
Volume xx (200y), Number z, pp. 1–12

4D Reconstruction of Blooming Flowers

Qian Zheng1,3† Xiaochen Fan2† Minglun Gong4 Andrei Sharf5 Oliver Deussen2,3 Hui Huang1,2‡

1Shenzhen University 2SIAT 3University of Konstanz 4Memorial University of Newfoundland 5Ben Gurion University

Figure 1: Reconstruction of a blooming Orchid from a noisy and incomplete point cloud sequence. Note that smaller models representing
early stages of the blooming (left ones on the bottom row) are scaled up for a better visualization.

Abstract
Flower blooming is a beautiful phenomenon in nature as flowers open in an intricate and complex manner whereas petals bend,
stretch and twist under various deformations. Flower petals are typically thin structures arranged in tight configurations with
heavy self-occlusions. Thus, capturing and reconstructing spatially and temporally coherent sequences of blooming flowers
is highly challenging. Early in the process only exterior petals are visible and thus interior parts will be completely missing
in the captured data. Utilizing commercially available 3D scanners, we capture the visible parts of blooming flowers into a
sequence of 3D point clouds. We reconstruct the flower geometry and deformation over time using a template-based dynamic
tracking algorithm. To track and model interior petals hidden in early stages of the blooming process, we employ an adaptively
constrained optimization. Flower characteristics are exploited to track petals both forward and backward in time. Our methods
allow us to faithfully reconstruct the flower blooming process of different species. In addition, we provide comparisons with
state-of-the-art physical simulation-based approaches and evaluate our approach by using photos of captured real flowers.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation

1. Introduction

Capturing the formation and growth of plants is interesting for an-
imation applications in advertising, film, and games, but also very
important for studies in botany, forestry, and agricultural science. It
is of great significance to both flower simulation and botanical re-
search, enabling novel observations, viewing angles, and analysis
into the process. Plants are most volatile during their early stages.
As new strains appear, their behavior may consistently vary and
thus it is important to analyze their growth at these stages. Tradi-

† Joint first authors
‡ Corresponding author: Hui Huang (hhzhiyan@gmail.com)

tional studies mainly rely on manual recordings of growth stages,
or image-based measurements taken at sparse intervals. Such work-
flows are tedious, prone to measurement bias, and difficult to scale
to large-scale observations, both in space and time.

Advances in affordable 3D acquisition devices now provide new
opportunities in capturing and modeling 3D real-life phenomena
in time. For instance, Li et al. [LFM∗13] proposed a method for
detecting bifurcations of indoor plants from 4D point cloud data.
The problem of reconstructing 4D sequences of blooming flower-
s, however, is considerably more challenging. During the flower
opening, inner petals, which were previously occluded, appear and
commence an intricate deformation process. Throughout this pro-
cess, petals may stretch, bend, and finally shrink and wrinkle, while

submitted to COMPUTER GRAPHICS Forum (6/2016).

2 Q. Zheng, X. Fan, A. Sharf, M. Gong, O. Deussen, H. Huang / 4D Reconstruction of Blooming Flowers

Figure 2: Side-by-side comparison between our modeling results (top) and the results from the state-of-the-art flower blooming simula-
tion [LLX∗15] (bottom). While the simulated results look more regular, our data-driven approach captures botanic reality.

possibly colliding with other flower structures. Although approach-
es have been proposed to create 3D animations of flower openings
by simulating petal deformations based on physical and botanical
properties [IYKI08, LLX∗15], the synthetic animation sequences
generated do not offer realistic petal shapes nor natural petal mo-
tions; see Figure 2 (bottom).

We tackle this problem by proposing a new template-based dynam-
ic tracking algorithm, which takes into consideration the specific
characteristics of flowers. Having a full flower geometry as a tem-
plate, we track and fit it to the point cloud sequence on a frame
by frame basis. Template-based tracking methods so far focus on
faces, hands, bodies, and other deformable objects, but none of
these works aims at tracking flowers with multiple petals showing
heavy occlusions and collision-based interactions. To address these
challenges, we introduce additional priors that assist the tracking
process, including petal deformation energy, collision avoidance,
as well as boundary and root position constraints.

In summary, our main contributions are as follows:

• a technique for reconstructing flower petals that gradually appear
in a sequence of point clouds. This correctly infers the shape of
occluded petals, which are in general missing from the scanned
data at early blooming stages.

• a flower deformation optimization which enforces minimum de-
formation and collision avoidance constraints. This accurately
reconstructs individual petals.

• applications that demonstrate the usability of reconstructed mesh
sequences of blooming flowers.

2. Related Work

We summarize previous works in the realm of plant modeling and
dynamic reconstruction.

Plant modeling. We refer to [DL10] for a comprehensive survey
on previous plant modeling techniques. While it is possible to cre-
ate very realistic looking static flowers using L-systems [PL96] or
other modeling methods, we are interested in capturing both form
and dynamics of real flower blooming. This is very cumbersome
using L-Systems [PHM93]. It can be done more easily with para-
metric approaches [LD99], which are still not data-driven, though.

Ijiri et al. [IOOI05] introduce a sketching interface for flower edit-
ing, which preserves botanical structures but does not cover their
animation. To model 3D flowers from real-world samples, Yan et
al. [YGCO∗14] reconstruct flower petals from a single photo by
using surfaces of revolution. This approach uses a number of as-
sumptions and also does not animate the models. Zhang et al. [ZY-
FY14] address the challenging task of modeling static 3D flowers
from imperfect point clouds. They build morphable models of petal
shapes from multiple exemplars in a library and fit them to a giv-
en point cloud. Our method works without a pre-given library of
petals and instead uses single thin-plate meshes as templates ob-
tained through simple user interaction. Ijiri et al. [IYYI14] pro-
pose a semi-automatic modeling technique to reconstruct complex
3D flowers that were entirely captured by X-ray tomography (C-
T). They use an active contour model composed of shaft and sheet
primitives to reconstruct flower stems and petals by optimizing an
energy functional. This setup might probably be too expensive for
most applications and thus want to develop a reproducible solution.

Most recently, Xie et al. [XYS∗16] introduce an interactive tree
modeling system that utilizes examples of real tree-cuts to en-
hance tree creation with realistic structures and fine details. Yin et
al. [YHL∗16] propose a template-based method to reconstruct full
3D plant models from incomplete point clouds [HWCO∗13]. They
build individual leaf templates by cutting leaves away from a plant
and then register together these disjoint parts. While this approach
could be applied for generating a static flower model from its in-
dividual petals, it requires cutting off the petals and hence cannot
capture the whole flower blooming process.

submitted to COMPUTER GRAPHICS Forum (6/2016).

Q. Zheng, X. Fan, A. Sharf, M. Gong, O. Deussen, H. Huang / 4D Reconstruction of Blooming Flowers 3

Figure 3: Algorithm overview. We scan a blooming flower to generate a sequence of point clouds (a). The full flower geometry is then
reconstructed at a manually selected intermediate time step (b). We track and fit the reconstructed flower petals both forward and backward
in time using a template-based dynamic tracking algorithm (c). A spatially and temporally coherent 3D model sequence of a flower blooming
is thus successfully reconstructed (d).

Modeling of plant growth. The morphology of plants and flow-
ers changes significantly during growth. Due to the inherent geo-
metrical complexity of this process, only few works in computer
graphics track and simulate such morphological changes.

Botanists have tracked growth of petal shapes using clonal analy-
sis [RLBC03, CCG∗10, GKH∗10]. They observed that flowers and
leaves have similar mechanics that govern their growth as well as
their decay [LM09,LM11,XC11]. Change is driven by non-uniform
stretching and shrinkage forces, which can be simulated by ac-
counting for measured differential properties. The curled shape of
drying leaves is caused by non-uniform and local changes in vol-
ume [CRLM∗04]. Xiao and Chen [XC11] use measured strains of
dried leaves to derive a linear differential strain field and model leaf
bending by shrinkage. These simulation models are very complex
and thus lack of efficiency and validation on accuracy.

Several works attempt to recover the geometry of growing
plants by integrating multiple measurements of a real-life exem-
plars [MEL∗05, FDM∗10]. We refer the reader to a comprehensive
survey [PR12] for more details. In contrast to these works, we scan
the flower geometry and reconstruct it directly.

In computer graphics, the simulation of blooming flowers has been
introduced by Ijiri et al. [IYKI08]. They use an elastic triangu-
lar mesh to represent petals and simulate their growth in a semi-
automatic way according to user-specified parameters.

To simulate realistic shape deformation of drying leaves, Jeong et
al. [JPK13] assume that shrinkage depends on water changes and
thus simulate the internal water loss for controlling the shrinkage
of leaves. Li et al. [LLX∗15] simulate flower blooming by repre-
senting flower petals with an elastic triangular mesh and a growth
curve, which allows the user to control the global bending of petals.
We avoid such complex biological models by directly tracking and
reconstructing real-life flowers from scanned point clouds.

Similar to us, Li et al. [LFM∗13] reconstruct the growth and de-
velopment of plants acquired by 3D scanning devices [HLZ∗09,
HWG∗13]. They track topological events like plant budding and bi-
furcations through a forward-backward analysis of time-lapse point
clouds. As opposed to simple plants, blooming flowers undergo a

much more complex process with respect to their shape deforma-
tions, petal collisions and inter-occlusions.

Our work is also related to the technique [LDS∗11], which gen-
erates moving trees from video. Pirk et al. [PSK∗12] leverage dy-
namic tree modeling and representation for interactively adapting
complex tree models to their environment. Pirk et al. [PNDN12]
compute developmental stages of a tree from a static input model.
The focus of these works is, however, not on geometric details.

Non-rigid tracking. Tracking surfaces in dynamic point clouds
is a well-studied topic. The majority of papers focuses on human
performance capture for faces [KRP∗15], hands [KA14, QSW∗14,
TST∗15], bodies [ZSZ∗14] and other articulated objects [SNF14].
Nevertheless, none of these works aims at tracking plants and flow-
ers due to the specific complexity of these sequences.

Tracking deformable objects has been previously addressed in sev-
eral works: Bojsen-Hansen et al. [BHLW12] present a method for
recovering a temporally coherent, deforming triangle mesh with ar-
bitrarily changing topology from an incoherent sequence of mesh-
es. Schulman et al. [SLHA13] track a deformable object in a point
cloud based on a probabilistic generative model that uses a phys-
ical model of the tracked object. Similarly, the work of Wang et
al. [WWY∗15] tracks a soft object, such as a Lotus leaf, from s-
parse point clouds with the guidance of a physical model.

Our method is inspired by these combinations of templates and
physical models. In contrast to tracking single objects, we aim at
tracking multiple petals with heavy occlusions and collisions. Due
to subtle physical processes that occur during the blooming process
it is infeasible to capture the complexity of a blooming flower using
a simple physical model. Therefore, we take a geometric approach
aiming at accurate reconstructions from scanned data.

3. Overview

We capture a blooming flower by scanning it over time and gener-
ating a sequence of 3D point clouds. During the blooming process,
the points sample the visible shapes of flower petals at differen-
t time steps, which are denoted by Q = Q1:T ,1 ≤ t ≤ T , where t

submitted to COMPUTER GRAPHICS Forum (6/2016).

4 Q. Zheng, X. Fan, A. Sharf, M. Gong, O. Deussen, H. Huang / 4D Reconstruction of Blooming Flowers

represents time. At early blooming stages, interior petals are com-
pletely occluded; therefore they cannot be sampled.At later stages,
exterior petals decay, bend, and twist heavily; therefore they might
also only be poorly sampled (Figure 3(a)).

Because shapes of individual petals are best captured at an inter-
mediate stage of the blooming process, we manually select an in-
termediate key frame from the sequence to reconstruct the full ge-
ometry of the flower (Figure 3(b)). We denote the whole flower by
M, and the geometry for each petal k (1≤ k ≤ K) by Mk. To build
the full geometry, we use an interactive skeleton-driven modeling
technique [YHZ∗14]. Specialized petal modeling methods from in-
complete point clouds, as demonstrated in [ZYFY14], could also
be applied here. Please note that we assume all petals being at least
partially visible at the selected key frame, which is a reasonable
assumption for most flowers.

We use a full 3D flower model as a template and generate its petal-
s during the time by deforming and fitting it to the point cloud-
s in adjacent time steps. Our track-and-fit algorithm is formulat-
ed as a Maximum a Posteriori (MAP) problem and solved using
Expectation Maximization (EM) [DLR77]. During the expectation
step, correspondences between the template mesh and the captured
points are established, which are then used for guiding mesh defor-
mation in the maximization step. We track flower petals both for-
ward and backward in time (Figure 3(c)), yielding a spatially and
temporally coherent 3D model sequence M1:T ,1 ≤ t ≤ T , which
represents the flower blooming process well (Figure 3(d)).

To address the specific challenges of tracking flowers, we use the
popular MAP formation [MS10, SLHA13, WWY∗15] for track-
ing and registration, but utilize petal relations for both establish-
ing correspondences and deforming the mesh. To establish corre-
spondences, we classify the points into different parts and consider
boundary constraints between points and vertices. To deform the
template, we enforce a petal shapes preservation term and a petal
penetration avoidance term. The first term regularizes the shape of
each petal, while the second regularizes the configuration between
petals. Because of this, our tracking result at each time step is a
realistic flower model even if the point cloud is incomplete.

4. Method

During tracking, the topology of our template meshes remains un-
changed, but the locations of their vertices need to be updated to
match the captured point clouds. In this section we first describe
the acquisition of our data, then we discuss how to compute a mesh
model Mt based on a point cloud Qt captured at time t and an
already computed mesh model M̂, where M̂ = Mt−1 for forward
tracking and M̂=Mt+1 for backward tracking.

4.1. Data acquisition

The duration different flower species need for blooming varies from
hours to days. Hence, scanning the whole process requires a ro-
bust acquisition setup. Similar to [LFM∗13] we put the flower on
a turntable and use a structured light scanner to capture the flower
shape from different sides using a fixed scanner location (see Fig-
ure 4(a)). We assume the blooming process to be slow enough for

(a) System setup (b) Point cloud (c) Template

Figure 4: Using a structure light scanner (a), we obtain a point
cloud sequence capturing a blooming flower. From the sequence,
we select a point cloud (b), which provides a rather complete data
sampling, and reconstruct a mesh template (c) for it. The black lines
are curves skeletons of the petals.

registering point clouds captured under different turntable settings
under a rigid transformation. Nevertheless, rotating flowers using a
turntable causes small perturbations of their shapes, which result-
s in noise and outliers within the registered 3D point clouds. We
choose to handle this at the later stage rather than relying on more
advanced and expensive acquisition setups.

4.2. Defining a Maximum a Posteriori Problem

We consider a point cloud Qt as the observation of the Gaussian
Mixture Model, whose centroids are the vertices of the unknown
mesh Mt . We solve for these GMM centroid locations by formal-
izing it as a Maximum a Posteriori (MAP) problem:

argmax
Mt

p(Qt |Mt)p(Mt), (1)

where the first term p(Qt |Mt) is the likelihood term, representing
the probability of having the points of the point cloud under the
assumption of the model, and the second term p(Mt) is the prior
term, representing the probability of the model to exist.

Taking the model obtained at the previous frame M̂ as a starting
point, the EM algorithm is employed to solve the MAP estimation
problem. The Expectation-step (E-step) estimates the latent vari-
ables Z, which represent correspondences between the point cloud
Q and the vertices of the current model M, where M is set to M̂
initially. The Maximization-step (M-step) updates the vertex posi-
tions in M by solving an energy minimization problem based on
the current correspondences Z. We now describe the two steps in
details and elaborate how to reach to an optimal solution.

4.3. E-step: Estimation of Correspondences

Given a mesh model M, our task within the E-step is to find the
correspondences between vertices in M and and the point cloud Q
captured at the current time. To improve accuracy, we first classify
the points in Q into different parts, each part Qk corresponding to
a petal mesh Mk. We then estimate the correspondences between
points in Qk and vertices in Mk for each petal k.

submitted to COMPUTER GRAPHICS Forum (6/2016).

Q. Zheng, X. Fan, A. Sharf, M. Gong, O. Deussen, H. Huang / 4D Reconstruction of Blooming Flowers 5

Figure 5: Using only the Gaussian Mixture Model of the previ-
ous mesh (a), a fast moving (purple) petal, yields an incorrect
point classification (b) as some points are mistakenly assigned to
the wrong (orange) petal. Utilizing additional priors for the petal
structure helps to solve this problem (c).

Point cloud classification. Under the GMM assumption, a cap-
tured point in Q is most likely associated with the closest petal.
Each vertex mi in M represents a Gaussian centroid that is associ-
ated with a diagonal covariance matrix Σi, as well as a weight φi
measuring the impact of mi with respect to the observation. We set
Σi to be the average distance of mi to its one-ring neighborhood a-
long x-axis, y-axis, and z-axis, respectively. The weight φi is set to
be 1 initially and updated after estimating correspondences.

A point q j of the point cloud is normally distributed around mi as
q j ∼N (mi,Σi). The probability of q j given mi is given by:

p(q j|mi) =
1√

(2π)3|Σi|
exp(−1

2
(q j−mi)

T
Σ
−1
i (q j−mi)).

For a point q j, its probability of belonging to Qk is computed as:

p(q j ∈Qk) =
∑mi∈Mk φi p(q j|mi)vi

∑mi∈M φi p(q j|mi)vi
, (2)

where numerator and denominator represent the probabilities com-
puted from the GMMs. The visibility term vi ∈ {0,1} has a value
of 1 if vi is visible, i.e., can be seen from the viewpoints of the scan-
ner. We only assign point q j to Qk if there is a large probability for
this, i.e., p(q j ∈ Qk) ≥ 0.99 in practice. As a result, noisy points
that are far away from the mesh surface will not be classified into
any parts.

The initial classification is further refined based on a priori knowl-
edge on petal structures. First, when two petal meshes overlap each
other, an observed point likely belongs to the exterior petal, i.e., the
petal is fully visible with one side at the current time step. Hence,
if petal k is detected as the exterior petal based on mesh Mk, a point
q j is assigned to Qk if its distance to any visible vertex mi of Mk

is within Σi. Furthermore, if the location of a petal Mk converges
after several EM iterations, for any not-yet associated point out-
side the Σi distance of Mk, its probability of belonging to a petal is
computed with Mk being ignored.

Point correspondence. With points in Q labeled by their corre-
sponding petals, we estimate the correspondences between points
in Qk and vertices in Mk for each petal k. Correspondences are rep-
resented using an association matrix Z : (Mk → Qk). Each entry

Figure 6: Cyan points in (a) show the boundary of the current mesh
template. In (b) candidate boundary points in the scan are detected
using local features, which may contain outliers (highlighted with
black boxes). In (c) boundary points outliers are removed in the
scan using the current mesh model.

Zi j ∈ [0,1] indicates how likely point q j corresponds to vertex mi:

Zi j =
φi p(q j|mi)vi

∑mi∈Mk φi p(q j|mi)vi
, with φi = ∑

q j∈Qk

p(q j|mi), (3)

where the numerator and denominator are the corresponding prob-
abilities computed from the Gaussian centroid and the petal GMM.

Boundary correspondence. Our deformable mesh models so far
cannot be enforced to follow the contour of the flower petals, since
only point correspondences are used (cf. Figure 7(a)). Hence, we
have to use additional constraints by looking for correspondences
between point cloud boundaries and mesh boundaries. We denote
the boundary vertices by QB with QB ⊂Q and boundary points by
MB with MB ⊂M (Figure 6(a-c)).

Since each petal k is modeled using a single layer triangle mesh
Mk, its vertices along the edges can be easily detected. To avoid
matching ambiguities, we here only add a vertex mi to the boundary
vertex set MB

k if its distance to other petals is larger than a given
threshold (set to 2×Σi).

We first detect the boundaries of the whole point cloud Q using
local features [GWM01]. For a point q j, its local neighbors with-
in a radius r are then determined and projected to a locally fitted
plane. Next, an 1D polar histogram of 12 bins is computed, which
measures the directions of projected local neighbors on the fitted
plane using q j as the origin. If more than 20% of the bins have zero
value, q j is considered as a candidate for a boundary point. These
candidates for boundary points are then filtered using the current
mesh model M, which removes outliers that typically appear along
the boundary of interior holes (Figure 6(b)). A point q j is a bound-
ary point (q j ∈ QB) if any of its k-nearest vertices in the mesh is a
boundary vertex. Finally, the detected boundary points are labeled
by the petal that they belong to (denoted by QB

k). Once QB and
MB are fully determined, the association matrix Z : (MB

k→QB
k)

between the two sets is calculated using Equation (3).

4.4. M-step: Updating vertex locations

Having the correspondences between the mesh vertices and cap-
tured 3D points, the M-step optimizes the vertex locations in M

submitted to COMPUTER GRAPHICS Forum (6/2016).

6 Q. Zheng, X. Fan, A. Sharf, M. Gong, O. Deussen, H. Huang / 4D Reconstruction of Blooming Flowers

Figure 7: Deforming the mesh template using point correspon-
dences alone cannot effectively enforce the mesh to fit the point
cloud (left). Adding an additional penalty on distances between
mesh and point boundaries solves the problem (right).

and thus allows M to better fit the data Q. This is achieved by using

argmin
M

(− log p(M|Q,Z)− log p(M)) , (4)

where the first term, the data term reflects how well the model ex-
plains the point cloud, and the second term, the prior term regular-
izes the solution to ensure a realistic flower model.

4.4.1. Data term

The data term is defined based on the distances between mesh ver-
tices and their corresponding points. Hence, when the data term
is minimal, the mesh is well aligned with the captured points. To
ensure that the mesh also follows the contour of the petal, an addi-
tional penalty is given to distances between corresponding vertices
and points along the boundaries:

− log p(M|Q,Z) = ∑
k

(
w1D(Qk,Mk)+w2D(QB

k,MB
k)
)
, (5)

where the distance function is defined as:

D(M,Q) = ∑
mi∈M

∑
q j∈Q

Zi j(q j−mi)
T

Σ
−1
i (q j−mi), (6)

with weights w1 and w2 set by default to be 0.02 and 0.05.

Figure 7 demonstrates the importance of the boundary term to
ensure that the reconstructed mesh closely follows the scanned
boundary. Typically, we are not able to detect any boundary points
at the very beginning of the blooming process since different petals
are not sufficiently separated. In this situation we have QB = ∅ and
hence the boundary term does not affect the above optimization.

4.4.2. Prior terms

To enhance the robustness of the tracking process against noise in
the data and to ensure that the tracked mesh looks like a flower, ad-
ditional constraints are applied based on the properties of the flower
petals. We define three terms for this: petal shape preservation, pen-
etration avoidance, and fixed petal root position. The overall prior
term is thus given by:

− log p(M) = Eshape +Ecollision +Eroot. (7)

Figure 8: Tracking and fitting a single petal. The captured point
clouds at different time steps (top) are tracked and fit by a petal
template model (bottom) using data fitting and shape preservation.

Shape preservation. To ensure that the generated meshes look
like flower petals, a previous work on static flower petal mod-
eling [ZYFY14] uses morphable models generated from a petal
database. In contrast to them, we let the user model a template mesh
and assume this model can faithfully represent the flower. Hence,
we would like to constraint the petal shapes for all time steps to
have similar shapes as the created template. This is achieved by
deforming the template using solely control points that are located
on the petal skeleton and the boundary curves; see Figure 4(c). It
is worth noting that when generating flower animations manually,
artists usually also manipulate these three curves.

The affine transformations of all control points, denoted as T, deter-
mine the location of the mesh M by using a linear blend skinning
(LBS) model. This model is expressed in matrix form: M = GT,
where G stands for a large matrix that combines the original posi-
tions of the template with blending weights associated with control
points. The blending weights are calculated using harmonic coor-
dinates [JBPS11]. For the tracking, we actually recover T to match
the data terms and prior terms.

As flower growth between two adjacent time steps is almost unno-
ticeable, we aim at restricting the deformation to isometry, prefer-
ring the shape being bent rather than stretched. We do not require
isometry for the whole sequence though, as the petals can grow
bigger in time. The shape distortion is measured by the as-rigid-as-
possible energy term [SA07, JBK∗12]:

Eshape(M,R) = w3 ∑
i

∑
j∈N (i)

ci j‖(mi−m j)−Ri(m̂i− m̂ j)‖2
2, (8)

where N (i) is the one-ring neighborhood of mi, m̂i represents the
vertex position obtained at the previous frame, ci j is the famil-
iar per-edge cotangent weight, and R = {Ri} with Ri being the
unknown local rotation of the mi. Interested readers are referred
to [SA07] for more details. The weight w3 is set to be 1 by default.

Figure 8 demonstrates that these energy terms combined with the
control points are able to accurately recover the motion of a single
petal during the blooming process.

submitted to COMPUTER GRAPHICS Forum (6/2016).

Q. Zheng, X. Fan, A. Sharf, M. Gong, O. Deussen, H. Huang / 4D Reconstruction of Blooming Flowers 7

Figure 9: At early stages of blooming (a), internal petals are com-
pletely occluded by external ones and tightly packed. Since there
are only a few sampling points of internal petals, tracking and fit-
ting the data here may result in large petal intersections (b). We
apply the penetration avoidance term to effectively prevent it (c).

Penetration avoidance. The first prior forces the individual petal-
s to have proper shapes. Next, we additionally have to preven-
t them from colliding with each other. This is done by setting up
a penetration avoidance prior. Again, we assume that the template
mesh provides correct spatial relations among different petals. If
we detect that a vertex mi penetrates a petal, we shall push mi
so that the penetration is avoided. This is realized by first find-
ing mi’s closest point p with normal n in the petal and then move
mi to mi so that nT (mi − p) < 0 is satisfied. In practice, we set
mi = p−1.05n‖mi− p‖2.

Furthermore, when tracking backward to earlier stages, the interior
petals are almost completely hidden and so they cannot be con-
strained by a data term. We thus employ an observed visual hul-
l [Lau94], the intersection of visual cones derived from different
turntable settings, to further constrain the range of movements of
petals. If we detect a vertex mi that penetrates the visual hull, we
compute its desired position mi as shown above.

Based on the detected penetrating vertices and their desired correct
positions, the penetration prior term is now computed as:

Ecollision(M) = w4 ∑
mi∈SC

‖mi−mi‖2, (9)

where SC is the set of vertices penetrating other petals or the visual
hull, and weight w4 is set by default to be 2.

Figures 9 and 10 demonstrate that the penetration avoidance term
can effectively resolve collisions between different petals, as well
as avoiding the petals go beyond the visual hull.

Fixed root position. During blooming, the root point of each petal
usually remains stationary relative to the flower head. Hence, by
specifying a root vertex for each petal in the template mesh we
define a root prior term as:

Eroot = w5 ∑
mi∈SR

‖mi− m̂i‖2, (10)

where SR is the set that contains all root vertices. In practice, we
want this term to provide a strong constraint and therefore use a
high weighting value with w5 = 100.

Figure 10: At early blooming stages, the scanned points capture
only the exterior petals and tips (top-left). Reconstructed petal-
s may thus penetrate the visual hull (mid column). Constraining
petals from penetrating the visual hull (right column) leads to re-
sults closer to the observed photo (bottom-left).

4.5. Energy Minimization

Since flower blooming is a gradually changing process, the tracking
procedure only needs to search local optima in the neighborhood of
the existing mesh model. We obtain the local optimal solution for
Equation (1) using the EM algorithm. The E-step estimates the cor-
respondences Z based on the vertices of the current model M, and
M-step updates the vertex positions by solving an energy minimiza-
tion problem (Equation (4)). EM iterations stop when the ratio of
energy changes of subsequent steps is smaller than a given thresh-
old, for instance, 10−3.

Equation (4) is a non-linear least squares problem as Eshape (Equa-
tion (8)) and Ecollision (Equation (9)) are non-linear. We compute its
local optima using the projection-based iteration method proposed
in [BDS∗12, BML∗14]. In the local step, the rigid transformation
Ri for any vertex in Eshape, as well as mi in Ecollision, is updated sep-
arately using current vertex positions. In the global step, we solve
a linear system to find the least square solution for the transforma-
tions T, where the vertex positions are updated accordingly.

5. Results and applications

A variety of blooming flowers have been captured and tested in
our experiments. To demonstrate the generality and robustness of
our algorithm, we focus on flowers of different sizes, complexities,
blooming rates and shapes.

To reconstruct the flower blooming sequence, we track and fit the
reconstructed petal templates using the above-mentioned EM opti-
mization. This involves computing local deformations and estima-
tions for the correspondences for each petal independently, which
simplifies the computation and allows our algorithm to run at fast
speed. For an average dataset with 20K scanned points per frame
and 200 vertices per reconstructed petal mesh, our algorithm takes
less than 1 second for each EM iteration on an Intel Core i7 CPU
@3.40GHz with 24GB RAM. The processing time is about 10 sec-
onds per frame and about 20-30 minutes for the whole sequence;

submitted to COMPUTER GRAPHICS Forum (6/2016).

8 Q. Zheng, X. Fan, A. Sharf, M. Gong, O. Deussen, H. Huang / 4D Reconstruction of Blooming Flowers

Figure 11: Comparison between our reconstructed models (top) and captured image sequence (bottom) of a blooming Lily flower. Note that
different viewpoints are used at different blooming stages and the filaments are not modeled in our approach.

Figure 12: The blooming sequence of a Golden Lily. At early stages, the petals have complex shapes and packed in a small space. Hence,
they are poorly represented in the captured point clouds (top). Nevertheless, our approach recovers the full model sequence (bottom).

Figure 13: An opening Water Lily consists of narrow and thin petals. As a result, it is hard to separate different petals from the scan data
(top). Our approach is able to reconstruct the complete sequence (bottom) through tracking a template model.

submitted to COMPUTER GRAPHICS Forum (6/2016).

Q. Zheng, X. Fan, A. Sharf, M. Gong, O. Deussen, H. Huang / 4D Reconstruction of Blooming Flowers 9

Sequence #Days #Petals #Frame Time
Orchid (Fig. 1) 5 5 114 6.0
Lily (Fig. 11) 5 6 128 9.4
Golden Lily (Fig. 12) 5 6 111 10.7
Water Lily (Fig. 13) 3 14 73 9.8
Eustoma (Fig. 15) 5 5/8 123 5.6

Table 1: Average processing time (rightmost column) in second-
s per frame, along with data information (e.g., blooming rate in
leftmost column) for our testing sequences.

Sequence w1 w2 w3 w4 w5

Orchid (Fig. 1) 0.002 0.005 1 2 100
Lily (Fig. 11) 0.01 0.02 1 2 100
Golden Lily (Fig. 12) 0.005 0.005 1 2 100
Water Lily (Fig. 13) 0.01 0.005 1 2 100
Eustoma (Fig. 15) 0.01 0 1 2 100

Table 2: Parameter settings for all examples presented in this work.

see Table 1. Please note that compared with the data capturing time,
governed by how long the flowers need for blooming, our process-
ing time is negligible.

Our method uses a set of 5 parameters {w1,w2,w3,w4,w5} control-
ling the 5 terms of our constrained optimization. Table 2 summa-
rizes the parameter settings in our experiments. Overall, the param-
eter tuning ranges are small and the parameters do not vary much
during our experiments. In fact, the same weights are used in all
examples for shape preservation (w3), penetration avoidance (w4),
and root position (w5) constraints. The ratio between w1,w2 (point
and boundary alignment) and w3 is mainly determined by the ra-
tio between the number of points and the number of vertices. In
particular, the specific values of w1 and w2 are mostly affected by
the quality of the input data. If 3D point positions incorporate large
amounts of noise (e.g., those of Orchid and Golden Lily), we apply
a smaller w1, otherwise the tracked flower might be overly fitted
and distorted. Similarly, we reduce w2 when the captured bound-
aries of petals are not reliable.

Next, we discuss different aspects of our results and provide snap-
shots zooming in and focusing on different characteristics.

In Figure 1, we show the 3D reconstruction sequence of a blooming
Orchid. Due to self-occlusions, the acquired point cloud is noisy
with large missing parts at occluded regions. Note that our method
is able to recover the complete Orchid model including the fine
geometry and location of petals.

Figure 2 compares our method with a state-of-the-art physics-based
blooming simulation method [LLX∗15]. The comparison high-
lights the simple and symmetric looking of pure physics-based
modeling results, whereas our data-driven approach produces more
realistic and versatile animations.

Figure 3 illustrates a blooming sequence of a Lily. Highly cluttered
petals at early stages of the sequence are poorly sampled. Using our
forward and backward tracking and the fitting algorithm, we are

Figure 14: Reconstruction errors of all examples. Vertical black
bars indicate the fitting errors of the pre-built templates.

Figure 15: Using different petal templates, we can generate two
flower blooming sequences from a same set of point clouds that
capture an opening Eustoma.

able to reconstruct even the early stages with proper 3D models. At
late stages, the petals undergo heavy deformations of twisting and
wrinkling. Our template model deforms and fits accurately these
highly curved petals.

A side-by-side comparison between our reconstructed mesh and the
captured photos is shown in Figure 11. It shows that in all stages
of the blooming process the projections of our reconstructed mesh
models match very well to the observed 2D petal shapes.

Figure 12 shows a blooming sequence of a Golden Lily, which
is particularly complex in early stages (left). The interior petals
are hardly visible and hence not well captured in the point cloud.
The reconstructed sequence demonstrates our capability to back-
track and reconstruct such missing information from very little data
while avoiding collisions and preserving petal shapes. Similarly, in
Figure 13, the blooming sequence of a Water Lily with long and

submitted to COMPUTER GRAPHICS Forum (6/2016).

10 Q. Zheng, X. Fan, A. Sharf, M. Gong, O. Deussen, H. Huang / 4D Reconstruction of Blooming Flowers

Figure 16: Motion editing application. Leftmost image shows two overlaying models, where curves represent the trajectories of petal tips.
The remaining models generated by interpolating between only two input models.

Figure 17: Animated shape editing. A synthetic two-layer Water Lily is generated using the original data in Figure 12 through copy-and-paste
editing of petals and their blooming motions.

Figure 18: Motion transfer application. A synthetic yet realistic looking blooming flower of heart-shape petals is generated by transferring
the Lily blooming trajectories (Figures 2 and 11) to a set of new petals.

thin petals is shown. Petals are insufficiently sampled due to their
narrow structure. Nevertheless, our template model tracks and fits
these petals by enforcing the shape-preservation prior.

To quantitatively evaluate the reconstruction accuracy, we measure
the error between the reconstructed surfaces and the raw input data,
and monitor how it evolves during the dynamic blooming process.
The error metric is defined as the average Euclidean distance be-
tween each data point and its closest point on the reconstructed
surface. As shown in Figure 14, the fitting error is around one mil-
limeter for all examples, which is quite small compared with the
typical size of a flower petal. (A petal is about 50 millimeters long
at the early stage and grows longer.) The fitting accuracy of the
Lily is relatively lower due to its larger size, but still maintains at
the same level as that of the pre-built template.

Influence of template. Figure 15 illustrates the impact of the given
petal templates. It is surely hard to clearly identify the number and
the shape of individual petals from the captured point clouds of an
opening Eustoma. Accordingly, we build two different sets of petal
templates by the interactive modeling method, and fit them to the
point cloud sequence. Both generated flower blooming sequences

are realistic and capture the way how an Eustoma grows and opens;
please also see the accompany video. In addition, the fitting errors
of both generated sequences, indicated by the yellow and red curves
in Figure 14, are quite small and similar.

Applications. Besides outputting a set of models, our approach
also provides motion information for different petals, which are
represented as a set of transformations. This allows users to easily
manipulate flower blooming motion for special effects. As shown
in Figure 16, using only two of the reconstructed models and the
motion trajectories in between, we can fit the trajectories using B-
Spline curves and then resample them at desired non-linear rates.
This allows us to adjust the blooming behavior of a flower (e.g. in-
troducing a smooth or sudden blooming motion) or even to adjust
the behavior of different petals independently. In both cases new
collisions may be introduced. This is addressed by using the inter-
polated positions as soft constraints and then solving for shape and
penetration avoidance to find their optimal positions.

The availability of motion information also allows us to extend
the notion of editing and perform copy-and-paste edits for both
petal models and petal motions. Specifically, we can copy animat-

submitted to COMPUTER GRAPHICS Forum (6/2016).

Q. Zheng, X. Fan, A. Sharf, M. Gong, O. Deussen, H. Huang / 4D Reconstruction of Blooming Flowers 11

ed petals and paste them at different places inside a flower and let
them bloom there. In Figure 17 a synthesized Water Lily consisting
of two petal layers (inner and outer) is animated in a natural way.

Finally, our approach allows to decouple petal shape and motion.
The characteristics of blooming motion can be extracted and trans-
ferred to another flower. In Figure 18 we show a synthetic but yet
realistic blooming flower, generated by transferring the reconstruct-
ed blooming trajectories from Lily petals to heart-shape petals.

6. Discussion

In this work we present a novel algorithm for tracking and recon-
structing blooming flowers. We capture blooming sequences using
commercial off-the-shelf 3D scanners within a simple acquisition
setup. The main challenge is recovering parts in space and time
that are completely missed by the scanner due to self-occlusions,
petal size and overall complexity. In particular at early stages of the
blooming process, interior petals can be completely hidden in the
data, whereas at later stages, petals usually undergo large deforma-
tions of twisting and wrinkling due to decay.

We devise a template-based tracking-and-fitting algorithm, which
performs both forward and backward in time. It allows us to recover
completely missing geometry by inferring from future steps in the
blooming sequence through a constrained optimization technique.
Our results demonstrate the ability to reconstruct intricate flower
blooming sequences of various species.

Nevertheless, our method is still confined to flowers with relatively
simple shapes and configurations. Currently we cannot effectively
handle flowers with densely packed petals, such as Rose and Pe-
ony. Partly this is because the scan data of these complex flowers
are highly incomplete and hence generating a complete template is
very challenging even with interactive approaches.

We use skeletons as simple constraints to guide the deformation of
flower petals. Some species may not have a simple skeleton struc-
ture, but typically a petal has a well-defined central axis and bound-
aries, which provide sufficient controls to define naturally looking
deformations. Figure 8 illustrates our ability to approximate com-
plex petal deformations. Adding branches to the central axis will
facilitate approximating even more complex petal structures.

Limitations. A limitation of our method is the level of geomet-
ric details that we can reconstruct. While the structured light scan-
ner we used is sufficient for capturing the shape of visible exterior
petals, it does not provide sufficient geometric details for modeling
the delicate winkle movements. We expect that using high quality
laser scanner, or even X-ray for interior petals, will help to ease
the problem. Nevertheless, tracking subtle winkle movements adds
additional challenges on the algorithm.

Another limitation is temporal coherence, which is not explicitly
enforced in our optimization. As a result, when large deformation-
s arise suddenly or the captured input point clouds are vibrating
heavily, subtle flickering may occur in the generated animations.
Applying a bilateral smoothing filter on the mesh sequence could
improve the temporal consistency. It, however, might also filter out
subtle blooming developments of a flower.

Future work. We plan to extend our algorithm towards recon-
struction of complex botanic species such as bushes, foliage and
additional plants. Thus, we intend to generalize our semi-manual
technique to reconstruct a range of botanic blooming, growing and
deforming phenomena. Additionally, due to the simplicity of our
setup, we plan to create a database of various blooming flowers.
Our goal here is to analyze the statistics of the space of blooming
flowers and obtain novel insights into the process, which can guide
the physical-based simulation algorithms. Besides that, space-time
dynamic analysis [YLX∗16] and reconstruction [WXZ∗16] are al-
so very interesting directions to explore.

Acknowledgments

We would like to thank the anonymous reviewers for their con-
structive comments. This work was supported in part by NSFC
(61522213, 61379090, 61331018), 973 Program (2015CB352501),
Guangdong Science and Technology Program (2015A030312015,
2014B050502009, 2014TX01X033, 2016A050503036), Shenzhen
Innovation Program (JCYJ20151015151249564), National Foreign
1000 Plan (WQ201344000169), Guangdong Leading Talents Plan
(00201509) and NSERC (293127).

References
[BDS∗12] BOUAZIZ S., DEUSS M., SCHWARTZBURG Y., WEISE T.,

PAULY M.: Shape-up: Shaping discrete geometry with projections.
Computer Graphics Forum (Proc. Eurographics Symp. on Geometry
Processing) 31, 5 (2012), 1657–1667. 7

[BHLW12] BOJSEN-HANSEN M., LI H., WOJTAN C.: Tracking sur-
faces with evolving topology. ACM Trans. on Graphics (Proc. of SIG-
GRAPH Asia) 31, 4 (2012), 53:1–53:10. 3

[BML∗14] BOUAZIZ S., MARTIN S., LIU T., KAVAN L., PAULY M.:
Projective dynamics: Fusing constraint projections for fast simulation.
ACM Trans. on Graphics (Proc. of SIGGRAPH) 33, 4 (2014), 154:1–
154:11. 7

[CCG∗10] CUI M.-L., COPSEY L., GREEN A. A., BANGHAM J. A.,
COEN E.: Quantitative control of organ shape by combinatorial gene
activity. PLoS Biol 8, 11 (2010), e1000538. 3

[CRLM∗04] COEN E., ROLLAND-LAGAN A.-G., MATTHEWS M.,
BANGHAM J. A., PRUSINKIEWICZ P.: The genetics of geometry. Proc.
National Academy of Sciences 101, 14 (2004), 4728–4735. 3

[DL10] DEUSSEN O., LINTERMANN B.: Digital Design of Nature:
Computer Generated Plants and Organics, 1st ed. Springer Publishing
Company, Incorporated, 2010. 2

[DLR77] DEMPSTER A. P., LAIRD N. M., RUBIN D. B.: Maximum
likelihood from incomplete data via the em algorithm. J. Royal Statisti-
cal Society 39, 1 (1977), 1–38. 4

[FDM∗10] FERNANDEZ R., DAS P., MIRABET V., MOSCARDI E.,
TRAAS J., VERDEI J.-L., MALANDAIN G., GODIN C.: Imaging plant
growth in 4d: robust tissue reconstruction and lineaging at cell resolu-
tion. Nature Methods 7, 5 (2010), 547–553. 3

[GKH∗10] GREEN A. A., KENNAWAY J. R., HANNA A. I., BANGHAM
J. A., COEN E.: Genetic control of organ shape and tissue polarity. PLoS
Biol 8, 11 (2010), e1000537. 3

[GWM01] GUMHOLD S., WANG X., MACLEOD R.: Feature extraction
from point clouds. In Proc. Int. Meshing Roundtable (2001), pp. 293–
305. 5

[HLZ∗09] HUANG H., LI D., ZHANG H., ASCHER U., COHEN-OR
D.: Consolidation of unorganized point clouds for surface reconstruc-
tion. ACM Trans. on Graphics (Proc. of SIGGRAPH Asia) 28, 5 (2009),
176:1–176:7. 3

submitted to COMPUTER GRAPHICS Forum (6/2016).

12 Q. Zheng, X. Fan, A. Sharf, M. Gong, O. Deussen, H. Huang / 4D Reconstruction of Blooming Flowers

[HWCO∗13] HUANG H., WU S., COHEN-OR D., GONG M., ZHANG
H., LI G., CHEN B.: l1-medial skeleton of point cloud. ACM Trans. on
Graphics (Proc. of SIGGRAPH) 32, 4 (2013), 65:1–65:8. 2

[HWG∗13] HUANG H., WU S., GONG M., COHEN-OR D., ASCHER
U., ZHANG H.: Edge-aware point set resampling. ACM Trans. on
Graphics 32, 1 (2013), 9:1–9:12. 3

[IOOI05] IJIRI T., OWADA S., OKABE M., IGARASHI T.: Floral dia-
grams and inflorescences: Interactive flower modeling using botanical
structural constraints. ACM Trans. on Graphics (Proc. of SIGGRAPH)
24, 3 (2005), 720–726. 2

[IYKI08] IJIRI T., YOKOO M., KAWABATA S., IGARASHI T.: Surface-
based growth simulation for opening flowers. In Proc. Graphics Inter-
face (2008), pp. 227–234. 2, 3

[IYYI14] IJIRI T., YOSHIZAWA S., YOKOTA H., IGARASHI T.: Flower
modeling via x-ray computed tomography. ACM Trans. on Graphics
(Proc. of SIGGRAPH) 33, 4 (2014), 48:1–48:10. 2

[JBK∗12] JACOBSON A., BARAN I., KAVAN L., POPOVIĆ J., SORKINE
O.: Fast automatic skinning transformations. ACM Trans. on Graphics
(Proc. of SIGGRAPH) 31, 4 (2012), 77:1–77:10. 6

[JBPS11] JACOBSON A., BARAN I., POPOVIĆ J., SORKINE O.: Bound-
ed biharmonic weights for real-time deformation. ACM Trans. on Graph-
ics (Proc. of SIGGRAPH) 30, 4 (2011), 78:1–78:8. 6

[JPK13] JEONG S., PARK S.-H., KIM C.-H.: Simulation of morphology
changes in drying leaves. Computer Graphics Forum 32, 1 (2013), 204–
215. 3

[KA14] KYRIAZIS N., ARGYROS A.: Scalable 3D tracking of multiple
interacting objects. In Proc. IEEE Conf. on Computer Vision & Pattern
Recognition (2014), pp. 3430–3437. 3

[KRP∗15] KLEHM O., ROUSSELLE F., PAPAS M., BRADLEY D., HERY
C., BICKEL B., JAROSZ W., BEELER T.: Recent advances in facial
appearance capture. Computer Graphics Forum (Proc. of Eurographics)
34, 2 (2015), 709–733. 3

[Lau94] LAURENTINI A.: The visual hull concept for silhouette-based
image understanding. IEEE Trans. Pattern Analysis & Machine Intelli-
gence 16, 2 (1994), 150–162. 7

[LD99] LINTERMANN B., DEUSSEN O.: Interactive modeling of plants.
IEEE Computer Graphics and Applications 19, 1 (1999), 56–65. 2

[LDS∗11] LI C., DEUSSEN O., SONG Y.-Z., WILLIS P., HALL P.:
Modeling and generating moving trees from video. ACM Trans. on
Graphics (Proc. of SIGGRAPH Asia) (2011), 127:1–127:12. 3

[LFM∗13] LI Y., FAN X., MITRA N. J., CHAMOVITZ D., COHEN-OR
D., CHEN B.: Analyzing growing plants from 4d point cloud data. ACM
Trans. on Graphics (Proc. of SIGGRAPH Asia) 32, 6 (2013), 157:1–
157:10. 1, 3, 4

[LLX∗15] LI J., LIU M., XU W., LIANG H., LIU L.: Boundary-
dominant flower blooming simulation. Computer Animation and Virtual
Worlds 26, 3-4 (2015), 433–443. 2, 3, 9

[LM09] LIANG H., MAHADEVAN L.: The shape of a long leaf. Proc.
National Academy of Sciences 106, 52 (2009), 22049–22054. 3

[LM11] LIANG H., MAHADEVAN L.: Growth, geometry, and mechanics
of a blooming lily. Proc. National Academy of Sciences 108, 14 (2011),
5516–5521. 3

[MEL∗05] MUNDERMANN L., ERASMUS Y., LANE B., COEN E.,
PRUSINKIEWICZ P.: Quantitative modeling of arabidopsis development.
Plant Physiology 139 (2005), 960–968. 3

[MS10] MYRONENKO A., SONG X.: Point set registration: Coherent
point drift. IEEE Trans. Pattern Analysis & Machine Intelligence 32, 12
(2010), 2262–2275. 4

[PHM93] PRUSINKIEWICZ P., HAMMEL M. S., MJOLSNESS E.: Ani-
mation of plant development. In Proc. Conf. on Computer Graphics and
Interactive Techniques (1993), pp. 351–360. 2

[PL96] PRUSINKIEWICZ P., LINDENMAYER A.: The Algorithmic Beauty
of Plants. Springer-Verlag New York, Inc., New York, NY, USA, 1996.
2

[PNDN12] PIRK S., NIESE T., DEUSSEN O., NEUBERT B.: Capturing
and animating the morphogenesis of polygonal tree models. ACM Trans.
on Graphics (Proc. of SIGGRAPH Asia) 31, 6 (2012), 169:1–169:10. 3

[PR12] PRUSINKIEWICZ P., RUNIONS A.: Computational models of
plant development and form. New Phytologist 193, 3 (2012), 549–569.
3

[PSK∗12] PIRK S., STAVA O., KRATT J., SAID M. A. M., NEUBERT
B., MĚCH R., BENES B., DEUSSEN O.: Plastic trees: Interactive self-
adapting botanical tree models. ACM Trans. on Graphics (Proc. of SIG-
GRAPH) 31, 4 (2012), 50:1–50:10. 3

[QSW∗14] QIAN C., SUN X., WEI Y., TANG X., SUN J.: Realtime
and robust hand tracking from depth. In Proc. IEEE Conf. on Computer
Vision & Pattern Recognition (2014), pp. 1106–1113. 3

[RLBC03] ROLLAND-LAGAN A.-G., BANGHAM J. A., COEN E.:
Growth dynamics underlying petal shape and asymmetry. Nature 422,
6928 (2003), 161–163. 3

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface model-
ing. In Computer Graphics Forum (Proc. Eurographics Symp. on Geom-
etry Processing) (2007), pp. 109–116. 6

[SLHA13] SCHULMAN J., LEE A., HO J., ABBEEL P.: Tracking de-
formable objects with point clouds. In Proc. IEEE Int. Conf. on Robotics
& Automation (2013), pp. 1130–1137. 3, 4

[SNF14] SCHMIDT T., NEWCOMBE R., FOX D.: Dart: Dense articulated
real-time tracking. In Proc. Robotics: Science and Systems (2014). 3

[TST∗15] TAGLIASACCHI A., SCHRÖDER M., TKACH A., BOUAZIZ
S., BOTSCH M., PAULY M.: Robust articulated-icp for real-time hand
tracking. Computer Graphics Forum (Proc. Eurographics Symp. on Ge-
ometry Processing) 34, 5 (2015), 101–114. 3

[WWY∗15] WANG B., WU L., YIN K., ASCHER U., LIU L., HUANG
H.: Deformation capture and modeling of soft objects. ACM Trans. on
Graphics (Proc. of SIGGRAPH) 34, 4 (2015), 94:1–94:12. 3, 4

[WXZ∗16] WU B., XU K., ZHOU Y., XIONG Y., HUANG H.: Skeleton-
guided 3D shape distance field metamorphosis. Graphical Models
(2016), 1–9. 11

[XC11] XIAO H., CHEN X.: Modeling and simulation of curled dry
leaves. Soft Matter 7 (2011), 10794–10802. 3

[XYS∗16] XIE K., YAN F., SHARF A., DEUSSEN O., CHEN B.,
HUANG H.: Tree modeling with real tree-parts examples. IEEE Trans.
Visualization & Computer Graphics (2016). 2

[YGCO∗14] YAN F., GONG M., COHEN-OR D., DEUSSEN O., CHEN
B.: Flower reconstruction from a single photo. Computer Graphics
Forum (Proc. of Eurographics) 33, 2 (2014), 439–447. 2

[YHL∗16] YIN K., HUANG H., LONG P., GAISSINSKI A., GONG M.,
SHARF A.: Full 3D plant reconstruction via intrusive acquisition. Com-
puter Graphics Forum 35, 1 (2016), 272–284. 2

[YHZ∗14] YIN K., HUANG H., ZHANG H., GONG M., COHEN-OR D.,
CHEN B.: Morfit: Interactive surface reconstruction from incomplete
point clouds with curve-driven topology and geometry control. ACM
Trans. on Graphics (Proc. of SIGGRAPH Asia) 33, 6 (2014), 202:1–
202:12. 4

[YLX∗16] YUAN Q., LI G., XU K., CHEN X., HUANG H.: Space-
time co-segmentation of articulated point cloud sequences. Computer
Graphics Forum 35, 2 (2016), 419–429. 11

[ZSZ∗14] ZHANG P., SIU K., ZHANG J., LIU C. K., CHAI J.: Lever-
aging depth cameras and wearable pressure sensors for full-body kine-
matics and dynamics capture. ACM Trans. on Graphics (Proc. of SIG-
GRAPH Asia) 33, 6 (2014), 221:1–221:14. 3

[ZYFY14] ZHANG C., YE M., FU B., YANG R.: Data-driven flower
petal modeling with botany priors. In Proc. IEEE Conf. on Computer
Vision & Pattern Recognition (2014), pp. 636–643. 2, 4, 6

submitted to COMPUTER GRAPHICS Forum (6/2016).

