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Abstract: The analysis of movement trajectories plays a
central role in many application areas, such as traffic
management, sports analysis, and collective behavior re-
search, where large and complex trajectory data sets are
routinely collected these days. While automated analysis
methods are available to extract characteristics of trajec-
tories such as statistics on the geometry, movement pat-
terns, and locations that might be associated with impor-
tant events, human inspection is still required to interpret
the results, derive parameters for the analysis, compare
trajectories and patterns, and to further interpret the im-
pact factors that influence trajectory shapes and their un-
derlying movement processes. Every step in the acquisi-
tion and analysis pipeline might introduce artifacts or al-
terate trajectory features, which might bias the human in-
terpretation or confound the automated analysis. Thus, vi-
sualization methods as well as the visualizations them-
selves need to take into account the corresponding factors
in order to allow sound interpretation without adding or
removing important trajectory features or putting a large
strain on the analyst. In this paper,weprovide anoverview
of the challenges arising in robust trajectory visualization
tasks. We then discuss several methods that contribute to
improved visualizations. In particular, we present practi-
cal algorithms for simplifying trajectory sets that take se-
mantic and uncertainty information directly into account.
Furthermore, we describe a complementary approach that
allows to visualize the uncertainty along with the trajecto-
ries.
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tures→ Computational geometry

1 Introduction

Improvements in sensor technology and satellite imagery
over the last years facilitate the collection of large amounts
of movement data, including vehicle traffic and animal
or human movement [8, 38, 36, 37]. Movement data can
be either collected from sensor tags attached to a moving
object, e. g. GPS sensors and inertial measurements units
(IMUs), or by processing of video or imagery data [3, 4].
The underlying backbone of the data, which also is a ma-
jor factor in the analysis process, is usually a series of lo-
cations, e. g. derived from GPS fixes delivered by sensor
tags or by tracking humans or animals in video footage.
The latter is in particular of interest in confined spaces
such as building infrastructure, cages or aviaries, where
movement is restricted to a small area and can be easily
captured with stationary cameras. These locations consti-
tute a movement trajectory, which will usually be a sim-
plified model of the original movement. In a wide range of
application areas, such as urban planning, disaster man-
agement, engineering, sociology, and animal ecology, the
collected data is used to serve important purposes such
as the analysis of disease spreading, animal behavior, de-
sign requirements, for the development of corresponding
models, and for decisionmaking. The corresponding anal-
ysis pipelines often include automated analysis methods,
e. g. based on geometric measures of the trajectory and
on algorithms, but also visual exploration or a combina-
tion of the two. Visual exploration is particularly impor-
tant when the interpretation of the movement has to take
into account the context of the environment in which the
movement occurred [11, 10], and when there are potential
influence factors which cannot be easily assessed, quan-
tified, and integrated into an automated approach. This
is often the case in behavior analysis, e. g. for animal de-
cision making, where impact factors such as topography,
food supply, and social interaction can play a crucial role.
Several large databases collect movement data sets and
make them available to interested analysts and the public,
e. g. the Movebank [9] animal movement database, with
strongly increasing number and volumes of data sets in re-
cent years.
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Figure 1: Simplified data collection and analysis pipeline – all components might contribute to loss or alteration of information and features
required for the analysis. The analyst can be involved in all parts of the pipeline processes (indicated by the dashed arrows), e. g. by per-
forming analysis tasks or data cleaning. The feedback from the different processing steps might help an analyst to build up deeper insight
into the nature of the data, but there might be also different roles distinguished for human intervention, such as collector, curator, and an-
alyst. The three pictures at the bottom, from left to right, show a snippet of typical input data, baboon movement (taken from [28, 27]), a
corresponding simple data plot using R, and a trajectory visualization on a map created using the Teamwise tool [10](based on the cesium
platform and using Bing maps aerial imagery, © Microsoft Corporation).

Movement data from measured movement, and sub-
sequent derived data, is often subject to quality issues re-
garding biases, noise, incompleteness, imprecision, and
inconsistency, commonly associatedwithdata veracity [5],
and leading to uncertainty for analysis and visualiza-
tion [1, 7], i. e. missing knowledge or imprecision and inac-
curacy with respect to the original data. This uncertainty
can stem from multiple causes, such as:
– Missing data, e. g. due to battery, storage, or transmis-

sion issues
– Inaccurate/imprecise measurements (high error rate),

e. g. by low sensor or image processing accuracy
– Low spatial or temporal resolution
– Cleaning and preprocessing of the data, e. g. on the

sensor tag
– Filtering and processing through automatedmethods,

as well as their parameterization

These causes can occur at basically any step of the col-
lection and analysis pipeline, see Figure 1. For some of
the arising uncertainty, known limitations of the move-
ment allow to assume certain restrictions, and to poten-

tially discard improper data points, e. g. based on a max-
imum speed or the straight flight direction of large scale
bird migration over the sea. Still, a significant amount of
uncertainty will remain and might affect most of the data
aspects used for analysis. This needs to be taken into ac-
count in further analysis processing andhas to be reflected
in the visual representation in order to avoid misinterpre-
tation by a human analyst. While the creation of effec-
tive data visualizations already requires careful consider-
ations without data quality issues, uncertainty adds an-
other challenge. A visualization might be properly repre-
senting the facts in the measured data, and nothing else,
a property termed expressiveness [2], but cannot properly
represent exactly the facts in the underlying ground truth,
as it is not fully captured by the measurement. Trajectory
visualization approaches therefore need to exhibit a ro-
bustness with respect to the data quality in order to sup-
port proper interpretation by the analyst.

An important step in the processing is the simplifica-
tion of the preprocesseddata, e. g. tomake further analysis
and visual representation more scalable. This simplifica-
tion might not only be used to reduce the volume of a data
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set, but also can help to remove artifacts that were intro-
duced in the collection or preprocessing steps. An impor-
tant goal at this stage is to avoid the removal of characteris-
tic patterns or features in the movement that are relevant
for later interpretation. Thus, it is crucial to consider the
robustness in the decision of removing data points. Sec-
tion 2 gives an overview on exploratory trajectory visual-
ization and robustness issues with an example use case.
Sections 3 and4describehowuncertainty information can
be taken into account to improve robustness during the
processing of trajectories and the subsequent visualiza-
tion of results.

2 Exploratory analysis of trajectory
data

The sheer volume, scale, and complexity of trajectory
data that is nowadays collected, and the associated uncer-
tainty, create challenges for analysis and interpretation.
Exploratory analysis is often an important step that is per-
formed with the help of a rich toolbox of analysis meth-
ods and statistics, but also using visualization to allow the
analyst to get an overview on the structure and compare
the trajectorywith knownclasses. Sucha visualization can
help to get a first impression on the data at hand, using
the analyst’s knowledge to obtain an initial assessment
of, for example, animal behavior, humanmobility, or com-
mutingpatterns. Inmanyapplication cases, additional an-
notations need to be integrated into the visualization, for
example environmental conditions or features of the sur-
rounding infrastructure. Often, trajectories are not investi-
gated separately, but combined into a set or a graph,where
common locations across trajectories form thenodes. Such
a combination of multiple trajectories, e. g. to investigate
the interplay or to create a summary such as a representa-
tive trajectory by clustering [25], can add further quality is-
sues into the analysis process. Similarly, further associated
data structures can be created, e. g. networks that model
relations between themoving entities, such as social inter-
action or similar movement characteristics. A typical ex-
ample in animal behavior analysis is leader-follower anal-
ysis, where the temporal correlation ofmovement patterns
across individuals is used to derive roles within a group of
animals [31]. A further example are dynamic networks that
are derived by modeling edges between subjects based on
criteria such as distance (e. g. a threshold under which a
disease can be transmitted) or similar movement patterns
(to detect learning or roles in an interaction) [26].

2.1 Acquisition, processing, and analysis
tasks

The raw data that is collected usually either is provided
as a series of GPS fixes, i. e. composed of longitude and
latitude values, and sometimes altitude values, or as x,
y, z coordinates, e. g. from an inertial measurement unit
(IMU) or video analysis in a local or global coordinate sys-
tem.Data sets can be collected for small time periods, such
as several minutes to analyze behavior in a controlled set-
ting, or over large periods of time, up to several years, e. g.
to analyze development or migration and to compare sea-
sons and impact of environmental changes. Depending on
the analysis goal and the available technology, the tem-
poral resolution can range from a few data points per day
to 1Hz or even higher resolutions. The resulting data sets
thus might range from only a few hundred data points to
several tens of gigabyte in size with tens of millions of
data points. The latter case in practice still requires re-
duction before further analysis or trajectory visualization
can be performed, as scalability to such volume is cur-
rently not supported throughout the full analysis pipeline.
Still, quality issues can occur on all levels of scale. Soft-
ware on sensor tags might already preprocess the data,
e. g. for error correction, and in particular IMUs need care-
ful calibration and corresponding data might suffer from
drift over longer periods of time [33]. Further preprocess-
ing is required to ensure sufficient data quality for differ-
ent analysis purposes, ranging from simple summary cal-
culations to statistical methods and models, and visual-
ization is recommended for all preprocessing steps, e. g.
to ensure plausibility [32]. In addition, due the parameter-
ization of the methods involved, an interactive visual ana-
lytics loop can greatly support the analysis and the under-
standing of raw data and the impact of preprocessing [34].
Visual analytics combines automated analysis techniques
with interactive visualizations for effective understanding,
reasoning and decision making of complex data sets. [35].
For larger projects, the analysis (see Figure 1) is often per-
formed in a circular fashion, going from analysis of an ini-
tial data set either back to adjust cleaning, restructuring
or pre-analysis, or to the collection and analysis of fur-
ther data for extension or comparison reasons, e. g. new
seasons or events. The location series then can be inter-
preted as the movement trajectory of the entity. In order
to derive information from these trajectories, e. g. on hu-
man mobility or animal behaviour [37, 36, 38], a variety
of analyses can be performed using the trajectory data,
such as home range estimation, step selection, path selec-
tion, path construction, clustering, segmentation, as well
as corridor construction and estimation.
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Those analyses are then used to help solvemovement-
related tasks [38] and to answer movement-related re-
search questions [39]:
– Analysis of space use, e. g. home ranges of animals or

activity spaces of humans.
– Behaviour identification via quantifying moving pat-

terns, such as resting, travelling etc. [14], and often
supported by a segmentation of the trajectory to iden-
tify points of changing behavior.

– Interaction and collective behavior in the case of mul-
tiple trajectories and entities.

– Investigation of the processes that underliemovement
patterns, such as identifying influence factors of vari-
ation inmovement rates by the environment, or quan-
tification of how sex and reproductive status influence
the duration of, and transition among, different be-
havioural modes.

– Prediction and modeling of movement.

2.2 Robustness requirements

Thedata quality issues canhave adetrimental effect on the
analysis for each of these tasks and questions: The extent
to which space use is correctly identified, events and pat-
terns can be detected, and further characterizations such
as behaviour categories can be derived, is strongly affected
by the coverage of movement features in the data that are
characteristic for the targeted pattern or behavior. These
could include turning points or spatio-temporal clusters,
but alsomore complex features required in the categoriza-
tion of movement or behavior. Detection methods and al-
gorithms could be sensible to the absence or sparsity of
such features, and thusmight fail to detect events and pat-
terns, or provide false results based on misinterpretation
of the data. An analysis of the influence of location errors,
as induced by different tracking technologies, on param-
eter estimation and subsequent biological pattern analy-
sis for animal movement showed a significant decline in
the ability to detect patterns [19]. In case of low resolu-
tion or missing data, interpolation methods can be used
to fill the gap, but potentially even increase uncertainty
or provide incorrect information. For example, dead reck-
oning can be used to calculate position information and
fill up the gap by employing IMU data, but uncertainty in
the resulting movement data can be further increased due
to the imprecision and inaccuracy of measurement [19].
Sparsity of requiredmovement features, and thus high un-
certainty, might be caused simply by low temporal reso-
lution in the acquisition, i. e. low sampling rate of sen-
sors (or in a more general setting low resolution of the

data) [18]. Models are developed with the aim to reduce
the uncertainty of trajectories [17], such as Fuzzy C-Means
(FCM), which is an clustering algorithm with noise, and
further variants [16]. A second cause can be later removal
or adjustment of data points in thepreprocessing step, e. g.
by probability sampling. In fact, some established meth-
ods might require resolutions lower than what is routinely
collected these days, thus making data reduction steps
mandatory [13]. In special cases, such as human mobil-
ity analysis, the restrictions of the built environments in-
frastructure can largely decrease the amount of data re-
quired for location estimation with high probability [12].
In contrast, in less restricted cases, such as animal social
network analysis in the wild, different sampling rates can
change the perceived structure of a network [20], and the
simplified, binary method to construct a social network
can lead to wrong interpretations about the social struc-
ture and wrong inferences about the position of individu-
als within the network [21].

Statistic frameworks and models are widely used in
animal behavior analysis, such as maximum-likelihood
estimation (MLE), a method to estimate distribution pa-
rameters based on an observed sample, or Bayesian infer-
ence which is based on Bayes’ theorem, where the proba-
bility for a hypothesis is updated when more evidence or
information becomes available. The results of such meth-
ods based on the distributions and corresponding proba-
bility introduce uncertainty factors for the further analy-
sis, yet those factors are usually not shown in the subse-
quent trajectory visualization. Adding these factors might
help to increase analysis quality and trust. Section 4 gives
examples on how visualizations can be enriched with un-
certainty information to provide helpful input for the anal-
ysis.

Similar to the automated analysis, human interpreta-
tion of data might be mislead by uncertainty in the data
or the visualization. The uncertainty stemming from the
causes listed in Section 1 needs to be taken into account
in the further processing, visualization, and interpretation
in order avoid wrong conclusions. Both automated anal-
ysis methods and visualisation metaphors can be sensi-
tive to changes in the input data characteristics. For exam-
ple, methods for event or pattern detection in movement
time-series might either miss events or assign wrong cate-
gories, e. g. for behaviour classes, to time windows when
the temporal resolution of measured locations is not suf-
ficient or the locations are off from the real location by a
certain amount.
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2.3 Example use case

We demonstrate robustness issues in animal behavior re-
search,where animalmovement tracks are analyzed to de-
rive characteristics of animal decision making, social in-
teraction, and influence of environmental factors. To this
end, we show example trajectories that despite their small
scale already exhibit features that allow to highlight visual
analysis issues.

Figure 2 shows two trajectory visualizations based on
a goose migration data set (#12 from [30, 29]), one show-
ing the full data set with a duration from end of January
to August and a mean temporal resolution of around eigh-
teenhours, and the otherwith a temporal resolution of one
day. Even with this small change in resolution amajor fea-
ture, a zig-zag movement pattern, is missing. Putting the
movement into the context of the environment in which it
happened is a common procedure for interpretation. Fig-
ure 3 shows the same trajectory projected on a globe vi-
sualization. It shows the zig-zag pattern happening at the
Gulf of Riga, with a potentially important role for evidence
of behavioral patterns. Such feature removals appear con-
sistently for many different types of movement patterns
when data reduction is performed, e. g. when following
or circumflying natural resources such as rivers or moun-
tains. Figure 4 shows three movement trajectories, where
two are sampled from the original trajectory using the R
adeHabitatLT package [6] with hourly and daily sampling
resolutions. The red trajectory is generated using all data
points in the file, the green with hourly sampling, and the
blue trajectory using one data point each day. To gener-
ate the trajectory, the package requires a reference time
data point, with the closest timepoint to the reference data
point being picked daily or hourly sampling.

Figure 2: Goose migration trajectory. Left: using all data points
from the data set. Right: using daily sampling rate. The zig-zag
movement feature is removed (inside blue disc, see blue circle for
a zoom-in).

Figure 3: Travel trajectory of a goose projected on a globe map using
the Teamwise framework [10] (based on the cesium platform and
using ESRI National geographic imagery, © ESRI). This visualization
helps to take into account aspects of the surrounding environments
which can help to interpret movement decisions, e. g. by showing
topographic information.

Figure 4: Sampling and data reduction effects: The red trajectory
represents the full data set, the green one represents the a reduced
data set with hourly rate, the blue one represents the daily rate
trajectory.

Analyzing the movement using the blue line between
data points is based on the hypothesis that a location is
not only directly accessible from the previous one, but that
also the direct way is taken in this case. However, there
might be mountains between two locations that hinder di-
rect access by the investigated animal, or rivers, roads, or
lakes that it follows. Further causes of deviations could be
badweather or interaction with other animals. As a result,
the animal will probably take a detour to reach the next lo-
cation. In this case, the lowest sampling however still re-
sembles closely the global shape of the movement, allow-
ing the analyst to investigate the overall migration route.
It however omits several curves that might contain impor-
tant environmental features for animal decision making,
most prominently the one leading from Voronezh to the
region around Kharkiv (bottom left). Figure 5 shows a ba-
boon movement with trajectory visualizations based on
two temporal resolutions. The hourly resolution strongly
changes the characteristics of important features such as
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Figure 5: Close-up of the baboon movement visualization from Fig-
ure 1, showing river and road structures that represent orientation
or obstacles in animal movement. The red line shows the original
temporal resolution, the green line hourly sampling.

river (dark greenband from top left to bottomcenter) cross-
ing points and orientation along roads (light orange band
roughly following the river shape on the right hand side).
The analysis based on time spend at locations, such as
home range analysis or first passage time, without taking
into account the environmental factors might draw an in-
accurate conclusion based on the direct line trajectory [15].

3 Simplification of trajectory data

Simplification is an essential building block of many tra-
jectory processing frameworks, as it allows to provide a
cleaner view of the essential trajectory shape by reduc-
ing noise and clutter. Hence visual analytic tasks might be
easier carried out on a simplified representation. Further-
more, simplification allows to reduce the data volume that
needs to be stored and visualized, which is especially im-
portant when dealing with large data sets or interactive vi-
sualizations. In this section, we will discuss conventional
and uncertainty-aware simplification of trajectories and
provide experimental results on artificial and real-world
data.

3.1 Polyline simplification

Applying trajectory simplification, one needs to be care-
ful that the simplification process does not erase impor-
tant patterns and that the overall movement shape is suffi-
ciently preserved. Therefore, the simplification is typically
governed by a distancemeasured(T ,T�)which determines
how similar the input trajectory T and the simplified tra-
jectory T� are. The user then can specify an error thresh-

old ε > 0, and the goal of the simplification process is
to compute T� of smallest size, such that d(T ,T�) ≤ ε. As
the simplification is only concerned with the spatial as-
pects of the trajectories and not the temporal information,
we will refer to trajectories as polylines in the remainder
of the chapter. A polyline P is then simply a sequence of
points p1, . . . , pn with pi ∈ ℝ2 and induced straight line seg-
ments between consecutive points. The size of a polyline
equals the number of points n. Commonly used distance
measures for polylines are the Hausdorff distance dH and
theFréchet distancedF . The latter is oftendeemed superior
for movement analysis as it takes the order of the points
along the polyline into account, while dH ignores this as-
pect. An optimal polyline simplification under dH can be
computed inO(n2) [23] and under dF inO(n2 log n) [24].

3.2 Uncertainty-aware simplification

In contrast to previous approaches which assume precise
knowledgeof thepoint locations, Buchin et al. [22] recently
introduced the problem of uncertain polyline simplifica-
tion, where the input is not a sequence of points but a se-
quence of regions. The regions are assumed to contain the
true location. The goal of the simplification process is to
compute a polyline P� such that d(P,P�) ≤ ε for all possi-
ble realizations of P given the input regions. We will focus
here on the simple model in which all regions are disks.
This complies with the fact that imprecision of GPS mea-
surements can be expressed with an error radius r. As the
error might differ depending on the absolute location, the
received signal strength of the satellites and other aspects,
the radius is not assumed to be homogeneous. Hence, the
input is a sequence of disks D = D1, . . . ,Dn, where each
disk Di = (ci, ri) is a tuple of a center point ci and an er-
ror radius ri ∈ ℝ+. A polyline P = p1, . . . , pn is called a re-
alization with respect to D if pi ∈ Di. See Figure 6 for an
illustration of this concept.

Figure 6: The blue line segment pipj may only be part of the sim-
plified polyline if it has a distance of at most ε to the subpolyline
between pi and pj (marked black). Taking uncertainties into account
(red disks), it is only valid if its distance towards any subpolyline
realization within the given ordered disks is sufficiently small, in-
cluding the one shown as dashed red line.
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Figure 7: Left: Input sequence of 50 disks with an exemplary poly-
line realization through their center points. Middle and right: Opti-
mal simplifications for ε = 2 and ε = 3, respectively.

An example of a possible input disk sequence and the
envisioned outcome is shown in Figure 7. The runtime to
find the best simplified polyline in this setting is in O(n3)
for both dH and dF [22]. But so far, no practical feasibility
study was conducted.

We first conducted an experimental study on gener-
ated disk sequences. Using artificial data allows to con-
trol aspects as the number of disks n, themaximum radius
rmax, and the shape of the trajectory. Creating sequences
with up to n = 1000 disks, and varying the value of ε, we
observe that the running time in practice is quadratic in
n and not cubic as predicted by the worst-case theoretical
analysis. As a result, the running time of the algorithm is
not much larger than that of the simplification algorithm
that does not take uncertainty into account. In our experi-
ments, the maximum increase in running time when con-
sidering disks was 25%.

Based on the encouraging results of the feasibility
study, we also conducted experiments on real-world data,
particularly on the 18 trajectories from geese data set de-
scribed in Section 2.3, which are depicted in Figure 8.

The data sets does not contain information about the
uncertainty of the single locations. Hencewe estimated er-
ror radii. We intentionally overestimated GPS uncertainty
to make uncertainty-aware simplification – which needs

Figure 8:Migration routes of 18 geese.

Figure 9: Trajectory 3 from Figure 8 simplified with ε = 2. Circles
indicate the uncertainty regions of the remaining points.

to consider all possible realization – more difficult. Never-
theless, the simplification capability is quite pronounced
even for small values of ε. For ε = 1, the average trajectory
size was reduced to roughly 35%, for ε = 2 to around 5%,
allowing for a cleaner visualizationwhile still maintaining
the overall shape. For larger values of ε, only very few data
points remain and the trajectory becomes too oversimpli-
fied for visual analysis. But for sensible choices of ε, we get
the desired granularity that allows for concise but mean-
ingful visualization, see Figure 9 for an example.

3.3 Context-aware bundle simplification

When studying animal or human movement data, one is
typically not only interested in a single trajectory but a
collection of trajectories from different individuals, such
as from a flock of birds or travels along a road network.
If now each trajectory is simplified independently of the
others, we might erase relevant interactions between the
individuals, for example, groups of animals meeting at a
location. Furthermore, as discussed for the example of ba-
boon movement (see Figure 5) environmental elements as
riversmight guide or influence their behaviour. Again, if all
trajectory data points close to the river would be simplified
away, the movement context might be lost for the viewer.
Figure 10 (left and middle) shows an example where the

Figure 10: Left image: Two animal trajectories (orange and green),
that both visit a waterhole (blue) and then come close to each other
(red disk). Middle: Simplification without context consideration.
Right: Context-aware simplification.
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analysis of the trajectory data might be heavily distorted
after the simplification.

In [41, 42], we proposed the polyline bundle simpli-
fication problem. Here, given a collection of trajectories,
wewant to find the smallest simplification for the trajecto-
ries governed by a distance measure and an error thresh-
old ε > 0 as before, but with the additional constraint that
points that occur in multiple trajectories have either to be
kept in all of them or deleted from all of them. This con-
sistency criterion unfortunately makes the problem NP-
hard. Butwe showed that an efficient bicriteria approxima-
tion algorithm exists and also devised an efficient heuris-
tic based on partitioning the trajectories into bundles that
exhibit a tree structure.

Note that in real-world data, trajectories rarely share
exactly the same location measurements, even if the re-
spective humans or animals are in the same place. To cap-
ture close-bypointswe canhence againuse anuncertainty
radius and then impose the consistency criterion when-
ever two points from different trajectories are within the
respective circle. Furthermore, we can also make the cri-
terion more strict by demanding that such points have to
be kept in the simplified output. In that way, we could
also easily safe points close to important landmarks (as
rivers or waterholes) from being simplified away, see Fig-
ure 10, right. This stricter criterion does not only help
to ensure that relevant parts of the trajectories are kept
but also makes the problem easier again from a compu-
tational perspective. Experiments conducted on large data
sets demonstrate that even large bundles can be processed
within a few seconds. Figure 11 shows the produced solu-

Figure 11: Context-aware simplification of car trajectories. Colors
indicate tree structures that were identified for faster consistent
simplification.

tion on a set of several thousand car trajectories with over
a million data points.

4 Uncertainty-awareness for
temporally varying trajectory
data

As discussed in the last section, in many cases trajectories
are not standing for themselves, but need to be considered
in context with other trajectories. If trajectories share com-
mon points, we can also interpret these points as nodes of
a joint graph.

This is sensible, for example, when considering tra-
jectories that stem from driving from one place to another
through a series of in-between cities. The cities then form
the nodes of the graph. Individual travel results in tempo-
ral uncertainty coming from different driving times along
trajectories. One natural goal in the visualization of travel
networks then is to enrich the network visualization with
a representation of that uncertainty, for whichwe describe
an approach in the following.

The problem can be modeled as a probabilistic graph,
in which for every edge (a part of a trajectory between two
cities) a probability density function of a certain random
variable exists, which in this case describes the distribu-
tion of the driving times for different times and days of the
week.

In Fig. 12 the modeling is shown. Given the probabilis-
tic graph with probability functions along the edges, we
sample the edge functions and compute individual layouts
for each of the graphs using an anchored force-directed

Figure 12:Modeling of a graph with uncertain trajectories. Uncer-
tainty is represented by probability functions along the edges.
To render it, the functions are sampled, layouts for the individual
graphs are computed, later all graphs are combined to visualize the
uncertainty-aware result [40].
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Figure 13: Rendering a combined graph with uncertainty using
blending: for each point of the sampled graphs a partly transpar-
ent dot is created that is blended. Using different dot sizes, different
appearances of the distribution can be achieved [40].

Figure 14: Rendering a combined graph with uncertainty using out-
lining: in (a) the sampling method is used, while in (b) all points
that belong to one node of the probabilistic graph representation
are combined and represented by an outline. The parameters of this
outline can be used to model the general uncertainty [40].

layout [43]. Having obtained the overlaid graphs, the next
challenge is to render themappropriately. In [40]we devel-
oped and evaluated different rendering methods in order
to visualize the uncertainty in different situations and for
different probability functions. In Fig. 13 we show results
inwhich the points of the sampled probabilistic graphs are
displayedusingpartly transparent discs. The result is com-
bined using alpha blending. By using different dot sizes,
different appearances of the distribution can be achieved.
In Fig. 14(b), a different rendering method is shown. Here
all the samples that belong to the same node in the proba-
bilistic graph are combined and represented using an out-
line. The parameters of the outlines allow us to display dif-
ferent amounts of uncertainty.

Figure 15 shows the overlaid graphs for the uncer-
tain driving times betweenmajor south-German cities. The
nodes are represented using sampling. The shape of the
points that represent one node in the probabilistic graph
shows the viewer the variance of the probability function;
e. g., when driving to Zurich, times will differ much more
than when driving fromWuerzburg to Stuttgart.

Figure 15: Rendering the full graph with uncertain driving times
using a node placement that is geo-referenced.

5 Discussion and future work

We gave an overview on issues of trajectory visualization
related to robustness with respect to features in the data
relevant for analysis, e. g. by exploiting uncertainty in the
trajectory data or subsequent analysis results. Two ma-
jor aspects are how to visualize the uncertainty itself, and
how to take it into account for analysis and the visual-
ization methods. We presented methods for both tasks
and showcased their applicability on animal and human
movement data. However, as can be seen in Figure 1, ro-
bustness might need to be considered at every step of the
data analysis pipeline. Therefore, additionalmethodsmay
need to be integrated to cover all steps and, in particular,
to further improve the basis for visual analysis of trajectory
data.

Funding: Funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – Project-ID
251654672 – TRR 161 (projects A01, B06, D04).
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