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Non-invasive eye tracking and retinal view
reconstruction in free swimming
schooling fish
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Eye tracking has emerged as a keymethod for understanding howanimals process visual information,
identifying crucial elements of perception and attention. Traditional fish eye tracking often alters
animal behavior due to invasive techniques, while non-invasive methods are limited to either 2D
trackingor restrictinganimals after training.Our study introducesanon-invasive technique for tracking
and reconstructing the retinal view of free-swimming fish in a large 3D arena without behavioral
training. Using 3D fish bodymeshes reconstructed by DeepShapeKit, our method integrates multiple
camera angles, deep learning for 3D fish posture reconstruction, perspective transformation, and eye
tracking. We evaluated our approach using data from two fish swimming in a flow tank, captured from
two perpendicular viewpoints, and validated its accuracy using human-labeled and synthesized
ground truth data. Our analysis of eye movements and retinal view reconstruction within leader-
follower schooling behavior reveals that fish exhibit negatively synchronised eye movements and
focus on neighbors centered in the retinal view. These findings are consistent with previous studies on
schooling fish, providing a further, indirect, validation of ourmethod.Our approach offers new insights
into animal attention in naturalistic settings and potentially has broader implications for studying
collective behavior and advancing swarm robotics.

Understanding how animals in groups obtain information about social
partners, as well as non-social (e.g., environmental) information, is essential
for unraveling the coremechanisms underlying collective behavior1,2. Given
that many social species rely on vision to acquire information3 and make
behavioral actions accordingly, it is crucial to reconstruct the visual input of
individuals within a social context to better understand the dynamics and
processes of information transfer. For instance, by recreating retinal views
and correlating themwith movement decisions, we can uncover the visual-
motor mechanisms underlying visually-mediated collective behavior. Pre-
vious studies have attempted to reconstruct the angular area through
technical methods such as ray casting over fish eyes in 2D to estimate visual
information transfer4,5, yet these studies often overlooked the impact of eye
movements.

In nature, eyes are constantly in motion, providing information
about the environment6,7, prey localization8, and salient cues to inform
social interactions9. Numerous studies have correlated gaze targets with
social perception, seeking evidence of vision-based social interactions
across various species. For example, mice combine head and eye

movements to survey their surroundings and participate in social
interactions while visually following objects9. Common marmosets move
their eyes to scan the face region to recognize conspecifics10. In birds,
such as European starlings, individuals perform lateral scans to gather
surrounding information and social cues simultaneously11. Goldfish, in
particular, exhibit complex and controlled eye movements, characterized
by regular saccadic steps and spontaneous side-to-side movements,
which are crucial for stabilizing their visual field, gathering environ-
mental information, and engaging in the acquisition of information
employed in social learning12–14.

Although eye-tracking has long been developed for humans and
animals15–17, non-invasive eye tracking of freely moving animals in large
space in3D is still challenging.Most previous studies of eye tracking in freely
swimming fish have been limited to 2D environments18–21. For example, a
simple blobdetectionmethodcanbe effectively employed for eye trackingof
larval zebrafish due to their transparent body, distinct black eyes, and lim-
ited 3D swimming capabilities18,19. However, this does not work effectively
for free swimming adult fish in groups, where eyes could not be easily
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distinguished from their body textures, and eyesmove in 3D rather than 2D.
Recording from the primary visual cortex (V1) using amulti-electrode array
allows to provide high-resolution eye positions22. However, this is an
invasive method and is not easily applicable to free-swimming fish in 3D
environments22.With small plasticmarkers on the fish’s eyes, Ben-Simon et
al.8 successfully obtained 3D eyemovement data for a single free swimming
fish. However, the plastic marker could potentially alter the animal’s
behavior too. On the other hand, deep learningmethods, employing images
from multiple-view cameras or even a single-view camera, nowadays have
the potential to track 3D eyemovements directly23. However, their practical
application is currently limited due to the shortage of large, precisely labeled
datasets required for training.

In this paper, we present a novel, non-invasive, and restraint-free
method for tracking the eye movements of freely swimming fish in
groups in 3D. Our technique uniquely determines the 3D gaze direction
of each eye (as long as it is visible in recording) on free-swimming
schooling fish in a relatively large space without the need for markers on
either the body or eyes, relying exclusively on images captured by
cameras. In general, our eye tracking process has three main modules: 1)
3D body posture reconstruction, 2) eye tracking, and 3) retinal view
reconstruction (Fig. 1, Supplemental video 1). For the first module, we
obtain 3D posture by reconstructing the body mesh with DeepShapKit24,
which integrates silhouettes and key points of the fish body extracted by
deep learning algorithms (Fig. 1a). For the second module, we conduct a
perspective transformation based on the 3D posture and track the eye
position and movement, taking into account the posture of the fish,
through blob detection of the pupil in the cropped eye area of the images
(Fig. 1b). For the final module, the retinal view of neighboring fish is
reconstructed using the 3D mesh bodies of both fish and the eye
movement data of the focal fish (Fig. 1c). We validated our methodology
with synchronized videos from two perpendicular views of two goldfish
swimming freely in a flow tank at various flow speeds ranging from 1.2
BL/s (Body length per second) to 1.6 BL/s with an interval of 0.1 BL/s (see

supplementary Fig. 1 and25 for details). A comparison of our eye tracking
with human-labeled, as well as synthesized ground truth data validates
our approach. Indirect verification was performed by tracking the eye
movements of one fish following another. We observed that the right
eye’s movement was positively correlated with the position angle of the
leader on the right side but negatively correlated when the leader was on
the left side. The observed eye movements are consistent with findings
from previous studies13,26. Finally, the reconstruction of the retinal view
revealed that fish tend to keep the leader centered in their retina on the
side of the leader fish while following, indirectly supporting the effec-
tiveness of our eye-tracking method as well.

Results
3D body posture reconstruction
To accurately track the eyes of freely swimming fish in 3D, our initial step
involves reconstructing the body posture of the fish in 3D. We applied
DeepShapeKit24, the process is summarized in Fig. 1. We begin by 3D
scanning the fish to create a benchmark 3D model. Next, we optimize the
position and kinematics of this model to minimize the discrepancies
between themodel and the silhouettes of realfish trackedbyMask-RCNNas
well as key points of the body central line trackedbyDeepLabCut.AnLSTM
(long short-termmemory network)-based27 smoother is applied to smooth
the 3D mashes in sequence. With the 3D body mesh over the global coor-
dinate, we get fish body posture in 3D.

3D eye tracking
We mainly involve two main steps to track the continuous movements of
fish eyes in 3D: perspective transformation and eye detection (Fig. 1). Since
fish swim in 3D, exhibitingmotions characterized by rolls, yaws andpitches,
their eyes cannot be consistently captured in a perpendicular view by a fixed
camera,makingperspective transformationnecessary. To address this issue,
we employ a network calledMask-RCNN28 to isolate how each fish appears
in each view and utilize a perspective transformation to convert the 2D

Fig. 1 | Schematic of eye tracking and retinal view reconstruction of freely swimming schooling fish in 3D. Three main modules are included in the task: 3D posture
reconstruction based on DeepShapKit24 (a), eye tracking (b), and retinal view reconstruction (c).
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cropped image into a 3Drepresentationbasedon theorientationof thefish’s
meshed body:

Cx;y ¼ H × Ix;y ð1Þ

Where, H is the transformation matrix; Ix,y represents the original image,
where the fish’s body is tilted in 3D space and projected on the 2D image;
Cx,y is the pixel coordinate on the transformed image. The transformation
matrix H (3 × 3) is calculated based on the correspondence between the
fish’s 3D pose and the target pose (fish body parallel to the image plane), as
shown in detail in the method section and supplementary materials. We
then applied theMask-RCNNagain to detect the eye sclera (large light disk)
with only 50 hand-labelled images for training.We then applied threshold-
based blob detection for the pupil (small dark disk) on the transformed
image. The eye sclera and pupil positions are then transformed back to the
original perspective in 3D as the position of the eye of real fish in 3D (see
methods).

Reconstruction of retinal view
We applied Blender29, an open-source 3D modeling and animation soft-
ware, to reconstruct the group swimming dynamics of fish in a tank and to
estimate the retina view from the perspective of a following fish’s eye using
virtual cameras (Fig. 2).

The fish models are based on the 3D mesh body tracked with both
kinematics and movements for each fish (Fig. 2). We then place each fish
model with corresponding kinematics at the corresponded positions in 3D
for each frame (as described in the method section). Subsequently, we set a
virtual camera which is controlled by the eye movement (in both position
and rotation) and estimate the retinaviewfromthefish’s eye (seemethod for
details). We set the virtual camera’s field of view to 190 degrees, mimicking
that of a goldfish’s eye30, resulting in a 50° blind spot behind with eyes.

3D eye tracking verification
We evaluated our eye-tracking method using two approaches: using
manually labeled data after the perspective transformation, and using
synthesized side-view images with randomly initialized pupil sizes and
positions on the sclera. The human-labeled data and synthesized images
served as ground truth after and before perspective transformation,
respectively.

Labeled fish eye images. We sampled 110 fish images from the videos
and transformed them according to the fish’s pose. We then marked the
centers and sizes of the sclera and pupil on the fish images using circular
markers. After that, we compared the detected positions and sizes of the
pupil and sclera with the manually labeled ones (Fig. 3). As shown in
Supplementary Tab. 2, we observed a view angle error distribution with a
mean of−2.445 degrees and a standard deviation of 2.650 degrees, within
a range of 0 ± 9 degrees. The error in pupil position lies within
0 ± 0.5 mm, with a mean of −0.072 mm and a standard deviation of
0.120 mm. For the sclera position, the error lies within 0 ± 0.5 mm, with a
mean of −0.041 mm and a standard deviation of 0.116 mm.

Synthesized fish eye image. To validate our eye-tracking method
before perspective transformation, we synthesized side-view images with
generated ground truth for eye position. First, we filled a square with
dimensions w × w using the average color value from the area sur-
rounding the fish’s eye in the original side-view image. At the center of
this square, a light circle, representing the eye sclera, is drawn with a
diameter of 2w

3 . For the artificial pupil, a dark circle is placed within the
light circle. The size and position of this pupil are randomly determined,
adhering to a uniform distribution. The radius varies within a range
of ½w6 � w

20 ;
w
6 þ w

20� pixels, while its position is defined to be within
½w2 � w

6 ;
w
2 þ w

6� pixels. We chose this range to ensure that the distance
between the pupil and sclera borders is minimal, replicating the

Fig. 2 | Illustration of the three steps involved in
retinal view reconstruction based on eye move-
ment tracking. First step (yellow): position a camera
at the tracked eye position in 3D. Second step
(green): rotate the camera to align with the fish’s
view direction. Final step (pink): configure the
camera parameters based on the structure of the
fish’s eye.
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appearance of the eye when the fish turns its head toward the camera.
Next, we perform a perspective transformation to tilt the images, intro-
ducing a distortion that aligns with the fish’s body as captured in the
camera’s view. Finally, we apply a Gaussian blur to the eye with a kernel
size of w6, add white dot noise at random locations amounting to 0.05% of
the total pixel count, and place the synthesized eye image onto the fish’s
eye location in the video, as illustrated in Fig. 3h.

We subsequently applied our eye-tracking algorithm to track the eye
movements of fish within this synthesized dataset. Results with 500 syn-
thesized images are shown in Fig. 3 and Supplementary Tab. 2. In general,
we observe an view angle errorwithin 0 ± 10degrees, with amean of−0.099
degrees and a standard deviation of 2.950 degrees. For the pupil position, the
error lies within 0 ± 1 mm, with an average error of −0.090mm and a
standard deviation of 0.326mm. For the eye sclera position, the error lies
within 0 ± 2.5 mm, with an average error of −0.016mm and a standard
deviation of 0.628mm.

Tracking quality across different view angles
Since our tracking method uses blob detection for the pupil position,
potential issues may arise when the fish’s pupil is too close to the edge of
the sclera. To assess whether the position of the pupil affects our
tracking quality, we analysed the tracking quality across the different
positions of pupil.We split the data into two groups: center cases, where
the pupil is centrally positioned, and edge cases, where the pupil is
positioned near the edges (see Supplementary Fig. 6). Results are
summrized in Supplementary Tab. 4. For manually labeled data, the
mean view angles were −2.42∘ for the edge cases and −2.47∘ for the
center cases, with standard deviations of 3.02∘ and 2.23∘, respectively.
For synthesized data, the mean view angles were −0.43∘ for the edge
cases and 0.31∘ for the center cases, with standard deviations of 3.16∘ and
2.70∘, respectively.

Eye movement and retinal view reconstruction in schooling
behavior
To further assess our eye movement tracking and retinal view reconstruc-
tion,we applied the algorithms to twofish swimming in aflow tankwith two
perpendicular views, and then compared the retinal viewand eyemovement
with their schooling behavior.Wefirst applied the followingfilters to extract
leader-follower schooling behavior by: the position angle, defined from the
leader’s position to the follower’s local coordinate, is less than 40 degrees
(∣a∣ < 40∘); the front-back distance is less than 0.4 meters (∣x∣ < 0.4); and the
distance between the two fish is less than 0.45meters (d < 0.45meters). As a
result, we obtained a dataset comprising 45,499 data points, divided into
7860 cases where the leader was in the front-right position relative to the
follower (a > 0), and 37,639 cases where the leader was in the front-left
position (a < 0) (see Fig. 4a). Over the leader-follower schooling behavior,
the front fish mostly appears within 100∘ in front.

We then applied our eye movement tracking to the follower and
analyzed the correlation between eye movements and the relative position
angle a between the two fish, as shown in Fig. 4b. The eye position was
normalized based on the sclera, so that we could compare the amount of eye
movement between fish with different eye sizes. We observed that the
relative position angle a is positive when the leading fish is on the left side of
the following fish’s head direction (as illustrated in Fig. 4b), and negative
when the leading fish is on the right side (the correlation between x and a is
r =−0.69). This means that when a fish sees another in front, the position
angle between themcauses the eye on the same side as the neighbor tomove
more forward, while the opposite eye may move backward. These eye
movements during leader-follower behavior are consistent with previous
studies31,32, indirectly suggesting the effectiveness of our algorithm. Addi-
tionally, since there is an asymmetry in data amount between the leader on
the left and right of the follower is primarily due to the asymmetric
boundaries of the flow tank, we also conducted bootstrap with same

Fig. 3 | Evaluation of the eye tracking. a The pipeline of manually labeling eye
positions after perspective transformation and conducting eye tracking as a com-
parison. Probability distribution function (PDF) of b–d: ground truth and detected
eye view angle, pupil position, and eye position. e–g: deviations between the ground
truth and eye detection outputs. h The pipeline of generating synthesized data as

ground truth and conducting eye tracking for a comparison. The PDF of i–k ground
truth and detected eye view angle, pupil position, and eye position (k). l–n deviations
between the ground truth and eye detection outputs. The deviations are scaled based
on the average eye diameter (6.75 mm).
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analyses. These analysis results show similar correlation with an average
slope of −0.00195 and an average intercept of −0.132, with standard
deviations of 3.46 × 10−5 and 6.85 × 10−4, respectively (see Supplementary
Fig. 7)

Finally, we applied retinal view reconstruction to estimate how the
leader appeared from the follower’s perspective during the following
behavior. For comparison, we reconstructed the retinal views under con-
ditions where the eyes were either stationary ormoved randomly (as shown
in Fig. 5a). In these control conditions, the leader’s position on the follower’s
retina variedmuchmore significantly (as illustrated in Fig. 5b) compared to
when the eyes were moving intentionally, as observed in our experiments
(refer to Supplementary Tab. 1). This suggests that fish deliberately adjust
their eyemovements tomaintain their neighbor, in this case, the leader, near
the center of their retina. This behavior is also consistent with previous
reports33–35, indirectly verifying our method.

Discussion
In our study, we introduced a novel method to non-invasively track eye
movements of free-swimming fish schools. This method includes 3D body
shape reconstruction, perspective transformation of the camera view, and
pupil detection and tracking. We validated this approach using an aug-
mented dataset. Additionally, we developed a technique to reconstruct the
retinal view of the front neighbor from the perspective of the following
individual, which involves scenario reconstruction, adjustment of the
camera view’s position and orientation, and view reconstruction.We finally
validated our eye tracking and view reconstruction with free-swimming
goldfish in leader-follower schooling behavior. Results show that eye
movements on either side of the fish are decoupled, allowing for focused
attention on their neighbor. The results of our retina view reconstructions
show that fish dynamically adjust their eyes in an attempt tomaintain their
neighbor’s image at the center of their retina when the attention is locked.

Ourmethodsprimarily capitalize on 3Dbody shape reconstruction. By
analyzing body shape data, we accurately ascertain the position and
orientation of the eyes. This technique marks a significant advancement
over the current predominantly 2D approaches in non-invasive fish eye
tracking4,21,36. Our analysis of schooling behavior using thismethodprovides
results similar to thosepreviously reported (Figs. 4 and5), indicating that the
precision of our eye tracking is sufficient for biologically meaningful
insights. The primary requirement of our method is that each fish must be

captured by at least two cameras, with the eyes being recorded by at least one
camera. Therefore, while our study mainly showcases a two-camera setup,
our method is theoretically scalable to include any number of cameras. The
more cameras there are, the higher the precision, especially when multiple
views capture eye movements. However, this comes at the cost of training
Mask-RCNNandDeepLabCut to extract fishmasks and keypoints for each
view. The same training process is required when applying our method to
other fish species.

Additionally, although our current example features two fish swim-
ming in relatively similar directions, our method is versatile enough to be
applied to scenarios with freely-swimming fish in large numbers. Based on
detection accuracy, we can identify which fish the trackedfish is looking at if
there are two leading fish separated by at least 5∘ in its field of view. In
general, themore individuals involved, themore challenging it becomesdue
to frequent overlapping. This would require not onlymore cameras but also
a large, highly precise dataset offishmask and keypoint labeling for training.

In our synthesized validation data, we simulate conditions similar to
those observed in our fish recordings, including variations in illumination,
shape, slight tilting, and underwater noise such as small particles. However,
these simulations may not fully capture all potential noise or variations in
eye anatomy that could appear in other video recordings. Through com-
parison with human-labeled data, we demonstrated that our pipeline is
effective for the videos we collected. Nevertheless, we recommend adjusting
parameters, such as threshold values in the blob detection step, when
adapting our method to different datasets. In cases where the fish is fre-
quently occluded, addingmore cameras can helpmaintain a consistent view
of the eye.

Our retinal view reconstruction offers more realistic visual inputs by
accounting for eye movements, as opposed to the previous 2D angular area
estimationmethods4,18,20,21,36. In the case of two fish swimming, we observed
that when one individual swims in front, the follower tends to lock onto the
individual by centering their view in the eye. This approach canbe applied to
analyze target of gaze in scenarios involving multiple neighbors33–35, by
determining which neighbor is closest to the center of the retinal view. The
negatively synchronised eye movement suggests that they might be able to
lock onto two different individuals simultaneously with each eye31,32.
However, since we previously could not track the opposite eye, we can
quantitatively measure the eye movements on both sides in the future
experiment with additional cameras capturing both eyes.

Fig. 4 | Eye tracking of two swimming goldfish
exhibiting leader-follower behavior. a Selected
pairs of goldfish within swimming groups. (i) Two-
fish relationship from the bottom view. (ii) Front
fish position density map on a 3D sphere. All 45,499
pairs of data are binned in 12 degrees increments,
with a radius of 17.5 cm. (iii): The front fish position
heat map, viewed from the bottom side, shows the
relative positions of the front fish from the per-
spective of the following fish looking upwards. Each
point on the heat map represents the position of the
front fish, with the following fish’s position fixed at
the center. The x and y axes span a range of ±50 cm,
capturing the spatial distribution of the front fish.
(iv): The front fish position heat map, viewed from
the front side, presents the relative positions of the
front fish from the perspective of the following fish
facing left. Again, each point represents the front
fish’s position, with the following fish at the center.
The x and y axes cover a range of ±50 cm, illus-
trating the positioning patterns during the interac-
tion. b The correlation between the normalised eye
movements ranging from−0.4 (rightmost position)
to 0.4 (leftmost position) and relative position
angles.
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Building upon the analyses mentioned above, natural extensions for
future studies include investigating fish attention in low-light conditions,
such as under inferred environment investigating how fish dynamically
focus on multiple neighbors, and how their eyes on both sides move syn-
chronously or asynchronously to gather information.Mapping visual input
to movement decisions could also shed light on how animals process such
collected visual information.Additionally, ourmethods could potentially be
applied to swarm robotics featuring bio-inspired active visual sensing,
particularly in interactions with living systems.

Methods
Hardware and data collection
A flow tank, capable of generating laminar flow, was utilized to capture
videos of fish swimming. A detailed illustration for this recording setup is
presented in Supplementary Fig. 1. The test arenameasured 88 cmin length,
25 cm in width, and 25 cm in depth. Videos were recorded using two syn-
chronized cameras capturing bottom and side views at 90 frames
per second. In the bottom view recording, backlighting was used, rendering
the texture invisible. In the side view, normal light was employed, allowing
the texture to be visible. We randomly picked two fish for each experiment
from a group of 32 goldfish in our animal care facility. All animal handling
and experimental procedures were approved by Regierungspräsidium
Freiburg, 35-9185.81/G-17/90.

Regarding the camera information, recordings were made using the
Basler acA2040-90umNIR camera model, equipped with a Kowa
LMVZ166HC lens, and an original resolution of 2040 × 2040 pixels. We
crop the video to a resolution of 2040 × 1040 pixels, and adjust the focal
length to 39.4 millimeters. Calibration of the camera was conducted using a
chessboard pattern submerged in water and the MATLAB camera cali-
bration function. Image distortion in the front view was corrected using
parameters obtained from the calibration process (Supplementary Fig. 2).
The recorded data included some clips that did not provide significant
information for the target of gaze study. For instance, when there was a
considerable distance along the z-axis (vertical direction from the front
view), it became challenging for the fish to see each other when swimming
forward. To address this, video data were filtered by selecting frame
sequences based on the detected fish positions. In our setup, frames were
excluded where the angle between two fish on the x-z plane exceeded 40

degrees and where the distance between two fish on the x-axis was less
than 0.2 meters (the size of the fish body). This ensured that the fish swam
together at nearly the same height, and the leading fish did not occlude the
followingfish’s head. It’s important to note that due to the exclusion of these
frames, the videos were divided into several segments. Additionally, we
ensured that the filtered sequence comprised at least 40 frames for ease of
analysis and visualization.

Statistical methods
In Fig. 4, we apply bootstrap analysis to determine the regression function
that describes the relationship between normalized eye movements and
relative position angles. In each iteration, we randomly sample 3000 data
points from both the left cases (x<0) and the right cases (x≥0), resulting in a
total of 6000 points per batch.We calculate the regression function for each
batch and repeat this process for 200 iterations.

In Fig. 5, we apply bootstrap analysis to calculate standard deviation of
leader fish’s position on x-axis and y-axis. We randomly sample 1000 data
points from the result leader fish positions and calculate the standard
deviation within the sample for 200 iterations, and plot the 200 standard
deviations as a distribution curve. This samplingmethod is applied to x-axis
and y-axis independently.

Fish swimming pose reconstruction
In our eye trackingworkflow, the 3D pose of the fish plays a crucial role as it
allows us to conduct perspective transformation for the eyes and visualize
swimming records. The fish’s pose is reconstructed from video recordings
using themethodwe published in our previous publication24. Our approach
involves simultaneous video recording from different angles, and we fit our
predefined 3D mesh to each frame to minimize keypoint and silhouette
errors.

Our experimental setup includes two view angles: front view and
bottom view. We employ the Mask R-CNN network28 to obtain the fish
silhouette (Supplementary Fig. 2) and DeepLabCut37 to extract the key-
points, as illustrated in Fig. 1, to reconstruct the body pose of fish.We chose
the Mask R-CNN network for its strong performance in detecting objects
along with their segmentation masks28, and DeepLabCut for its ability to
reliably track keypoints on multiple animals’ bodies38. We set a skeleton
along the fish anteroposterior axis, and deform the fish body with linear

Fig. 5 | Application of retinal view reconstruction
in two swimming goldfish. a follower’s retinal view
of the front individual with tracked eye movements
(i), static eye (ii), and randomly moved eye (iii).
b position of the front individual on the follower’s
retina along the x-axis (i) and y-axis (ii), and their
corresponding variances (iii and iv) as determined
by bootstrap analysis.
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blend skinning (LBS) In this way, we can adjust the fish model’s body pose
by defining its skeleton’s length and rotation. If we stretch one section on the
skeleton, which we call it a bone, the corresponding part on the fish model
will be longer and the vertex density on that part will reduce. The rotation of
all the bones together decide the fish model’s body curve. We restrict the
bones to have no pitch rotation, a slight roll rotation, and mostly yaw
rotation, as a fish swims normally by bending its body left and right39.
Subsequently, we use the silhouette and keypoint positions on each input
frame to refine the body pose.

The pose fitting consists of three parts: (1) global pose fitting, (2) body
pose fitting, and (3) tail position fitting. In each step, we focus on different
parts of the fish body and let the fish model change to a shape close to the
input frameby adjusting the skeletonparameters. Thefishmodel is adjusted
in this three step manner instead of tuning all parts together so that we can
reduce the possibility of converging to a strange shape.

Retinal view reconstruction
The orientation of the virtual camera within the 3D scene is dynamically
adjusted in each frame based on the detected eye movements, as illustrated
in Fig. 2.

Thefirst step is to adjust the camera’s position. Bydefault, the camera is
positioned on the eye of the fish mesh model, aligned with the normal
direction of the model surface. This corresponds to a scenario where the
pupil is situated at the center of the eye area. During the adjustment of the
mesh model’s pose, the camera’s position is transformed concurrently with
the mesh model, ensuring it consistently remains at the eye position.

Subsequently, the correct camera orientation is determined. As the
pupil moves, the camera dynamically rotates to track the direction of the
pupil. This is achieved by retrieving the pupil’s position from the eye
tracking results andapplying the reverse transformation, as demonstrated in
the eye tracking portion (Supplementary Fig. 4). This reverse transforma-
tion unveils the 3D position of the pupil on the mesh model. Following the
fish eye structure (Supplementary Fig. 5), the camera is placed at the retina
centerof thefish’s eye, positionedbeneath themeshmodel surface at a depth
that matches the eye size. The view direction of this camera points from the
retina to the pupil center based on the reverse transformation. Finally, the
camera’s view angle is adjusted to 190 degrees to match the fish’s field of
view. The reconstruction of the fish’s vision is achieved by capturing the
rendered scene through the output of the virtual camera.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data supporting this study’s findings have been publicly uploaded on
figshare40 (https://doi.org/10.6084/m9.figshare.25886437).

Code availability
All the data analyseswere performedusing custom scriptswritten inPython
(Python Software Foundation, 2018). Our published codes are licensed
under CC-BY-4.0. All codes supporting this study’s findings have been
uploaded on figshare40 (https://doi.org/10.6084/m9.figshare.25886437) and
are publicly available. A description of published data and code is presented
in the supplementary information and Supplementary Table 5.
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