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Figure 1: A lily model is reconstructed from a single photo. From left to right: input photo, reconstructed mesh and textured
models from the same view direction as the input, rendering result under a different direction.

Abstract
We present a method for reconstructing flower models from a single photograph. Such reconstruction is challeng-
ing since the 3D structure of a flower can appear ambiguous in projection. However, the flower head typically
consists of petals embedded in 3D space that share similar shapes and form certain level of regular structure. Our
technique employs these assumptions by first fitting a cone and subsequently a surface of revolution to the flower
structure and then computing individual petal shapes from their projection in the photo. Flowers with multiple
layers of petals are handled through processing different layers separately. Occlusions are dealt with both within
and between petal layers. We show that our method allows users to quickly generate a variety of realistic 3D
flowers from photographs and to animate an image using the underlying models reconstructed from our method.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

Many outdoor and indoor scenes can be decorated with high-
quality flower models. Obtaining models for flowers in their
natural habitat is non-trivial since flower petals are general-
ly fragile with their shapes easily perturbed during the cap-
ture. On the other hand, artists often can create a model for a
flower based on a single photo of it. Nevertheless, this is a te-
dious task requiring experienced users for good results. Our
objective is therefore to present a semi-automatic method for
general users, which can reconstruct a flower model from a
single photograph with little user interaction.

Despite recent advances in acquisition technology, pho-

tograph remains a cheap and easy means to capture real-
ity. However, 3D shape reconstruction from a single im-
age is a highly challenging task. The captured shape is am-
biguous mainly due to the lack of depth dimension and
occlusion. Methods that reconstruct an object from a sin-
gle photograph usually require some degree of assistance
from the user. Moreover, there are always some priors that
help reducing the inherent ambiguities in the observed da-
ta [HAA97, HEH05, SCN08, JTC09]. Repetitions also pro-
vide significant information that can help alleviate ambigui-
ties. Repeated structural elements, like in common architec-
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Figure 2: Flower modeling pipeline: (a) Given a flower photo, we first extract individual petals using available computer
vision techniques. (b) The orientation and position of the flower is then estimated through fitting a 3D cone shape. (c) Initialized
using the 3D cone, the underlying flower surface is modeled using a surface of revolution and is refined through an iterative
procedure. (d) A petal mesh is obtained through trimming the underlying flower surface along a template petal contour and is
further deformed to better model the shared features of different petals. (e) In the next step, individual petal mesh is allowed
to deviate from the common template to fit each observed petal contour. (f) Finally, textures extracted from the input photo are
mapped onto the individual petal meshes.

tural models, observed from different directions, offer multi-
view geometry application to a single photograph [WFP11].

We exploit the fact that petals from the single flower usu-
ally share similar shapes. A multitude of observations of
similar petals within a single image is exploited to recon-
struct them. However, unlike man-made objects, flowers im-
pose challenges since i) the repetition of petals is not as
structured as it is perceived; ii) no two petals have exact-
ly the same shape, they typically bend in slightly different
ways; and iii) petals occlude each other. We combine a glob-
al and a local approach to leverage the semi-regularity of
petals and at the same time to react to the variation of the
flower structure within instantiation.

Our method reconstructs flower petals in three main steps.
The orientation of the flower is estimated first. A canonical
3D shape is then fitted to the underlying flower structure.
Finally, each petal instance is deformed to coincide with the
silhouette of individual petal, forming its embedding in 3D.
Fig. 1 displays an example of 3D reconstructed flower model
and the corresponding input photograph used.

2. Related Work

Most common approaches for plant modeling use a rule-
basis to generate a plant from a simple initial state [Hon71,
PL90]. Other methods use parameterized algorithms. Start-
ing with Cohen [Coh67], a number of different methods have
been developed over the years [dREF∗88, LD99], see al-
so [DL05] for an overview. Ijiri et al. [IOOI05] present a
system for designing flowers, which they later animate [IY-
KI08].

Other approaches use scanning results, thus having depth
information to reconstruct plants. Xu et al. [XGC07] and lat-
er Livny et al. [LYO∗10] perform this by resorting to global
optimization. Livny et al. [LPC∗11] combine noisy points
of the foliage into what they call lobes, thus avoiding recon-
structing smaller details at all.

A number of approaches try to reconstruct plants from
photographs. Shlyakhter et al. [SRDT01] extract the visual
hull from a set of input images and let a parametric L-System
grow into this hull. Reche-Martinez et al. [RMMD04] use a
number of precisely registered photographs for the recon-
struction of trees. Neubert et al. [NFD07] improve upon this
by using a simple flow-based construction mechanism, they
only need two or more loosely arranged images to create
a model. Quan et al. [QTZ∗06] and Tan et al. [TZW∗07]
create a plant model reconstruction from several images us-
ing L-Systems; later, they propose a procedural method that
generates statistically plausible tree model from a single im-
age [TFX∗08].

3. Overview

We observe that most solitary flowers and florets have a s-
ingle layer of petals. Only a few species, such as lotus and
some flowers of capitulum inflorescence, distribute petals in
phyllotactic order. Hence in this paper, we first focus on the
modeling single-layer flowers and later extend to the flowers
with multiple distinguishable layers.

As mentioned above, the key idea of our paper is to ex-
ploit the similarity of different petals in the same flower head
and the fact that petals are merely foils. Hence, we assume
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that the 3D shapes of different petals are roughly the same
and the observed differences among 2D petal contours are
mainly due to the orientation of the petals with respect to the
camera. This makes it possible to reconstruct their 3D geom-
etry. To simplify processing of photos taken by uncalibrated
cameras, we further assume that the image of the flower was
captured using parallel projection which means the size of
the flower is negligible when compared to the distance be-
tween the flower and the camera.

With the aforementioned assumptions, our method works
as illustrated in Fig. 2. In the preprocessing stage the flower
is segmented from its background using GrabCut [RKB04]
and each petal is separated using particle flow [NFD07]; see
Fig. 2(a). Using the extracted petal shapes, we now estimate
the coarse geometry and orientation of the flower by fitting
a 3D cone. The tip of the cone is positioned at the center
of the flower and the petals roughly lie on the cone surface
(Fig. 2(b)).

Usually the petals of flower heads are bent. Thus, we mod-
el the underlying flower surface using a surface of revolu-
tion. The estimated 3D cone serves as an initial solution
which is gradually refined. For each petal, a contour tem-
plate is assigned, which describes the typical outline of a
petal. The contour templates are projected onto the underly-
ing surface. If the petals would not be bent at all, this would
already result in a good solution. By adapting the bending of
the surface of revolution we now can improve the fitting of
the petal templates (Fig. 2(c)).

Once this fitting process converges, we cut out the petal
contours to obtain an initial template mesh for each petal.
This mesh is further refined so that its projection fits the
petal shape observed in the photo (Fig. 2(d)). While differen-
t petals were represented by the same template mesh in the
previous joint fitting step, they are now allowed to deviate
individually from the common template. Each petal mesh is
deformed independently to model the distinctive features of
the corresponding petal. The result is shown in Fig. 2(e).

Finally the petals are textured by mapping the correspond-
ing region in the photo onto the surface. For occluded part-
s without a corresponding texture, texture synthesis is per-
formed.

4. Algorithm

The algorithm starts with extracting the flower head from its
background using GrabCut [RKB04]. The center of the flow-
er o is located through user interaction; see Fig. 3(a). Next,
the individual petals are located automatically. This is done
by traversing the flower contour and measuring distances be-
tween points on the contour and the center o. Valleys in this
function indicate intersection points between adjacent petal-
s. Starting with each intersection point we trace the petal
boundary using the particle-flow method [NFD07]. A par-
ticle is traced from the intersection point towards the flower
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Figure 3: Preprocessing: Given the extracted flower, we first
manually locate the flower center o (red in (a)). The intersec-
tion points (yellow in (b)) are then automatically detected,
based on which the petals are partitioned using a particle
flow method. Finally the tip tp of each petal p (green in (c))
is automatically located.
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Figure 4: Cone fitting: An ellipse et (blue dashed line in (a))
is fitted to the petal tip points tp under the constraint that
its minor axis (orange dashed line) goes through the flower
center o (red dot). This ellipse is the projection of a circle
which, together with o, forms a 3D cone (b).

center by following the edge of the petal in the input image
(Fig. 3(b)). These traces result in the 2D projective contour
cp for each petal p. Based on this contour we locate the petal
tip location tp as the midpoint on the contour cp (Fig. 3(c)).

4.1. Flower Orientation Cone Fitting

Given the extracted petals and detected feature points, we
estimate the position and orientation of the flower head by
fitting a 3D cone. The apex of the cone is positioned in o,
and the base is aligned with the tips of flower petals. Under
the assumption of a parallel projection, the projection of the
cone’s base forms an ellipse whose minor axis direction in
the projection goes through o; see Fig. 4(a).

As shown in Fig. 4(b), the ellipse et is the projection of
the base circle of a 3D cone.Vector r connects the flower
center o and the center of et is the projection of the 3D cone
axis R, which approximates the axis of the flower. The angle
between R and r affects the ratio of the transverse and con-
jugate diameters of et . Hence, once et is obtained, the 3D
orientation of the flower R is found.
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Figure 5: Computing the template contour: Given the ini-
tial cone shape, we back-project each petal p onto the cone
to form a closed 2d-curve Cp (a). The main axis Xp is then
computed for each Cp (b). Based on this the different curves
are aligned (c). The template petal contour Ct is then com-
puted by averaging (d).

4.2. Underlying Flower Surface Fitting

Now we model the underlying surface that the flower petals
lie on. For many flowers this surface can be approximated
by a surface of revolution defined by rotating a curve around
the main axis of the flower R. In fact, the above-defined
3D cone is a special case of such a surface of revolution.
Hence, we use the cone as an initial surface and iterative-
ly refine the rotating curve. The refinement is based on the
aforementioned assumption that different petals have similar
geometric shape, i.e., the observed differences among petal
contours cp are caused by the bending of the underlying sur-
face. Hence, the projections of the same template contour
plotted at different locations of the underlying surface should
closely approximate cp for different petals p.

Computing the template petal contour. Our first goal is to
compute a template petal contour Ct on the surface of revo-
lution that captures the average shape of the different petals.
This is achieved by back-projecting the 2D contour cp of
each petal p onto the surface of revolution (Fig. 5(a)). The
projection of each contour cp forms a closed curve Cp in 2d
on the surface of revolution. We further compute the main
axis Xp for each curve Cp, which divides the area into two
equal parts; (Fig. 5(b)). All the curves are aligned using their
main axes to obtain an average petal contour. Once aligned,
the averaging provides us with what we call the template
petal contour Ct (Fig. 5(d)).

Update underlying surface. Once the template contour Ct
is obtained, we can use it to replace all individual curves Cp
on the surface of revolution. Since Ct does not fully capture
the shape variation of individual petals, the projections of
the template contour on the image plane do not follow the
individual petal contours cp very well (Fig. 6(a)). In the next
step we use the differences between the two curve sets to
adjust the underlying surface.

To illustrate surface fitting, we treat the surface of revolu-
tion as a set of 3D circles whose centers lie on the axis of the
flower R. The projection of each 3D circle k on the image
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Figure 6: Fitting of the underlying flower surface: Using the
template contour curves (black dashed curves) to represent
all petals does not fully capture the shape variation of the
individual petals (a). The differences between the two sets
of curves are used to guide the fitting of underlying surface
(b). Using a point to represent the position and size of each
ellipse, a surface of revolution can be computed by fitting a
cubic curve to these points (c). Projecting the template con-
tour onto the new surface of revolution results in a better
approximation (d).

plane forms an ellipse ek, whose center lies on the vector r.
If we alter the radius of k, the projection of the template con-
tour on the surface of revolution would move either towards
or away from the center of ek. Based on this observation we
adjust the radii of the 3D circles so that the overall distance
between the projections of the template contours and the real
petal contours is minimized.

The process is shown in Fig. 6(b): to adjust the radius of
a given 3D circle k, we first locate points (shown in blue)
along the template contour that lie on the ellipse ek (shown
in red). We then connect these points with the center of the
ellipse (shown as the red point) and find their intersections
(shown in yellow) with the real petal contours. Finally, we
scale the current 3D circle so that the sum of squared dis-
tances between the yellow points and the newly projected
ellipse e′k is minimized. After the new radii for different 3D
circles are calculated, we fit a cubic curve to them (Fig. 6(c)).
This defines the new surface of revolution. Template contour
generation and surface fitting are repeated in alternation until
convergence.

4.3. Joint Petal Mesh Fitting

Now we convert the template contour defined on the flower
surface into a 3D template petal mesh, which is further de-
formed to better fit the observed petal contours. Converting
the contour into a mesh is rather trivial. We first sample the
area enclosed by the contour using a set of points on the un-
derlying surface of revolution. These points, together with
sampled points on the contour, are then used to construct a
triangle mesh.

The template petal mesh obtained this way lies on the un-
derlying flower surface. However, a petal in real world is
often bent individually. Hence, the template meshes need to
be deformed to better approximate the shape of the petals.

c© 2014 The Author(s)
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Figure 7: Joint petal mesh fitting: (a) local coordinate sys-
tem defined for a petal mesh; (b) locating the target points
(green) for the same given vertex v (blue) on the boundary
of the template mesh.

The deformation is again guided by the observed petal con-
tours and based on the assumption that different petals have
similar geometry. To be more precise, the deformation tries
to drag the vertices on the boundary of the template mesh so
that the differences between the observed contours and the
projections of the corresponding template meshes are mini-
mized.

To facilitate the deformation, we introduce a local coor-
dinate system for each template mesh p along its main ax-
is Xp. The origin is located at the flower center o. The Yp
axis points along the cross product Xp×R, and Zp along
Yp×Xp (Fig. 7(a)).

Let vector lv denote the local coordinates for a given ver-
tex v on the boundary of the template mesh; and let matrix
Mp project the template mesh to the location of petal p on
the image plane. We now move vertex v to a new location
l′v so that the projections Mpl′v are close to the petal contour
cp for all petals p. To achieve this goal, we first compute a
target point dp(v) for vertex v on each cp. This is done by
first estimating the tangent of the projected template contour
at location Mplv, and then searching the nearest intersection
between cp and the 2D plane perpendicular to the tangent.
With the target points of v found on all contours, the loca-
tion L′v is computed through minimizing the sum of squared
distances between the projections of the vertex v and the cor-
responding target points, i.e., ∑p ‖Mpl′v−dp(v)‖2.

Once the new locations l′v for all boundary vertices v are
found, Laplacian smoothing is applied to remove high fre-
quency noises. Then, the template mesh is deformed using
mean value geometry encoding [KS06], which preserves the
original geometric features of the surfaces. That is, the prob-
lem is formulated as minimizing:

Energy = wgeo ∗Egeo +wcon ∗Econ (1)

where Egeo is the geometric preserving energy that maintain-
s the geometric features of the mesh; and Econ is the contour
fitting energy that drags boundary vertices to their new loca-
tions. wgeo and wcon are regulation parameters, which are set
to 1.0 and 0.02 for all our examples, respectively.

The deformation is iteratively performed, with the projec-

tions of the template mesh gradually fitting into the observed
contours. Since multiple contours jointly control the same
template, the resulting mesh models the shared geometric
features of the flower petals.

4.4. Individual Petal Mesh Fitting

The joint fitting does not model the shape variations of the
individual petals. Hence, in the last step, different copies of
the template petal mesh are deformed independently based
on their petal contours. The deformation process is similar
to the one discussed above, but uses a different way to cal-
culate the locations for boundary vertices on the mesh. That
is, for a given vertex v on the boundary of the mesh for petal
p, we first locate its target point Tp(v) using the same method
as described above. The new location L′v for vertex v is com-
puted as the closest 3D point to Lv that projects to Tp(v).
After the new locations for all vertices on the boundary are
calculated, the mesh for petal p is updated using Eq. (1).

4.5. Occlusion Handling

The aforementioned baseline algorithm does not consider
occlusions among different petals and works only for inputs
with limited occlusion, such as shown in Fig. 2. In reali-
ty, however, petals often overlap with each other. To handle
these cases properly, the following strategies are applied.

Occlusion detection. When two adjacent petals p,q oc-
clude each other, at the intersection point of their contours
cp and cq, two curves are merged into one. Three tangent
directions can be calculated close to such a point: the tan-
gent directions Tp and Tq for contours cp and cq (before
merging) and tangent direction T′ for the merged contour
(Fig. 8(b)). If we assume that the unoccluded petal contours
are locally smooth, the tangent direction for the visible con-
tour should not change much before and after the intersec-
tion point. Hence, our rationale is that the petal p with dot
product Tp ·T′ closer to −1 (smoother continuation) is the
one that is visible. Once the occlusion relationship is deter-
mined, we assign a weight to each point on the petal contour.
Visible points have weights of 1.0, whereas the weights of
occluded ones gradually drop to 0 based on their distances
to the closest visible point.

Occlusion-aware petal fitting. With different contour
points having different weights, the petal fitting process is
adjusted so that occluded contour points have less influence
to the result than visible ones. When we compute the tem-
plate petal contour Ct , the weighted average is used instead
of the simple average so that the obtained shape is less af-
fected by the occluded points. Furthermore, during surface
fitting, occluded contour points have less influence when fit-
ting new ellipses e′k for obtaining the surface of revolution
(see Sec. 4.3). Similarly in the joint fitting step, the weight
of each target point dp(v) on the contour is also taken into
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Figure 8: Occlusion handling: (a) input photo; (b) extracted
flower; (c) three tangent directions (Tp, Tq, and T′) estimat-
ed at a given intersection point (blue) are used to determine
the occlusion relationship; (d) based on the occlusion rela-
tions, two petals are dragged away from the camera (along
the orange arrows) and two petals are rotated about their
main axis (along green arrows); (e) the final model with tex-
ture map; (f) another view of the model.

account so that dp(v) has less influence on the location of
vertex v if it is occluded.

The situation is a bit different for the individual fitting
step since the optimal solution is no longer over-determined.
Hence, using weights to control the deformation cannot fully
eliminate the influences of occluded parts. To address this
problem, we deform the mesh using visible points only and
use Laplacian smoothing to fill in the occluded parts. This
leads to reasonably consistent petal meshes.

Finally, the occlusion relationship also allows us to infer
the relative positions of adjacent petals in 3D space, i.e., a
visible petal is closer to the camera than its occluded neigh-
bor. If a petal p is occluded by its two adjacent neighbors,
we add an additional occlusion handling energy Eocc to drag
its tip tp away from the camera during individual petal fit-
ting. If petal p is occluded from one side but visible on the
other, the energy Eocc will be used to rotate p about Rp so
that the visible side is closer to the camera and the occlud-
ed side is further away; see Fig. 8(c). Eocc is incorporated
into Eq. 1 with the corresponding regulation parameter wocc
set to 0.02. Since it works with geometric preserving energy
Egeo and contour fitting energy Econ, the occlusion corrected
petal meshes will maintain geometric features of the tem-
plate petal mesh and respect the observed contours.

4.6. Extension for Multi-Layer Flowers

Another direction for enhancing the baseline algorithm is to
handle multi-layer flowers. Here we assume petals of these

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Petal detection and grouping for multilayer flow-
er: (a) input photo; (b) extracted flower; (c) reprojected to
front-parallel view; (d) edge pixels detected with petal tem-
plate drawn by the user shown in red; (e) result of Chamfer
matching where warmer colors correspond to high matching
scores; (f) user scribbles for assigning petals into layers; (g)
petal segmentation result; (h) reconstructed mesh model; (i)
textured model.

flowers can be roughly grouped into a few layers. This al-
lows us to simply apply the above baseline algorithm for
modeling petals on different layer separately and then com-
bining the obtained petal meshes into the same model. N-
evertheless, as shown in Fig. 9(a), the contours of petals
belonging to inner/upper layers do not show up on the sil-
houette of the flower. Hence, the aforementioned petal seg-
mentation approaches based on valleys on silhouette won’t
work. A different preprocessing process is applied to semi-
manually detect and segment petals, as well as grouping
them into layers.

The process also starts with the user identifying the center
of the flower o. The cone fitting step is then performed using
o and points on the flower silhouette. Based on the estimated
3D cone, we reproject the flower to the front parallel view
so that the variation on petal shapes due to the projection is
minimized; see Fig. 9(b). Next, we detect edge pixels using
the reprojected photo and ask the user to draw the contour
for one of the petals; see Fig. 9(c). This contour serves as a
template for detecting the tip location of the remaining petals
using Chamfer matching [TLO10]. A 2D radial searching s-
pace θ,d is used for Chamfer matching, where θ determines

c© 2014 The Author(s)
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the orientation of the template and d is the distance between
the tip of the template and the center o. That is, we rotate the
template about the flower center o and translate it to differ-
ent distance to the center o, before measuring the matching
scores. Fig. 9(d) demonstrate the result of Chamfer match-
ing, where high score pixels correspond the locations of the
detected petal tips.

Once the tip locations of different petals are detected, the
user is required to group petals into layers by drawing scrib-
bles around them; see Fig. 9(e). The abovementioned parti-
cle flow method is then applied to segment the petals layer by
layer, starting from the top one. For the top layer, we trace
the particles from the tip of the petal until they reach the
flower center o. For the bottom layers, we stop the particles
once they reach the contours of the petals in previous layer-
s. The results of petal segmentation are shown in Fig. 9(f),
which are used for modeling the petal meshes layer by layer.

5. Results

Our algorithm is evaluated using a variety of flower photo-
s downloaded from the Internet. On average, preprocessing
takes less than half a minute. Our automatic reconstruction
algorithm, even for the most complex cases, takes less than
a minute.

The flowers in Figs. 1, 11(b), 11(f), and 11(i) contain
highly curved petals. Our approach properly models the un-
derlying geometry using surfaces of revolution, regardless of
whether the petals bend toward the flower center (Fig. 11(b))
or away from it (Figs. 11(f), 11(i)). The flower petals in
Figs. 11(c) and 11(d) have asymmetric shapes and strong
shape variations, which are properly modeled through the
joint and individual petal fitting steps. The ones shown in
Figs. 11(a), 11(b), and 11(e) have complex occlusions. Our
approach detects the correct occlusion relationships in most
cases and deforms the petal meshes accordingly.

Figs. 11(g) and 11(h) show two more flowers with mul-
tiple layers of petals. Since the layers lie on different sur-
faces, directly applying our techniques on all petals would
lead to unrealistic models. Hence, the process discussed in
Section 4.6 is applied to semi-manually segment the petals
and group them into different layers.

Figs. 11(i) and 11(j) demonstrate that our approach can
estimate coherent flower models for multiple flowers of the
same type. Due to the variation of the flower shapes and view
directions, modeling individual flowers separately would
yield models with quite different geometry. This problem
is addressed by fitting the same underlying geometry to the
surfaces and deforming the same template petal mesh in the
joint fitting step. The template petal mesh obtained is subse-
quently used to fit petals from individual flowers. The result-
ing flower models share similar geometry, but yet capture the
shape variations of different flowers.

Finally, the accompanying videos show that an input pho-
to with multiple flowers can be easily animated using recon-
structed flower models; see Fig. 11(k) for two of the frames.

Limitations and Failure Cases. Modeling flowers using s-
ingle photos has its inherent limitations. First, the proposed
approach estimates the petal geometry based on the observed
petal contours only. It can generate individual petal meshes
that accurately follow the observed contours, but cannot ful-
ly recover fine geometry details (lumps and dents) on the
surface. Recovering these details from a single photo un-
der uncontrolled illumination would be very difficult; see
Fig. 10(a).

Secondly, the particle flow based petal segmentation step
implicitly assumes that the flower center o is located inside
of the envelope formed by the tips of the petals, which puts
constraints on the usability of the input photos, i.e., the pho-
to cannot be taken from a highly oblique view directions; see
Fig. 10(b). On the other hand, when the input photo is taken
directly above the flower, the observed contours for differ-
ent petals are similar. This makes it difficult to infer the 3D
shape of the underlying flower surface, leading to the recon-
structed petal meshes being unnaturally flat; see Fig. 11(e)
and 11(g).

Finally, our occlusion detection approach decides based
on the normals of the two contours at the intersection points;
see Fig. 8. It works well for general cases, but does fail
sometime. For example, in Fig. 11(a), the occlusion relation
between two petals along the top left direction is incorrect-
ly detected. For multilayer flowers, the Chamfer matching
method that we employed may fail to detect all the petal tips
as well; see Fig. 9(f) where a petal along the top left direction
is missed.

6. Conclusion and Future Work

In this paper we present a method for capturing the geome-
try of flowers from a single input photograph. We take ad-
vantage of the fact that many similar petals are seen from s-
lightly different orientations. This allows us to gain addition-
al knowledge about the underlying surfaces. In subsequent
steps we firstly fit a cone, later a surface of revolution, and
finally individual surfaces to the petals and combine them to
a 3D model. We developed methods for occlusion detection
and removal and demonstrate the quality of our results in a
number of examples.

Being an initial attempt of modeling flowers from single
images, the proposed approach concentrates on rather sim-
ple flowers that allow us to detect and fit the petals using
surfaces of revolution. There are many other types of flow-
ers exist that include more complex arrangements of petals;
prominent examples are roses or moms. For such cases we
would like to extend our method to incorporate other petal
layout priors. Furthermore, our current approach does not
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(a) A daisy flower with occlusion relations among petals. (b) Another daisy with petals bend toward the main axis of the flower.

(c) A nerium oleander with asymmetric petal contours. (d) A common mallow with strong shape variation among petals.

(e) A gazania rigens viewed from the top, resulting in a rather flat mesh. (f) Another gazania rigens viewed from the side.

(g) A double balloon with 2 layers (color coded in mesh) of petals. (h) A water lily with 3 layers (color coded in mesh) of petals.

(i) Two similar plumeria flowers in the same photo. (j) A cluster of lilies in the same photo. Left: input photo; Right: reconstructed mesh.

(k) A cluster of sunflowers. Left: input photo; Middle and right: two frames from a manually created animation in which several reconstructed
sunflowers in the foreground follow the sun. The animation is submitted with the paper.

Figure 11: A variety of flowers modeled using the proposed technique. The left side in (a-i) shows the input photos, middle
shows the reconstructed mesh, and right the rendering result.
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(a)

(b)

Figure 10: Examples for limitations: (a) the rugged surface
on the a cucumber flower cannot be properly modeled; (b)
when the center of the zephyr lily is projected outside of the
ellipse formed by petal tips, the particle flow method fails to
partition the petals.

explicitly model the imperfections of flower heads. If a petal
is broken or buckled, the modeling process may not work
properly since the assumption on petal similarity does not
hold. We plan to automatically detect imperfect petals in the
future.

In summary, our work is a first step in the automatic 3D
modeling of flowers from photographs. We show that how
the problem can be tackled with proper priors and minimal
user interaction. We believe that the proposed approach can
be extended in various ways and it may inspire other more
complex modeling techniques.
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