the style reference. In the right blue pyramid, we show results
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for a portrait example. The result is guided by the layout of a single
person in the middle, the content of a cyclist, and the style of an
astronaut. Fig. 14(b) shows a different setting by mixing multiple
attributes from one image.

Few-shot image generation. ProSpect is designed to accept a single
image as input, but it can also work on a set of images, similar to
DreamBooth [Ruiz et al. 2023]. As shown in Fig. 15, ProSpect can
produce results with improved fidelity and diversity compared to
prior approaches when applied to four sculpture images. In addition,
ProSpect can also be applied to model fine-tuning methods.

5.5 Limitations
First, although ProSpect is faster than TI [Gal et al. 2023a], it is
still not as fast as some encoder-based methods [Gal et al. 2023b],
given that each iteration of optimization is calculated on a ran-
dom step and ProSpect learns several token embeddings at different
steps. Second, as shown in Fig. 16(a), ProSpect can achieve attribute
disentanglement, but the attribute transfer between images with
large domain gap may not be visually aesthetic. Finally, Fig. 16(b)
shows the cases of dealing with images in which the background is
composed of similar objects. Since the objects of the same category
are of similar scales, sometimes the attribute modification may act
on the background objects undesirably.

6 CONCLUSION AND FUTURE WORK
In this paper, we delve into the image generation process of the diffu-
sion model from the perspective of steps. We propose an expanded
textual conditioning space, denoted by P∗, for diffusion models.
Our experiments demonstrate that P∗ has better disentanglement
and controllability, allowing for generating images from different
granularities. To further enable images to be represented in P∗, we
propose ProSpect, which inverts the text conditions of the diffusion
model step by step. ProSpect provides more fidelity and editable
image representations, paving the way for attributes-aware image
generation. Using ProSpect, material/style/content/layout-related
transfer and editing tasks can be performed. Our evaluations and ex-
perimental results demonstrate that ProSpect offers superior fidelity,
expressiveness, and controllability for diverse image generation
tasks. In the future, we plan to further develop and improve methods
for attribute disentanglement, such as making a more detailed
attribute division and recombination methods as well as studying
the mutual impact of different textual conditions.
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