
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Tree Modeling with Real Tree-Parts Examples
Ke Xie, Feilong Yan, Andrei Sharf, Oliver Deussen, Hui Huang*, Baoquan Chen*

Abstract—We introduce a 3D tree modeling technique that utilizes examples of real trees to enhance tree creation with realistic
structures and fine-level details. In contrast to previous works that use smooth generalized cylinders to represent tree branches, our
method generates realistic looking tree models with complex branching geometry by employing an exemplar database consisting of
real-life trees reconstructed from scanned data. These trees are sliced into representative parts (denoted as tree-cuts), representing
trunk logs and branching structures. In the modeling process, tree-cuts are positioned in space in an intuitive manner, serving as
efficient proxies that guide the creation of the complete tree. Allometry rules are taken into account to ensure reasonable relations
between adjacent branches. Realism is further enhanced by automatically transferring geometric textures from our database onto tree
branches as well as by guided growing of foliage. Our results demonstrate the complexity and variety of trees that can be generated
with our method within few minutes. We carry a user study to test the effectiveness of our modeling technique.

Index Terms—Tree modeling, Data-driven modeling, Allometry

F

1 INTRODUCTION

Within computer graphics, tree models are of special inter-
est due to their variety in nature, and have applications
in many areas, including urban modeling, gaming, and
movies. However, even with the significant advancement
of 3D tree modeling, it still remains a challenge to easily
create trees with high level of realism. The reasons to
this are twofold: globally, trees have inherently complex
branching structures and intricate topology, while locally
branches are prevalent with fine-level geometric detail and
nuances. Applications usually require the amount of user
knowledge and interaction effort be kept modest opting for
both flexibility and fidelity. Striking the balance among all
these factors is still a major challenge for a majority of tree
modeling applications.

Commonly, tree modeling approaches may be catego-
rized into three major classes: procedural, sketch-based and
data-driven. Procedural approaches utilize grammar-based
parametric methods allowing the creation of trees with ever
increasing branching detail [1]. These approaches typically
require expert knowledge and are manually intensive, pro-
viding indirect means to control the tree modeling process.
Sketch-based approaches [2], [3], [4] allow for fast inter-
active design of trees, however sketching the individual
branches can be tedious, hence, other means have to be
applied for generating complex branching and fine detail-
s. With the advance of 3D scanning, it has becoming a
promising approach to scan real world trees and reconstruct
their 3D models [5], [6]. With high fidelity reconstruction,
the generated models capture branching structures and
geometric nuances that are necessary for conveying life-like
realism. In this work, we take advantage of such tree models

• K. Xie and F. Yan are with Shenzhen VisuCA Key Lab / SIAT
• A. Sharf is with Ben Gurion University
• O. Deussen is with University of Konstanz
• H. Huang is with Shenzhen University and SIAT
• B. Chen is with Shandong University

*Corresponding authors: {hhzhiyan, baoquan.chen}@gmail.com

captured from the real world to leverage the generation of
new models that inherit natural realism and variety.

We introduce an example-based tree modeling technique
which allows to design trees in an intuitive manner, to
generate models of high realism with complex branching
structures and fine-level geometric details, and yet without
requiring a tedious interaction. At the core of our method
is a novel editing operator utilizing trees parts exemplars
representing trunk logs and branching structures (denoted
tree-cuts).

We first build a data-base of realistic 3D trees captured
with a range scanner. In a preprocessing step, we reconstruct
the trees and compute tree-cuts which we extract from the
tree branching structure and store in a repository. The tree
editing operator allows the user to select and loosely posi-
tion tree-cuts in 3D space. These tree parts exemplars serve
as high-level geometric proxies, which locally constrain and
guide the tree creation process. As the user selects and in-
serts new tree-cuts, the overall tree geometry and topology
updates interactively. New branching structures that confor-
m with recent edits of the user, automatically emerge and
provide immediate visual feedback. The full tree is created
through an optimization process which balances between
the user-defined tree-cuts and allometric rules aiming at
generating naturally-looking trees (Figure 1).

To further enhance realism, we transfer fine branch de-
tails in the form of geometric textures from our database
onto the new tree model branches. Additionally, the user
models the foliage by drawing loose canopy profiles, which
guide the foliage growth from branch ends (Figure 2). In
essence, the process provides a holistic modeling solution
for naturally looking full trees. Our modeling tool accounts
for both ease-of-use, as well as high levels of expressiveness
and realism coming from the geometry of real trees.

2 RELATED WORK

Early works on tree modeling use simple rules, functions
and random variables to produce branching patterns [7].
In his pioneering work, Bloomenthal [8] takes a geometric

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 1. Using tree parts from our data-base (left) we model a complete detailed ficus (mid), and increase its realism with geometric texture and
foliage (right). The two zoomed images show the geometric complexity of the generated tree using only few tree-cuts.

(a) (b) (c) (d)

Fig. 2. Interactive modeling sequence of a Populus tree. Tree-cuts from a real tree are selected and placed in space (a) leading to a temporal trunk
model (b), to which the user adds more cuts yielding a full tree model (c). Lobes are scribbled to guide the foliage growth in the final tree (d).

approach for modeling of principal tree structures. He uses
implicit functions to model branchings and full trees. Op-
penheimer [9] uses a fractal model to describe the overall
geometry and bark structure of a tree. Holton [10] uses
Leonardo da Vinci’s proportion rules to describe a botani-
cally valid branching pattern. He defines a tree by strands
growing from the root to leaves. The cross sectional area of
a branch is defined by the sum of cross sectional areas of
its contained strands. Boudon et al. [11] present a method
for managing the multitude of parameters involved in pro-
cedural plant modeling. They represent trees as multi-scale
graphs and design interactive tools to edit trees on them.
Nevertheless, such generation methods are time consuming,
hard to control and require a high level of expertise. In con-
trast, our method is straightforward and intuitive, allowing
to easily guide and predict the resulting tree models.

There have been many attempts to utilize 3D recon-
struction techniques from 2D photos in the context of tree
modeling. Reche-Martinez et al. [12] use registered photos
to generate a volumetric representation of the tree canopy
and its branches and twigs. Neubert et al. [13] improve this
by using only loosely arranged input images and a particle-
system to produce small branches. Other approaches [14],
[15] extract visual hulls from the input images and use L-
Systems to synthesize branches within these hulls.

Other methods [16], [17] infer the branching structures
within envelope surfaces created from a single image or
user sketches by applying some heuristics on the tree for-
m. Palubicki et al. [18] generate realistic models of trees
and shrubs using a self-organizing process which simulates
the competition of branches for light and space. Wither et
al. [19] sketch foliage contours to guide the distribution
of 3D branches while accounting for additional botanical
constraints. Their sketching system applies from the scale of
a leaf to the scale of an entire tree.

With scanning technology becoming available, ap-
proaches for 3D tree reconstruction from point sets emerged.
Xu et al. [20] cluster edges in a spanning graph to recon-
struct the tree skeleton while leaves are randomly added
to the fine branches. Livny et al. [5] use this technology and
reconstruct tree skeletons from point clouds of multiple trees
by computing minimal spanning graphs. In a subsequent
work, they separate the base tree skeleton and the proce-
durally reconstructible smaller parts of the tree [6]. Pirk
et al. [21] convert this representation into a dynamic data
structure that allows trees to react to their environment.

Bucksch et al. [22], [23] use a space partitioning method
to cluster points and form a skeleton by connecting adjacent
clusters. Côté et al. [24] synthesize minor tree and leaf
geometry on reconstructed branches based on light scatter-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Fig. 3. A snapshot of part of our tree-cuts repository currently consisting
of more than 200 exemplars from a variety of 15 tree species.

ing properties obtained from intensity data. Roumonen et
al. [25] reconstruct branches by locally reconstructing patch-
es that are then combined into the branches. Recently Zhang
et al. [26] model a 3D tree by reconstructing cylindrical
branches from a single scan of a tree combined with user
assistance.

Two-dimensional sketches have been previously used
for interactive design and editing of 3D trees and branch-
ings. Okabe et al. [27] reconstruct 3D branching skele-
tons from 2D sketches by maximizing distances between
branches. Additional gesture-based editing allows the user
to apply further modification of the tree skeleton. Chen et
al. [3] model trees from 2D sketches while accounting for ad-
ditional tree constraints from a data-base using probabilistic
optimization.

Recently, Longay et al. [28] combined procedural trees
with user interaction to generate complex, realistic-looking
tree models. Thus, models are generated through a self-
organization procedural process which the user controls
through several indirect parameters as well as directly guid-
ing its overall form. In general, these methods utilize 2D
sketches as means to guide tree model creation, however
explicit control of the tree structure is limited. In contrast,
our method is inherently 3D, using tree examples to ex-
plicitly control the tree creation process. Thus, the user
directly models the complex branching structures through
the utilization of existing tree-exemplars in a simple manner.

Within our framework we can utilize reconstructed trees
as well as artificial ones as input in an example-based tree
creation framework. Similarly, Sharf et al. [29] and Harary
et al. [30] use shape parts as exemplars for hole filling
and shape completion. In the same context, Funkhouser et
al. [31], Merrel et al. [32] and Marechal et al. [33] synthesize
the 3D geometry of parts for the creation of new shapes
in an example-driven manner. Our work follows in this
path, using real-life tree parts to enhance tree creation and
leverage the level of realism. In contrast to general synthesis
approaches, ours accounts for tree-specific properties such
as cylinder-shaped branches, fine bark geometry and allom-
etry rules.

(a) (b)

Fig. 4. Cut retrieval: from a simple user sketch (a) we compute a
descriptor (a)-right which is used to retrieve a set of best matching cuts
from the repository, sorted according their similarity (b).

3 OVERVIEW

In a preprocessing step, we create a database of 3D real-
life trees which we capture using scanning devices and
reconstruct into 3D meshes. Our method focuses on the
modeling of branch geometries and therefore trees in the DB
are stored without the foliage. We allow the user to create
tree-branching exemplars simply by drawing 2D scribbles
around tree parts and cutting them out. For each tree
species, its tree-cuts (including branches and ramifications)
are stored in a data repository and suggested to the user
while modeling a tree. Having 100-200 cuts for each species
is typically sufficient to create expressive trees with large
variety and complex structures (Figure 3).

Modeling operations merely consists of selecting tree-
cuts from the repository and positioning them in 3D space.
To effectively browse and suggest tree-cut candidates from
the repository, the user may coarsely sketch a branch shape
and topology which is then matched against our DB, retriev-
ing the top matching candidates (Figure 4).

As tree-cuts are selected and positioned in the scene, they
connect to existing structures based on shortest-distance.
Our method provides the user with immediate feedback by
computing an interpolatory surface approximation of the
final tree branch structure on-the-fly. Essentially, a tree-cut
may connect to one or more cuts, forming various bifur-
cations in a generalized manner. During this process scale
and orientations of tree-cuts are continuously updated while
imposing allometry rules to account for botanical realism.

Once the required overall branching structure is reached,
the user finalizes the model and a fine tree structure is gen-
erated. In this step, we compute a valid mesh by removing
intersecting branches and remeshing discontinuous bifur-
cations. To increase the realism levels, branches’ endpoints
are enhanced with leaves and foliage. The user controls
their growth by scribbling lobes that are automatically filled
with foliage, in the spirit of [6] . Furthermore, we transfer
geometric texture from real-life 3D bark exemplars in our
repository onto the synthesized branches.

4 TECHNICAL DETAILS

In a preprocessing step, we create a database of real-life
3D trees by scanning and reconstructing the tree models.
We use a commercial handheld mid-range structure light
scanner and capture a tree by manually scanning it from
different views. We then register the scans together and
reconstruct the 3D tree model using Poisson reconstruc-
tion [34]. Since trees vary to a large extent in their shape,
even within one species, and to enrich our database we

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Fig. 5. Tree-cut generation. Cuts may be automatically generated by ran-
domly cutting segments along the tree skeleton (bottom), or manually,
using user scribbled loops (top).

collect multiple tree models for each species. In practice we
collect 15 different tree species, among others of a Cactus,
Ficus, Cercis, etc. The whole DB creation was an elaborate
process which took several days as tree scans were typically
noisy, hard to register and properly reconstruct.

Our basic modeling operation involves manipulating
small tree parts. Thus, we process tree models by cutting
them into multiple parts which we store in our database
repository. A tree-cut defines a cylinder-like connected part
of tree, determined by at least two simple boundary-loops.
Thus, the simplest tree-cut is of cylinder topology while
complex cuts define arbitrary tree-like cylindrical branch-
ings. Cuts may be of arbitrary size, ranging from small to
large fractions of the tree.

Tree-cuts may be automatically generated by random-
ly cutting principled segments of the tree model. For an
automatic production, we first compute the skeleton of a
tree model using robust skeletonization [35] and define
random segments along the tree skeleton yielding various
subtrees. First, we sample a random starting point by climb-
ing upwards from the root (we assume a known upward
direction). A randomly given length defines the size of
our subtree along the tree skeleton. The tree-cut is then
produced by cutting the tree geometry at their endpoints
with perpendicular planes to the local skeleton (Figure 5).

In addition, we allow the user to manually create tree-
cuts by loosely scribbling close loops on the tree. We project
a loop onto the tree skeleton and find intersection endpoints.
Note that our method requires that loop scribbles and their
intersection with the tree skeleton yields a single connected
subtree. We then proceed as in the automatic step and cut
the tree geometry with perpendicular planes at the intersec-
tion endpoints. For each tree-cut, we compute its boundary
loops of connected vertices and skeleton, and store them in
the repository.

4.1 Modeling interface.
To model a tree, the user selects tree-cuts from the repository
by browsing through the tree-cut gallery. If a specific part
or approximate structure is required, the system provides
a sketch-based tree-cut retrieval tool (Figure 4). Thus, a

(a) (b) (c) (d)

Fig. 6. Connecting tree-cuts. We compute correspondence and similar-
ity transformation (T,R) between two branches contours (a). Next, we
compute their interpolation (b) and smooth mesh (c). In (d) we transfer
geometric texture onto the smooth surface.

user may define the desired tree-cut shape and structure
by loosely 2D sketching the branch shape and retrieving
the best matching 3D shape from the DB. Since branching
structures are typically complex, we develop a novel 2D
sketch-based retrieval tool for this problem which is both
easy-to-use and intuitive..

There are many works on 3D model retrieval which
allow users to sketch the contour of their desired object and
thus guide a DB search [36], [37], [38], [39], [40]. In these
works, the user is required to sketch the 2D shape of the
object as seen from one or more viewpoints. In our case,
sketching the shape of tree branches would require some
effort as well as certain drawing skills.

Thus, the user sketches a rough 2D approximation of
the desired branch structure which is matched against 2D
projections of tree-cuts skeletons from our DB. We compute
a distance field originating from the user sketches using a
30X30 grid resolution 2D image. We use this 2D field to
search for best matching structures in the tree-cuts DB.

Since tree-cuts in the DB are essentially 3D, we project
their skeletons onto 2D planes in a preprocessing step. To
obtain a sufficient representation we compute projections
of the skeleton from multiple views. In our experiments,
5 different views were sufficient to sample the view space
around the tree-cut to a sufficient extent. Thus, we compute
for each skeleton a set of 5 corresponding 2D distance fields.
Our system then retrieves the top 10 best matching tree-
cuts w.r.t. the distance between their distance-fields. Among
these candidates, the user selects one tree-cut which may be
loosely translated, rotated and scaled to a desired position
in the 3D scene.

4.2 Connecting tree-cuts.

Once a tree-cut is positioned, it is matched to other tree-cuts
in the scene by computing the shortest Euclidean distance
between the endpoints of the cuts. The user may also
manually specify pairwise correspondences by clicking and
marking the desired cuts.

Given two tree-cuts defined by their boundary loops
(w.r.t. upward direction) (bi, bj), we compute the inter-
polating surface connecting them ζ(bi, bj) (Figure 6). We
uniformly resample the two boundary loops with an equal
number of points (i.e., |bi| = |bj | = 100), and compute a

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 7. Bifurcation generation. Original bifurcation with intersection (left),
its mesh reconstruction (mid) and zoom in on remeshed intersection
(right).

correspondence between them. To establish a full correspon-
dence between two boundary loops, we translate, rotate
and scale the boundaries using the method presented by
Horn [41]. We select the best transformation (denoted T)
by minimizing the sum of squared distances between the
transformed points and their corresponding points on the
other loop. We select the best matching pair of points in
T (bi) and bj and compute the full correspondence by walk-
ing on both boundary loops in counter-clockwise direction
and matching sample points.

Next, we compute the interpolation surface ζ(B1, B2)
by creating k intermediate cross sections that interpolate
bi and bj . First, we compute a skeleton α(bi, bj) as the
Hermite curve which interpolates the boundary loop centers
and orientations. Then, we interpolate between bi and bj
in a gradual manner and generate a set of intermediate
boundary loops {b0ij , b2ij , ..., bkij}.

We position the intermediate loops uniformly along
α(bi, bj) yielding a set of interpolating cross sections. Thus,
an intermediate loop center center(blij) coincides with
α(bi, bj) at a regular interval. In addition, we rotate the
intermediate loop such that center(blij) is perpendicular to
the skeleton α(bi, bj) at the current position.

Finally, we compute the surface ζ(B1, B2) passing
through boundary loops simply by connecting correspond-
ing points between neighboring loops (specifically, we con-
nect pm ∈ bk−1

ij and qm ∈ bkij). This yields a quadrangulated
boundary surface which may be further triangulated upon
requirement.

4.3 Generation of bifurcations
Branching bifurcations are created by connecting a tree-cut
to two or more different cuts. The number of boundary
loops in a tree-cut predominate the number of connections
with other tree-cuts. Thus, a bifurcation can be seen as
the generalization of connecting two boundary loops to a
multiple cut connection. Bifurcations are modeled as su-
perpositions of multiple connections between simple cuts
which are independently matched and interpolated by their
boundary loops.

Nevertheless, the generated interpolating surfaces may
intersect each other and additional processing is required
to generate a valid bifurcation surface. Thus, we search
for mesh intersections, compute intersection curves on the
surface and remove mesh parts in the intersection region
(Figure 7). To gracefully blend and connect intersecting

(a) (b) (c) (d)

Fig. 8. Given an input bifurcation (a), we change the diameter and angle
of its branches conforming to allometry constrains (b). In (c-d) we show
their 3D counterpart.

(a) (b)

Fig. 9. Given an arbitrary tree-model (a), we apply allometry rules to
further refining its branching structure (b).

branches, we apply Poisson reconstruction [34] in the in-
tersection area.

4.4 Allometric constraints

Our modeling process incorporates botanical constraints to
enhance the realism of the final result. We utilize allometric
rules to determine branching diameters and angles as de-
fined by Holton [10]. Thus, our modeling scheme jointly
accounts for user cuts and allometric rules to optimize
branching diameters and angles of the tree (Figures 8, 9).

In real trees, branching diameter and angle are influ-
enced by the species, the location of the tree, bifurcation
orientation, and tropisms (growth tendencies). For simplici-
ty and effective computation, we ignore these factors here.

Given a user-modeled tree structure (not necessarily
final), we extract the father-son relations for its branches
by simply traversing the tree skeleton starting from its root
to the branch endpoints.. Let d be the diameter of the father
branch and d1, d2 the diameters of its children. Furthermore,
let a be the angle between the child branches, and a1,a2 the
angles between child branches and the main direction of the
father branch (thus, a = a1 + a2). Having this, we follow
Leonardo da Vinci’s diameter rule [42]: d2 ≈ d21 + d22.

The relation between diameters and angles follows
Holton’s model which models branches as a set of strand-
s [10] and is defined by:

a1 =
S2

S1
a ≈ A2

A1
a =

(
d2
d1

)γ
a , (1)

where Ai = πd2i /4 is the cross-sectional area of a branch. γ
is a species-specific constant close to two. We adapt Holton’s
model by assuming strands of equal diameter and define the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

(a) (b) (c) (d)

Fig. 10. Given a tree-cut in our DB (a), we generate its geometric texture
illustrated as a gray-scale height map (b). We scale the texture into a
larger area (c) and transfer the geometric details onto a new cylindrical
structure (d).

cross-sectional area of a branch by the number of strands S.
Simple rearrangement of the terms yields:

d2 =

√
a1
a
d , d1 =

√
dγ − dγ2 , a2 = a− a1 . (2)

Having d, d1, d2 and a for the input bifurcation, Eq. (2) al-
lows us to compute the new proportions for the branchings
by linking together a1, a2, and d1, d2. We apply allometry
rules and adjust the tree structure on-the-fly after each
user edit. Allometry typically yields a well-proportioned
tree with thinner branches at higher branching levels. Fig-
ures 8(a-b) show the global effect of applying allometric
constraints on a bifurcation.

4.5 Geometry transfer

Tree-cuts are connected using an interpolating surface that
allows the creation of twisted and gnarled branches through
modification of the tree-cut position and orientation. Never-
theless, the resulting interpolation is essentially a smooth
generalized cylinder (inherently parameterized) that lacks
fine details and realism. Thus, we enhance the interpolat-
ed surface with detailed geometry by applying geometric
textures from our database. We do this by extracting the
fine details from a given example and map them onto the
smooth surface (Figure 10).

Given a sample tree-cut from our repository, we transfer
its fine geometric details into a texture which we then apply
to our surface. First, we compute a cylindrical parametriza-
tion of the tree-cut by fitting cylinders along the tree-
cut skeleton. We then project the fine geometry to this
cylinder and obtain a cylindrical parametrization of the
geometry which is represented as a displacement map from
the cylindrical base. A similar cylindrical parametrization is
applied to the branch surface, thus reducing detail transfer
to a conventional texture mapping and scaling problem. We
transfer a geometric texture simply by scaling it to fit the
target cylinder. If scaling is too large, we simply tile the

TABLE 1
Modeling time for the different trees.

Figure # Cuts # Triangles Time
1 (ficus) 25 1145985 20 m
12 (ficus) 18 734987 13 m
13 (bonsai) 16 81435 12 m
13 (Cercis) 25 707467 15 m

target cylinder with multiple instances. Since geometry is
irregular, the transition between tiles is negligible. To avoid
inconsistent results at tree-cut boundaries, we let textures of
neighboring cuts overlap and blend the overlapping maps
at the boundary regions.

4.6 Modeling of the foliage
To finalize the tree model, we allow the user also to control
the foliage production, i.e., the generation of twigs and
leaves, on the so-far created branching structures.

To relieve the user from the tedious task of manually
modeling the foliage we take a sketch-based approach simi-
lar to Longay et al. [28]. We define the tree foliage using the
main branches and a set of envelope lobes [6]. Thus, a user
loosely scribbles 2D loops to define major lobe contours and
to guide foliage growth. While Longay’s method utilizes
sketches to control the overall tree from, our sketched lobes
define only the space of twigs and leaves which grow from
the nodes of the existing branch skeleton (Figure 11).

To compute the shapes of the 3D lobes from the 2D scrib-
bles, we simply extrude their volume in the view direction
and round them to avoid sharp edges. Then lobes are filled
by randomly distributed sample points, which represent the
growth space of the foliage.

Twigs grow based on these sample points from nodes
of the already existing branch skeleton similar to Runions et
al. [16]. Specifically we use the skeleton nodes of the existing
branches as buds and grow twigs from them. In a recursive
manner, we use the new twigs as buds and grow additional
twigs from their nodes. Thus, we generate twigs for several
iterations, until all sample points are assigned to twigs (w.r.t.
their distance). Finally, we add tiny branches and leaves
in the spirit of Livny et al. [6] where a set of branchlets
is defined by using simple L-Systems and is stored in a
repository.

5 RESULTS AND DISCUSSION

We demonstrate our method by modeling a large variety of
trees, focusing on their complex branching structures and
geometric details (see Figure 1). All results were modeled
by non-professionals with limited botanic and modeling
expertise. To qualitatively and quantitatively evaluate our
method, we provide some visual results and comparisons
as well as performing a user study.

Modeling of complex trees consisting of detailed branch-
es and geometrical structures stayed well below 20 minutes.
This, however, did not include the foliage computation
within the lobes, as it was done in a preprocessing step and
took up to one hour using our non-optimized code.

Table 1 summarizes statistics of our modeling interac-
tion. The number of cuts that the user was required to

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

(a) (b) (c) (d)

Fig. 11. Interactive foliage modeling. Main branches computed from user tree-cuts (a) are enhanced with user sketched lobes (b). In the lobe volume
we grow twigs in a recursive manner for 4 iterations (c). Tiny branchlets and leaves are added to twigs endpoints (d).

Fig. 12. Modeling a Ficus tree with complex branching structures and geometric variety. Left-to-right are the tree-cuts, detailed views on the cuts
and their completion, full tree structure and complete tree with foliage.

position is very low even for complex trees, demonstrating
the expressiveness of our technique. We run our method on
a QuadCore Intel i5-3210M CPU 2.5Ghz with 4GB RAM. All
trees are well detailed, represented by a large number of
triangles.

Figure 1 shows excerpts from a modeling sequence
demonstrating the mid-grain level of our tool, balancing
between fine-level quality details and effectiveness. Here,
only a small number of tree-cuts is sufficient to generate a
detailed and complex branching structure. In Figure 2 some
more details about the tree-cuts and the 2D sketching for the
lobe construction are given.

Figure 13 demonstrates the modeling power of our tech-
nique compared with real-life trees. In 13 (top) we model a
bonsai tree by following and approximating its 3D structure
from a 2D photograph. Similarly, in 13 (bottom), we model
a dense Cercis tree. We are also able to reproduce even the
highly dense branching structure at the top of the tree by
simply positioning small branches without much effort.

In Figures 1, 12 we modeled two realistic Ficus trees,
zooming into their geometric fine details and branch struc-
tures. From a relatively small number of interactive edits,
mostly positioning of tree-cuts, we obtain a fairly complex
branching structure with large variety and enough details

to represent the Ficus faithfully.
We demonstrate that our method can be used to enhance

the realism of results generated by state-of-art systems. In
Figure 14(a) we inflate a cylindrical skeleton and transfer
geometric details from our database, resulting in a realistic
tree with rich surface geometries. In Figure 14(b), we re-
model a tree generated by the commercial software Xfrog.
Obviously, since we use tree-cuts from real tree examples,
our method generates more compelling, realistic and com-
plex tree geometry. In Figure 14(c), we re-model a bonsai tree
created using Google Sketchup. The side-by-side compari-
son suggests utilizing our method to transform low-quality
tree models into realistic models with high-level details and
complex structures.

Our tree-cut editing framework is not restricted to cut
connecting operations. In Figure 15 we demonstrate con-
necting a set of tree-cuts to arbitrary regions on the surface
of a main trunk. Our method is general and merely requires
to define positions on the surface. Our method then defines
a local loop on the surface which connects to the tree-cuts
using the the same process.

We also compare our method with professional tree
editing systems. We asked an expert tree modeler to model
a tree similar to 16 (a,b) in terms of number of branches

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Fig. 13. Modeling of Bonsai (top) and Cercis (bottom) trees from given 2D photographs. Left-to-right, the 2D photograph, input tree-cuts, full tree
structure and with foliage.

(a) (b) (c)

Fig. 14. Realism enhancement of existing trees: in (a) we enhance a simple skeleton (left) with geometric texture (right). Tree models from Xfrog
(left of (b)) and Google Sketchup (left of (c)) are re-modeled using our tree-cuts and geometric detail (right of (b) and (c)).

and their configuration. Using Xfrog and ZBrush it took
the modeler more than 2 hours to create the tree model
in Figure 16 (c,d). Their main efforts lied in editing and
adjusting the tree to match the target tree. In contrast,
using our method, it took approximately 20 minutes to
generate similar looking branching structures in terms of
their configuration and complexity.

5.1 User Study.
We performed a user study to obtain feedback and evaluate
our system. Ten non-professional participants received a
short introductory to the system (10 minutes). Our tool
requires not more than two basic interaction actions of cut-
positioning in 3D and specifying branch connections. The
subjects had basic modeling experience, thus they familiar-
ized easily with the system and reported no problems with
positioning and orienting cuts in 3D. All subjects found the

connection of the cuts and the lobe-based modeling of small
structures easy and intuitive.

To evaluate controllability and expressiveness factors,
we designed two tests for each participant. First, modeling
a tree from a photo within a bounded time of 5 minutes. We
observe that the resulting models bear good resemblance
with the target photo (see Figure 17). Second, creating at
least two complex and expressive trees in a bounded time
of 20 minutes. Figure 18 summarizes these results where
eight out of ten participants are able to generate three trees
given 20 minutes. The gallery in Figure 18 demonstrates the
large expressivity of our tool as a large variety of complex
trees was accomplished in a relatively short time.

6 CONCLUSIONS AND FUTURE WORK

We presented an example-based method for generating
realistic tree models with complex branching structures.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 15. Connecting branches arbitrary. Our system allows connecting branches to arbitrary surface regions. Here, the user loosely positions
tree-cuts in space which connect regions in the surface of a simple trunk.

Fig. 16. We compare a tree created by our tool (a,b) with a tree created professionally by Xfrog (c,d). While both trees resemble in terms of their
branching structures and geometric complexity, our tree was created faster and required less expertise.

Fig. 17. User study excerpts, showing photography guided tree models achieved by users. Small figures left to trees depict the applied tree-cuts.

From a collection of example tree models, sub-structures
(named tree-cuts) are extracted such that a new tree model
is produced after the user manually placed selected tree-
cuts. Our system is capable of generating tree models that
inherit geometry nuances of the example models, which are
normally missing in the existing systems, but are important
to human eyes for the perceived realism.

We were only able to acquire a subset of existing trees,
due to the limitations in scanning large tree structures in
uncontrolled environments. Additionally, our system cur-
rently ignores the interrelations between branches, which
may be computed using geometrical, physical, or biologi-
cal constraints. The system could be further amended by
tropisms and other global factors.

There are several ways to further improve our system.
First, our example-base can be enriched not only by scan-

ning more trees from the real-world, but also by creative
editing of existing examples. Second, we plan to further
make the user interaction more intuitive and effortless, so
that the user is able to concentrate more on creativity. This
can be achieved by leveraging state-of-the-art procedural
methods and using the underlying procedural principles to
suggest the placement of new tree-cuts. Third, our interac-
tion could be further enhanced using a suggestive system
to assist tree editing. Specifically, our system would analyze
the tree on-the-fly and suggest tree-cuts at different locations
based on the current status. Cuts may be automatically po-
sitioned and aligned at feasible locations, thus significantly
reducing the user’s workload.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 18. A gallery of 28 complex tree models generated by 10 user study participants using our interactive tree modeling tool within 20 minutes.

ACKNOWLEDGMENTS

We thank all the reviewers for their valuable comments and
constructive suggestions. We are grateful to Jianwei Guo
for his help on tree rendering. This work was supported in
part by NSFC (61522213, 61232011, 61502471), 973 Program
(2015CB352501), Guangdong Science and Technology Pro-
gram (2015A030312015, 2014B050502009, 2014TX01X033),
Shenzhen Innovation Program (JCYJ20151015151249564,
CXB201104220029A), National Foreign 1000 Talent Plan
(WQ201344000169), Leading Talents of Guangdong Pro-

gram (00201509) and the Israel Science Foundation.

REFERENCES

[1] O. Deussen and B. Lintermann, Digital Design of Nature:
Computer Generated Plants and Organics. Springer, 2010.

[2] M. Okabe, S. Owada, and T. Igarashi, “Interactive design of botan-
ical trees using freehand sketches and example-based editing.”
Computer Graphics Forum, pp. 487–496, 2005.

[3] X. Chen, B. Neubert, Y.-Q. Xu, O. Deussen, and S. B. Kang,
“Sketch-based tree modeling using markov random field,” ACM
Trans. on Graphics, pp. 109:1–109:9, 2008.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

[4] Speedtree, “Speedtree web site, interactive data visualization, inc.”
http://www.speedtree.com/.

[5] Y. Livny, F. Yan, M. Olson, B. Chen, H. Zhang, and J. El-Sana,
“Automatic reconstruction of tree skeletal structures from point
clouds,” ACM Trans. on Graphics, pp. 151:1–151:8, 2010.

[6] Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or,
and B. Chen, “Texture-lobes for tree modelling,” ACM Trans. on
Graphics, pp. 53:1–53:10, 2011.

[7] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of
Plants (The Virtual Laboratory). Springer, 1996.

[8] J. Bloomenthal, “Modeling the mighty maple,” Proc. of ACM
SIGGRAPH, pp. 305–311, 1985.

[9] P. E. Oppenheimer, “Real time design and animation of fractal
plants and trees,” Proc. of ACM SIGGRAPH, pp. 55–64, 1986.

[10] M. Holton, “Strands, gravity and botanical tree imagery,”
Computer Graphics Forum, pp. 57–67, 1994.

[11] F. Boudon, P. Prusinkiewicz, P. Federl, C. Godin, and R. Karwows-
ki, “Interactive design of bonsai tree models.” Comput. Graph.
Forum, pp. 591–600, 2003.

[12] A. Reche-Martinez, I. Martin, and G. Drettakis, “Volumetric recon-
struction and interactive rendering of trees from photographs,”
ACM Trans. on Graphics, vol. 23, no. 3, pp. 720–727, 2004.

[13] B. Neubert, T. Franken, and O. Deussen, “Approximate image-
based tree-modeling using particle flows,” ACM Trans. on
Graphics, vol. 26, no. 3, pp. Article 71, 8 pages, 2007.

[14] I. Shlyakhter, M. Rozenoer, J. Dorsey, and S. Teller, “Reconstructing
3d tree models from instrumented photographs,” IEEE Comput.
Graph., vol. 21, no. 3, pp. 53–61, 2001.

[15] P. Tan, G. Zeng, J. Wang, S. B. Kang, and L. Quan, “Image-based
tree modeling,” ACM Trans. Graph., pp. Article 87, 8 pages, 2007.

[16] A. Runions, B. Lane, and P. Prusinkiewicz, “Modeling trees with
a space colonization algorithm,” in Proceedings of Eurographics
Workshop on Natural Phenomena 2007, 2007, pp. 63–70.

[17] P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan, “Single image tree
modeling,” ACM Trans. on Graphics, vol. 27, no. 5, pp. Article 108,
7 pages, 2008.

[18] W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch,
and P. Prusinkiewicz, “Self-organizing tree models for image
synthesis,” in Proc. of ACM SIGGRAPH, 2009, pp. 58:1–58:10.

[19] J. Wither, F. Boudon, M.-P. Cani, and C. Godin, “Structure from
silhouettes: a new paradigm for fast sketch-based design of trees.”
Comput. Graph. Forum, pp. 541–550, 2009.

[20] H. Xu, N. Gossett, and B. Chen, “Knowledge and heuristic-
based modeling of laser-scanned trees,” ACM Trans. on Graphics,
vol. 26, no. 4, pp. Article 19, 13 pages, 2007.

[21] S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. Měch,
B. Benes, and O. Deussen, “Plastic trees: interactive self-adapting
botanical tree models,” ACM Trans. on Graphics, pp. 50:1–50:10,
2012.

[22] A. Bucksch and R. Lindenbergh, “Campino – a skeletoniza-
tion method for point cloud processing,” ISPRS journal of
photogrammetry and remote sensing, vol. 63, no. 1, pp. 115–127,
2008.

[23] A. Bucksch, R. Lindenbergh, and M. Menenti, “Skeltre - fast
skeletonisation for imperfect point cloud data of botanic trees,”
in Proceedings of Eurographics Workshop on 3D Object Retrieval,
2009, pp. 13–27.

[24] J.-F. Côté, J.-L. Widlowski, R. A. Fournier, and M. M. Verstraete,
“The structural and radiative consistency of three-dimensional
tree reconstructions from terrestrial lidar,” Remote Sensing of
Environment, pp. 1067 – 1081, 2009.

[25] P. Raumonen, M. Kaasalainen, S. Kaasalainen, H. Kaartinen,
M. Vastaranta, M. Holopainen, M. Disney, P. Lewis, and et al.,
“Fast automatic precision tree models from terrestrial laser scan-
ner data,” Remote Sensing, vol. 5, pp. 491–520, 2013.

[26] X. Zhang, H. Li, M. Dai, W. Ma, and L. Quan, “Data-driven
synthetic modeling of trees,” IEEE Trans. Vis. & Mach. Comp.
Graphics, pp. 1214–1226, 2014.

[27] M. Okabe, S. Owada, and T. Igarashi, “Interactive design of botan-
ical trees using freehand sketches and example-based editing,” in
ACM SIGGRAPH 2006 Courses, 2006.

[28] S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz,
“Treesketch: Interactive procedural modeling of trees on a tablet,”
in Proceedings of the International Symposium on Sketch-Based
Interfaces and Modeling, 2012, pp. 107–120.

[29] A. Sharf, M. Alexa, and D. Cohen-Or, “Context-based surface
completion,” ACM Trans. on Graphics, pp. 878–887, 2004.

[30] G. Harary, A. Tal, and E. Grinspun, “Context-based coherent
surface completion,” ACM Trans. on Graphics, pp. 5:1–5:12, 2014.

[31] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,
S. Rusinkiewicz, and D. Dobkin, “Modeling by example,” in Proc.
of ACM SIGGRAPH, 2004, pp. 652–663.

[32] P. Merrell, “Example-based model synthesis,” in Proceedings of
the 2007 Symposium on Interactive 3D Graphics and Games, ser.
I3D ’07, 2007, pp. 105–112.

[33] N. Marechal, E. Galin, E. Gurin, and S. Akkouche, “Component-
based model synthesis for low polygonal models,” in Proceedings
of Graphics Interface 2010, 2010, pp. 217–224.

[34] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruc-
tion,” ACM Trans. on Graphics, vol. 32, no. 3, p. 29, 2013.

[35] O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y.
Lee, “Skeleton extraction by mesh contraction,” ACM Trans. on
Graphics, pp. 44:1–44:10, 2008.

[36] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman,
D. Dobkin, and D. Jacobs, “A search engine for 3d models,” ACM
Trans. on Graphics, vol. 22, pp. 83–105, 2003.

[37] J. Lee and T. Funkhouser, “Sketch-based search and composition
of 3d models,” in Proceedings of Sketch-Based Interfaces and
Modeling, ser. SBM’08, 2008, pp. 97–104.

[38] S. M. Yoon, M. Scherer, T. Schreck, and A. Kuijper, “Sketch-based
3d model retrieval using diffusion tensor fields of suggestive
contours,” in Proceedings of the International Conference on
Multimedia, 2010, pp. 193–200.

[39] T. Shao, W. Xu, K. Yin, J. Wang, K. Zhou, and B. Guo, “Discrimina-
tive sketch-based 3d model retrieval via robust shape matching.”
Comput. Graph. Forum, vol. 30, pp. 2011–2020, 2011.

[40] M. Eitz, R. Richter, T. Boubekeur, K. Hildebrand, and M. Alexa,
“Sketch-based shape retrieval,” ACM Trans. on Graphics, vol. 31,
no. 4, pp. 31:1–31:10, 2012.

[41] B. K. P. Horn, “Closed-form solution of absolute orientation using
unit quaternions,” Journal of the Optical Society of America A,
vol. 4, no. 4, pp. 629–642, 1987.

[42] P. Jaccard, “Eine neue Auffassung ueber die Ursachen des Dick-
enwachstums der Baeume,” Naturwiss. Z. fuer. Landwirtschaft,
no. 13, pp. 321–360, 1913.

Ke Xie is Ph.D. Candidate of Shenzhen Insti-
tutes of Advanced Technology (SIAT), Chinese
Academy of Sciences(CAS), majoring in com-
puter graphics, focusing on point cloud scanning,
processing, 3D modeling, being co-supervised
by Prof. Hui Huang and Prof. Baoquan Chen.

Feilong Yan received the bachelor degree in
Computer Science from Xidian University in
2008, and received his Ph.D degree in Computer
Science from Shenzhen Institutes of Advanced
Technology (SIAT), Chinese Academy of Sci-
ences (CAS), co-supervised by Prof. Hui Huang
and Prof. Baoquan Chen. His research interests
include computer graphics, plant modeling and
object capture and reconstruction.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Andrei Sharf received a B.Sc. in Computer Sci-
ence from the Technion Institute in 1999, and
an M.Sc in Computer Science from the Tel-Aviv
University in 2002. After then he completed his
Ph.D. on Surface Reconstruction Techniques for
Imperfect Raw Data in 2007 under the supervi-
sion of Daniel Cohen-Or and Ariel Shamir and
did his PostDoc with Prof. Nina Amenta at the
Institute for Data Analysis and Visualization (I-
DAV), University of California at Davis. His cur-
rent research interests include surface recon-

struction, geometric modeling, interactive applications and parallel al-
gorithms. He is awarded as the CAS Foreign Young Scientist in 2009,
2010 and 2013.

Oliver Deussen Prof. Deussen graduated at
Karlsruhe Institute of Technology and is profes-
sor at University of Konstanz (Germany) and
visiting professor at the Chinese Academy of
Science in Shenzhen. He serves as Co-Editor
in Chief of Computer Graphics Forum and is
Vice-President of Eurographics Association. His
areas of interest are modeling and rendering of
complex biological systems, non-photorealistic
rendering as well as Information Visualization.
He also contributed papers to geometry pro-

cessing, sampling methods, and image-based modeling.

Hui Huang is now a Professor of Shenzhen
University and Shenzhen Institutes of Advanced
Technology (SIAT), where she directs the Visual
Computing Research Center and the Shenzhen
Key Lab of Visual Computing and Visual Ana-
lytics. She received her PhD in Applied Math
from The University of British Columbia in 2008
and another PhD in Computational Math from
Wuhan University in 2006. She is the recipient
of NSFC Excellent Young Researcher program
and Guangdong Technology Innovation Leading

Talent award in 2015. Her research interests are mainly on Computer
Graphics and Scientific Computing. She is now the associate Editor-
in-Chief of The Visual Computer and serves on the editorial board of
Computer Graphics Forum and Frontiers of Computer Science.

Baoquan Chen is now a Professor of School
of Computer Science and Technology, Shan-
dong University. He received his MS in Electron-
ic Engineering from Tsinghua University, Beijing
(1994), and a second MS (1997) and then PhD
(1999) in Computer Science from the State U-
niversity of New York at Stony Brook. He is the
recipient of the Microsoft Innovation Excellence
Program 2002, NSF CAREER award 2003, M-
cKnight Land-Grant Professorship 2004, IEEE
Visualization Best Paper Award 2005, Chinese

Academy of Sciences 100 Talents Program 2008, and NSFC Out-
standing Young Researcher program in 2010. His research interests
generally lie in computer graphics, visualization, and human-computer
interaction, focusing specifically on large-scale city modeling, simulation
and visualization.

