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Abstract—In this paper, we present a method for reconstructing the drawing process of Chinese brush paintings. We demonstrate the
possibility of computing an artistically reasonable drawing order from a static brush painting that is consistent with the rules of art. We
map the key principles of drawing composition to our computational framework, which first organizes the strokes in three stages and then
optimizes stroke ordering with natural evolution strategies. Our system produces reasonable animated constructions of Chinese brush
paintings with minimal or no user intervention. We test our algorithm on a range of input paintings with varying degrees of complexity and
structure and then evaluate the results via a user study. We discuss the applications of the proposed system to painting instruction,
painting animation, and image stylization, especially in the context of art teaching.

Index Terms—Chinese brush painting, animation, drawing analysis, art teaching.
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1 INTRODUCTION

CHINESE brush painting is a unique and fascinating
form of art that has been around for more than 1500

years. Owing to the difficulty in understanding the proper
creation of paintings, instructional videos have been created
to show the sequential application of strokes during the
drawing process. Commercial movies and advertisements
often use animation sequences of dynamic paintings for
special effects. Video scribing, the animated production of
large images for educational purposes, is a new art form that
explicitly uses drawing animation. Such dynamic painting
videos are typically created from a camera recording of
the application of strokes during the manual creation of
a painting. The recording functionalities of drawing software
are also utilized. However, these methods are laborious,
and they limit the creation of dynamic paintings to a few
professional painters.

These problems motivated us to develop an image-based
method for creating painting animations. Large numbers of
brush paintings have been created over the years, and they
serve as great sources for constructing animated drawings.
Given a static painting, we intend to estimate a drawing order
for the strokes that is approximately consistent with painting
principles and is artistically reasonable for educational or
commercial applications (see Fig. 1).

The basic principles of Chinese brush painting (cf. [1], [2])
typically demand a solution for the following key problems
(e.g., Fig. 2): (i) given an input painting with clearly defined
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strokes, a model should be built to represent strokes with
a set of features; (ii) an overall structure should be built
for stroke positioning. The drawing process can be roughly
divided into three stages: outlining structure, drawing local
details, and adding decorative strokes. This process adheres
to the principle of “division and planning”, i.e., to organize
compositions by placing and arranging their elements [3];
(iii) the drawing direction for each individual stroke should
be determined, and the animation should be rendered by
following the stroke order.

Performing art varies with people and differs over time.
Although artists generally follow certain principles because
of some conventions [4], the drawing process is individual
and involves personal preferences. This fact implies that
multiple solutions might be available for our problem.
Therefore, our objective is to find a reasonable solution that
is consistent with the laws of art construction instead of
searching for the best drawing order of strokes.

We propose an effective mechanism for estimating such
a reasonable order, provided that we have a set of 2D
strokes extracted from a Chinese brush painting that consists
of clearly defined strokes. Our work makes the following
contributions:

• Introducing the problem of reconstructing and animat-
ing the drawing process of Chinese brush paintings.

• Summarizing artistic guidelines for ordering strokes
from art principles.

• Effectively simulating the drawing process by con-
structing a multi-stage structure and optimizing the
stroke orders by natural evolution strategies (NES) [5];
encoding both the visual similarity of strokes, such as
color and contour, and the variation of strokes during
painting, including ink wetness, ink thickness, and
shape.

As the estimated drawing processes might be subjective
due to the variability of artistic principles, we conduct a
user study to evaluate the perceived quality of our solutions
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Fig. 1. Guided by painting principles, we derive an artistically reasonable order of an input static Chinese brush painting (left) to automatically animate
the drawing process (top right). A user study shows that the reconstructed order is comparable to the stroke order interactively specified by an artist
(bottom right). The animations can be used as instructional videos in fine art education or to create special visual effects in commercials.

(a) Input: a painting with cleanly defined strokes (b) Roughly organized strokes into multi-stages (c) Optimize stroke orders

Fig. 2. Global structure of the painting process. (a) Input a painting with cleanly defined strokes. (b) The strokes of different stages are organized into
different layers of the Hasse diagram (left) and are depicted by different colors (right). (c) The optimized drawing order of the strokes as indicated by
their numbers and stroke directions by the corresponding arrows.

compared with that of alternative strategies. A quantitative
evaluation is also performed by comparing our results with
manually generated drawing processes from artists. We
analyze and evaluate a variety of Chinese brush paintings
and conceptually apply our technique to drawing education,
storytelling, and commercial visual effects.

2 RELATED WORK

Related works come from a number of fields in computer
science, cognition and arts. We focus on the technical works
in these fields.

Art canons. Instructional books of Chinese brush paint-
ings often introduce the basic principles of drawing order [1],
[2], [6], especially for specific objects [7]. Chinese painters
do not use sketches or models but paint from memory
according to their own impressions of objects. In contrast
to other techniques, brush painting cannot be improved,
corrected, or fixed [8]. The most important part of a painting
is always done first, and the rest is done afterwards in the
order of importance. From the first to the last stroke, the
artist must “get it right”. Therefore, drawing order becomes
one of the key elements in creating a good Chinese brush
painting. Furthermore, common drawing theories consider
the order of strokes in a painting as a reflection of the mental
organization of a scene and its hierarchical relationships [9].
Note that although digital paint systems (e.g., MoXi [10])
can achieve various realistic effects of ink dispersion, such
systems focus on using physical simulation to enhance the
final drawing rather than reconstructing the intermediate
states of a drawing process.

Recovering drawing process. Perceivers of manually
created artifacts are able to extract order information
from static images [11]. Hays and Essa [12] decompose a
photograph into a plausible arrangement of brush strokes by
using a library of brush stroke textures. Flagg and Rehg [13]
design an interactive system around a set of interaction
modes that assist artists in painting ordered sets of layers that
comprise finished paintings. Monroy et al. [14] reconstruct
and visualize the temporal order of the drawing process
of medieval images. Fu et al. [15] reveal the sketching
sequence of a line drawing by mapping the gestalt and
cognition rules to computational procedures. Liu et al. [16]
additionally integrate common drawing phases and achieve
plausible results with an entropy-based ordering strategy.
Mao et al. [17] present a region-based method to extract
the structure lines within cartoon images; this method is
helpful in recovering drawing process of cartoons. Given
the richer features of a brush painting stroke compared to
a line, our problem is more complex than the recovery of
the drawing process of line drawings. Yang et al. [18] order
all the brush strokes in a painting sequence according to the
average gray value of each brush stroke. We demonstrate that
this simple strategy often fails to generate satisfactory results
for many images. Tan [19] present a set of techniques to
decompose a time lapse video of a painting into a sequence
of translucent stroke images. However, the current work
focuses on reconstructing the drawing process from a static
image rather than a dynamic video.

Analyzing and animating Chinese artworks. Tech-
niques for analyzing and constructing animations from input
paintings or calligraphy can improve the reusability of artistic
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(a) Addition of primary strokes. (b) Addition of strokes of local details. (c) Addition of decorative strokes.

Fig. 3. Creating a painting in multiple stages. Painters usually draw elements in a primary-local-decorative manner.

works. Xu et al. [20] decompose a given input painting
into hypothetical strokes and animate the painting at the
brush stroke level. Their method for automatically recovering
separate, vectorized brush strokes is useful in solving our
problem and can be used as a pre-processing step in our
system. Zhang et al. [21] synthesize animations of running
water in the style of Chinese paintings for applications
such as cartoon making. Yang et al. [22] estimate brush
trajectories with shape outlines and dynamically render them
into brush strokes by mapping footprint textures sampled
from input images. This technique is useful for the analysis
and appreciation of Chinese ink paintings. Yang et al. [23]
decompose a calligraphic character into several strokes and
construct writing rhythm and brush footprint models to
dynamically render calligraphy in the oriental ink style.

Non-photorealistic rendering (NPR). Synthesizing
brush paintings from images and 3D models has been
extensively studied [24]. Amati and Brostow [25] digitize
and transform Chinese ink paintings into 2.5D sprites. Wang
and Wang [26] suggest a mathematical model with a physical
base to synthesize an image with color ink diffusion. Xie et
al. [27] model a brush as a reinforcement learning agent and
apply this brush agent to automatically convert photographs
to oriental ink-style paintings. Xu et al. [28] present a stroke-
based approach for creating real-time ink-wash paintings of
geometric models. Dong et al. [29] abstract images with the
help of saliency maps and then convert them into Chinese
ink paintings through non-physical ink diffusion processes.

Painting robots. Machines for simulating the human
painting process have been manufactured since the 19th
century. Proponents of modern computer and robot-based
approaches include Yao and Shao [30], who let a Chinese
painting robot draw bamboos. The drawing orders and
control points of strokes are specified manually. Lindemeier
et al. [31] evaluate painterly rendering techniques that work
within a visual feedback loop of eDavid, a painting robot [32].
The strokes are dynamically generated and drawn one by
one without following artistic principles. Sun and Xu [33]
develop a calligraphy robot capable of writing a large
piece of aesthetic calligraphic work. Our work could easily
be coupled to these machines to create authentic Chinese
paintings.

3 OVERVIEW

Input and stroke modeling. Two main techniques exist
for creating Chinese paintings: meticulous (Gong-bi) and
freehand (Xie-yi). Meticulous paintings incorporate delicate
calligraphic strokes and a close attention to detail, whereas

the freehand style emphasizes the interpretive aspect of the
brushwork. Freehand style also seeks to express the essence
of the subject rather than the details of its appearance. In
freehand paintings, a single stroke can produce astonishing
variations in tonality, from deep black to silvery gray.
Our system only considers paintings that employ brush
strokes economically, that is, paintings with cleanly defined
strokes (small freehand style), and excludes brush paintings
created by splash ink or drawn in meticulous style. in
which individual strokes are difficult to distinguish. Our
rationale behind this decision is that beginners learning
Chinese painting always start from small freehand paintings
to train their basic painting skills. Thus, animating the
construction process of small freehand paintings is more
useful for teaching than animating other paintings. In
addition to Chinese paintings, our system can work with
Sumi-e and certain watercolor paintings. We consider an
input painting to be an image composed of an unordered
set of already segmented 2D brush strokes. We then build
a model that describes stroke properties by using a set of
features (Section 5.1) that incorporates geometric and shading
characteristics.

Multi-stage structure. In general, Chinese brush paint-
ings are created in the following way (Fig. 3). First, primary
strokes determining the composition of the painting are
painted. These strokes often occupy large areas and are
drawn by dark ink. Then, the painter progressively refines
the painting by adding strokes for local details. Finally, some
dry or thin strokes are drawn, and splattered or dotted ink is
applied to decorate the painting.

This observation motivates us to first construct a
representation that consists of a primary-local-decorative
order(Section 5.2). This representation serves as a stage-
by-stage drawing order, paves the way for introducing of
multi-stage drawing guidelines from artistic principles, and
provides a meaningful structure of input strokes.

Stroke ordering. A drawing order of all the strokes
is estimated in the second step. Following the guiding
principles given in Section 4.2, we formulate an energy
function that encodes both the multi-stage structure of the
painting and the rules in stroke ordering (Section 5.3). We
then find the optimal solution for the energy function to
compute the stroke order by using NES (Section 5.4).

Animation. Given a stroke order of the input painting,
the last step is to reproduce the painting process using the
optimized stroke order. The direction for each individual
stroke is determined according to the guidelines of the stroke
direction (Section 4.3). A flood-filling-based method is used



1077-2626 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2774292, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, 2017 4

to render the strokes (Section 5.5).

4 GUIDELINES FOR STROKE ORDERING

Chinese brush paintings emphasize simplicity, flowing brush
strokes and graceful design, using black ink and the three
primary colors. We obtain the original guidelines by carefully
studying and analyzing paintings in instructional books and
videos and by consulting with professional artists and lay
painters with drawing training experience. In this section,
we identify important guidelines related to the geometry,
shading, and color features of strokes.

4.1 Stage structure of a drawing
As mentioned above, in freehand Chinese paintings, artists
attempt to capture the essential nature or character of
a subject and not its actual physical appearance; every
area of the painting has to be interesting to the eye [8].
In general, painters tend to draw elements in a primary-
local-decorative manner, which follows the order of the
contribution of elements to the content of the painting. They
first add important strokes that determine the composition
of a painting and then move on to strokes that depict local
details, finally using splattered or dotted ink to decorate the
scene.

(a) Strokes of different wetness 

(c) Thickness variation within a stroke (d) Wetness variation within a stroke

(b) Strokes of different thicknesses

Fig. 4. Stroke styles and the variations of main stroke properties such as
wetness and thickness.

4.2 Revealing stroke order
The stylized expression of shade and texture is the most
important brush technique in Chinese painting. The strength
and quality of ink and water create various numerous
variations. Thick ink is deep and glossy when brushed onto
paper or silk, whereas thin ink gives a lively, translucent
effect. Light and darkness, texture, weight, and coloring
can be conveyed simply through the thickness of the ink.
In addition, ink can be used dry or wet. The charm of a
brush-and-ink painting comes not only from the artist’s
intentional self-expression but also from the interaction of
the ink and water with the textured paper. Fig. 4 shows the
different stroke styles used in Chinese brush paintings. In
our framework, such visual features of strokes are crucial to
reconstructing the stroke order.

Although the division into stages can roughly describe
the overall creation of a brush painting, the stroke order
should still be determined. Stroke order is affected by
a wide spectrum of factors including geometry, shading,

34

R6

1

2

Fig. 5. Guidelines for ordering strokes: (R1) by proximity; (R2) by color
similarity, in which fruits in the same color are drawn together; (R3) by
contour similarity, in which the geometrical shapes of the leaves and
fruits are different and the strokes of similar contours are added together;
(R4) by wetness variation; (R5) by thickness variation; (R6) by shape
variation; and (R7) shows a rounding object represented by two strokes.
The order is shown with the numbers.

color, semantic, and motoric reflexes [1], [2], [7]. Although
semantic features and drawing convenience can impose
important ordering constraints, especially for some specific
objects (e.g., insects), we mainly focus on the visual aspects.
Guidelines for stroke ordering (see Fig. 5) can be classified
in three scales : (i) inter-stroke-based rules indicating that
strokes in close Proximity or with similar Color/Shape are
likely to be added together; (ii) individual stroke-based
rules indicating the local priority of strokes with respect
to Wetness, Thickness and Size; (iii) a composition-based
rule describing a specific technique when the objects being
painted are Rounding. The details are as follows.

R1 (Proximity): Proximity is an important issue in
determining order because painters often like to move to an
adjacent element to reduce time and effort (see Fig. 5 (R1)).

R2 (Color): To create a Chinese brush painting, an artist
needs to use several different brushes to draw strokes of
different styles and sizes and in different colors. Thus, to
facilitate the drawing process, the artist usually groups
strokes of similar colors in the drawing process by drawing
one group with one brush and then to change the brush to
draw another group. Therefore, we consider strokes with
similar colors to be drawn together (see Fig. 5 (R2)).

R3 (Shape): Similar to the grouping according to color
similarity, the artist usually groups strokes of similar
geometrical shapes in the drawing process. Thus, strokes
with similar contour shapes are usually drawn together (see
Fig. 5 (R3)).

R4 (Wetness): A fact about Chinese brush painting is
that each brush stroke is a defining move that draws up a
portion of the painting, which is neither improved upon
nor corrected. No sketch is prepared, and no model is
used. The artist paints with rapid, mentally constructed
strokes transporting a “mind image” to mulberry paper.
Thus, during the drawing process, the artist usually draws
multiple strokes with the same inked brush, for which these
sequential strokes may change from wet to dry, i.e., in a local
region, wet strokes are likely to be added prior to dry strokes
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(see Fig. 5 (R4)).
R5 (Thickness): Similar to wetness, strokes with thick ink

in a local region are likely to be added prior to strokes with
thin ink (see Fig. 5 (R5)).

R6 (Size): To progressively add strokes in multiple stages,
artists prefer to draw strokes with visually important sizes
first according to their area, length, and scale in the painting
process (see Fig. 5 (R6)). Strokes of different shapes are
usually created by different types of brushes (brushes with
different heads).

Note that when keeping two specific rules under observa-
tion, conflict arises among individual rules in the guidelines.
Such conflict is quite likely to occur during the drawing
process. The reason is that guidelines R1-R6 belong to a type
of “soft” constraints that act as a whole. They “vote” for the
final result. Aside from such soft constraints, we also define
the rule of rounding, which is a hard constraint.

R7 (Rounding): In the Chinese painting process, a round
object (e.g., grape, eye) is often represented by two strokes.
The start point of one stroke is extremely close to the start
point of the other stroke and vice versa for the two end
points. Therefore, these two strokes are almost invariably
drawn together (see Fig. 5 (R7)).

4.3 Stroke direction and starting location

After a stroke order is determined, the painting direction
for each stroke is identified. Unlike line drawings for which
directional preferences depend on the convenience of the
mechanical movement toward the subject’s wrist and fingers
as well as the visibility of existing strokes, no universal
principle exists for the direction of strokes in Chinese brush
paintings. As a matter of fact, stroke directions may be
distinctively different for different objects. Nevertheless, the
direction of each stroke from a static painting image could
still be estimated. Typically, the variation in moisture and
ink content caused by the motion of the brush reveals the
stroke direction to a certain extent. Our guidelines on stroke
direction are summarized as follows.

D1 (Wetness preference): Whenever a distinct difference
in ink wetness exists between the two skeleton points of a
stroke (see Fig. 4(c)), we draw the stroke from the skeleton
point with wet ink to the one with dry ink.

D2 (Thickness preference): Whenever a distinct differ-
ence in ink thickness exists between the two skeleton points
of a stroke (see Fig. 4(d)), we draw the stroke from the
endpoint with thick ink to the one with thin ink. The
calculation of the stroke skeleton points is described in
Section 5.1.

The last open problem is from which stroke we have to
start the painting:

S1 (Starting location): For Chinese brush paintings of
small freehand style, the starting location is usually related
to the object to be painted. In our system, the optimization
process automatically decides the starting stroke.

5 METHODOLOGY

In this section, we map the guidelines summarized in the
previous section to our computational procedures. Our
system accepts a set of unordered brush strokes extracted

from a painting as input. We develop an interactive tool for
decomposing a given painting into single strokes by using
approaches given in [20] and [22]. For complex inputs with
overlapping or indistinct strokes, we manually refine the
segmentation results. This process typically takes less than
three minutes of user interaction. Fig. 6 shows an example of
stroke decomposition of a simple bird painting.

Fig. 6. Stroke decomposition of a simple bird painting.

5.1 Stroke model

Building a feasible model to describe stroke properties is
crucial for stroke ordering. We propose a set of features
involving shape, color and texture to model a brush stroke
and denote S = {si|i = 1, 2, . . . , N} as the set of strokes.

F1 (Skeleton points): We adopt the skeleton point
extraction model of Tang et al. [34]. For each stroke, we
first use the Canny detector to detect edges and compute
the morphological gradient image (Fig. 7(a)). Then, we use
the Harris corner detector to obtain the corner points and
use the pairs of points with the largest geodesic distance [35]
as the skeletal points of a stroke ( ~X(si)). Thus, we define
the spatial distance D(si, sj) between two strokes as the
minimum distance between the skeletal points of both
strokes. Aside from D(si, sj), we define D′(si, sj) as the
smaller the distance between the other two skeleton points; a
small value equates to a high possibility for the two strokes
to form a round object in the painting.

F2 (Length): We define the geodesic distance between
skeletal points as the length L(si) (see Fig. 7(a)).

F3 (Area): We define the area of a stroke A(si) as the
number of valid pixels in si. We treat a pixel as a valid pixel
if it is not white (the Y value of the pixel color using the YIQ
model is less than 240).

F4 (Scale): We adapt the method in [36] to calculate the
scale of a stroke, denoted as S(si). In the definition from
the literature, stroke si encompassing region R denotes the
existence of at least one location to put R completely inside
si, denoted as R ⊆ si. With this relation, we define the scale
of stroke si as

S(si) = arg max
t
{Rt×t|Rt×t ⊆ si},

where Rt×t is a t × t square region. i.e., our stroke scale is
defined as the largest square that a stroke region can contain
(see Fig. 7(b)).

F5 (Shape): We adapt Discrete Fourier Transform (DFT)
to extract the contour information as the shape of a stroke.
When a 1D DFT is applied to the vector defined by the
coordinates of the boundary points of a stroke (Fig. 7(c)),
the sequence Ũ of M complex numbers is transformed into
an M-periodic sequence of complex numbers, expressed as
F̃Dµ(si) with (−M−12 < µ < M−1

2 ) . F̃Dµ is the original
Fourier Descriptor (FD) of a stroke. However, measuring
the similarity of two contours by FD is computationally
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(a) Skeleton points and length (b) Scale: the largest
square  that a region can contain

(d) Position saliency: lookup-table feature extraction

F1 and F2

Canny edges Harris corner and
geodesic distance

F5

(c) Coordinates of the points along the
circumference, clockwise ordered.

F4

R5*5sa

sb sc

F8

Position Saliency template Standard work following this rule

Fig. 7. Some features used to construct the stroke model.

expensive. Therefore, the original coefficients are combined
to roughly describe the contour information of a stroke. We
define the circularity Fcir of a stroke as

Fcir(si) =
F̃D1(si)∑M−1

2
µ=1 (|F̃D−µ(si)|+ |F̃Dµ(si)|)

,

and define the slenderness Fsle of a stroke as

Fsle(si) = 1− |F̃D1(si)| − |F̃D−1(si)|
|F̃D1(si)|+ |F̃D−1(si)|

.

A large Fcir ∈ [0, 1] means that the stroke is orbicular,
whereas a large Fsle ∈ [0, 1] means that the stroke is tenuous.
Circularity and slenderness jointly depict the shape of the
stroke.

F6 (Ink wetness and thickness): As mentioned in
Section 4.2 and shown in Fig. 4, the combination of ink
and wash results in an attractive Chinese brush painting. Ink
wetness measures the amount of the water on the brush. Low
wetness of a stroke means the stroke is hollower than the
strokes in wet ink. We define the feature of ink wetness
as the percentage of valid pixels (defined in F3) in the
polygonal approximation of the stroke’s external profile,
denoted as W (si). Ink thickness is measured by the average
Y value G(si) of all the valid stroke pixels and is defined
as T (si) = 255 − G(si). Note that the wetness of a brush,
stroking force, and drawing velocity are not solved in the
equation. Hence these two features are only mathematical
estimations of ink wetness and thickness.

F7 (Color): We define stroke color as the average color of
the stroke pixels (using the RGB model), denoted as C(si).

F8 (Position saliency): In Chinese painting, foremost
strokes are usually placed in salient positions. This principle
is called “start and end at the three-seven point”, which is
similar to the rule-of-thirds principle in photography. We use
the template put forward by [37] to estimate position saliency.
This template defines a 2D (300) lookup table that returns a
score P (si) given the location of the stroke centroid. Light
areas have a high score, and blurred locations that are close
but not exact have good scores (see Fig. 7(c)).

In our experiments, all features are normalized to [0, 1].

5.2 Multi-stage structure

One of the important principles of Chinese painting is
“division and planning”, which involves a progressive
organization and placement of strokes. Thus, we first
analyze the input set of strokes and organize them into
a hierarchical structure, with the stroke properties being the

fine-scale features that are grouped together by functional
characteristics to capture the global structure of the input
painting (see Fig. 2). From top to bottom, the hierarchy
serves as a multi-stage drawing order of the input painting.
A natural drawing order starts from the outlining of the
principal part by adding large strokes with thick ink in salient
locations, progressively introducing strokes that depict local
details, and finally adding decorative strokes that are often
thin and dry. Thus, we define a partially ordered relation
over the stroke set S so as to roughly divide strokes into
different categories. Such relation essentially determines the
global priorities of strokes according to their features.

The drawing categories of two strokes are considered
different if their features are distinctly different. We define
a partial ordering relation 4 for two strokes si, sj ∈ S (S
being the set of strokes):

iff sum(~si − ~sj) > ε, then sj 4 si, (1)

where ~s is a vector composed of the stroke features F2-F4,
F6, and F8 (features are equally weighted), ε = 2.0 in all our
experiments. The relation 4 is a strict irreflexive partial order
and 〈S,4〉 is a partially ordered set, which can be illustrated
by a directed acyclic graph G(S). The edge of the graph
denotes the existence of a drawing priority between the two
strokes.

We further simplify G(S) into a Hasse diagram H(S) [38].
The nodes in H(S) represent the elements in S and are
sorted from bottom to top by following their orders in
G(S). Specifically, for any two strokes si, sj ∈ S , if sj 4 si,
then si is arranged on the top of sj . If 〈si, sj〉 ∈4, and
∀sk ∈ S, @sk 4 si ∧ sj 4 sk, we add an edge from si to sk.
Fig. 8 shows the visualization of a Hasse diagram H(S). A
reasonable stage structure is constructed by considering the
aforementioned mentioned stroke features. The strokes on
the top level are usually added in the first stage, whereas the
ones on the bottom represent the second and third stages. In
other words, the strokes on the top are likely to be drawn
before the bottom ones. However, the diagram can only
roughly group strokes into different stages; they cannot
represent the full stroke order. The algorithm for refining the
local orders of the strokes is defined in the following sections.

5.3 Formulation of stroke ordering

An optimized drawing order should express the multi-stage
painting process and satisfy the local order constraints. Thus,
rather than separately ordering strokes at each level as done
in [15], we formulate the ordering problem as a global
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Fig. 8. Hasse diagram simplified from the directed acyclic graph. The
diagram represents the global structure of an input painting related to the
rough drawing stages.

energy minimization problem over a permutation ordering
of index set I = [1, 2, . . . , N ] ( N is the number of strokes)
with a corresponding energy that is minimized over all the
permutations P of I . We denote p as one permutation, pi as
the index of the ith stroke in p, and spi as the i-th stroke in p.

Topological sorting. We establish the initial stage-level
drawing order of strokes by performing a topological sort-
ing [39] on the Hasse diagram H(S). In our implementation,
the node with the maximum outgoing degree is always
selected because a large outgoing degree equates to a
large number of nodes on the bottom that support the
corresponding drawing priority. Note that [34] also orders
strokes on the basis of a topological structure of a graph, but
the formulation of the graph only considers “prime” strokes.

Energy function. Denote the drawing order obtained
from the topological sorting as p∗ and the target optimized
order as p′. We formulate the ordering problem as the
following global optimization problem:

p′ = arg min
p∈P

c(p) + (1− d(p, p∗)), (2)

which is subject to additional constraints derived from
detected round objects (which will be described later). Here
c(·) is the stroke cost item that encodes the guidelines
in Section 4.2, and d(·) is a difference function used to
ensure that the final order is also consistent with the
multi-stage structure (described later). The sequence of
(sp′1 , sp′2 , . . . , sp′N ) gives us the desired ordering of S .

We formulate the stroke cost in Equation (2) as

c(p) =
N∑
i=1

N∑
j=1,j 6=i

η(i, j) · [ω · ccons(spi , spj )

+ ( 1− ω) · cvar(spi , spj )], (3)

where ccons captures the order-insensitive properties of an
individual stroke s (e.g., color, contour and spatial location),
cvar evaluates the order-sensitive variation cost between
stroke si and sj , and ω is a weighting term for balancing the
influence between the two terms. The function η(i, j) is a
monotonically decreasing window function that encourages
the sorting of lines in local regions. We let c(p) accumulate
the cost between two strokes only when their rank difference
in the current permutation is less than R:{

η(i, j) = 1
|i−j|+1 |i− j| < R,

η(i, j) = 0 |i− j| ≥ R.
(4)

Here, a large R makes the energy function powerful because
it can affect a large number of strokes. However, it can also
increase the computational complexity. We set R = 4 in all
our experiments.

Consistency cost. The consistency cost ccons measures
the visual similarity of a sequence of strokes, according to
their features R1-R3. We evaluate ccons(spi , spj ) of strokes
spi and spj according to their contours (F5), colors (F7) and
their distance (F1) using the Euclidean distance:

ccons(spi , spj ) = ‖~scons(pi)− ~scons(pj)‖+D(spi , spj ),

where ~scons(pi) = (Fcir(spi), Fsle(spi), G(spi)) is a vector
that is composed of stroke features F5 and F7, andD(spi , spj )
is the spatial distance of the strokes, related to F1.

Variation cost. During painting, the variation from one
stroke to another is affected by a changing ink or brush type,
i.e., by wetness, thickness, and shape (R4-R6). We evaluate
cvar(spi , spj ) according to the shape(F2-F4), and the wetness
and thickness (F5) of the two brushes:

cvar(spi , spj ) =
| sgn(i− j) + sgn(

∑
(~svar(pi)− ~svar(pj)))|
2

·
∑

(~svar(pi)− ~svar(pj)), (5)

where ~svar(pi) = (A(spi), L(spi), S(spi),W (spi), T (spi)) is
a vector composed of the stroke features F2-F4 and F6. This
condition guarantees a cost of zero when the drawing order
of the two strokes is consistent with the principles R4-R6.

As the rules of wetness, thickness and shape are only
effective within strokes of the same semantics, the priority of
variation cost needs to be obviously lower than consistency
cost. Thus, we set ω = 0.7 in Equation (2) by default, with
the weight of variation at only 0.3.

Regulation term. We propose d(p, p∗) as a regularization
term [40] to preserve the stage-level stroke orders which are
acquired from the topological sorting. The Spearman’s rank
correlation coefficient (Spearman’s ρ) is adopted to measure
the similarity between two stroke orders. Supposing we
have N strokes; the ith stroke’s rank in p is pi, and the
regularization term is computed from following:

d(p, p∗) = ρ = 1− 6
∑
d2i

N(N2 − 1)
, (6)

where di = pi − p∗i , is the difference between ranks.
Constraints. As an important effect for coupling strokes,

guideline R7 implies that strokes representing a round object
must be added together. To guarantee that the optimal order
agrees with R7, we traverse the stroke set to find any couple
of strokes representing a round object. In our experiments
we consider two strokes si and sj to represent such a round
object if D(si, sj) is less than 10% of the image width and
D′(si,sj)
D(si,sj)

< 1.2. The permutation should guarantee that
such a couple of strokes is always added together. This
information is formulated as a hard constraint within the
global minimization problem.

5.4 Optimization of stroke ordering

In [15], stroke order optimization is solved by finding the
Hamiltonian path in a directed graph and using the branch-
and-bound approach for pruning. However, our problem
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is more complex than the problem in [15] because of the
regularization term and the encoding of the consistency cost
and variation cost in our energy function. Consequently, the
optimization method in [15] is unsuitable for our task.

To obtain the optimal order efficiently and accurately, we
adopt NES [5], a family of black-box optimization methods,
to search for a solution.

Encode R7. The energy function in Section 5.3, including
the given hard constraints, is not appropriate to solve by
NES. Inspired by the work of Liu et al. [41], who add
labeling information (hard constraints) to an unsupervised
learning algorithm and arrive at a semi-supervised non-
negative matrix factorization, we transform the problem
of stroke sorting to order a set of stroke groups. Two
strokes representing one round object are put into one group;
otherwise, one stroke is put into in one group. We apply
NES to order the stroke groups. The feature of the stroke
group is the average of the members in one stroke group. The
order of the strokes within one group is simply determined
by referring to

∑
~svar in Section 5.3. Thus, we can obtain

an order of all strokes (p) from the permutation of the
corresponding stroke pairs.

Encoding space. In applying NES, the permutation
problem has to be encoded into a real-valued space because
finding a parameterized search distribution that represents
the structure of the solutions is difficult in a permutation
space. Ceberio et al. [42] discuss two types of encoding
modes for encoding permutation problems into a real-valued
space. Inspired by modes based on random keys, we encode
the permutation of M stroke groups in the following way.
Each stroke group is assigned a from some real domain (an
integer number in the range of [1,M ]). The value ∈ NM∗1 for
all stroke groups is also obtained. Subsequently, the groups
are sorted according to the value to obtain the resulting
permutation. For each stroke, the assigned value should obey
a normal distribution.

A multi-normal case of exponential natural evolution
strategies (xNES) is now adopted to find the optimized
solution of Equation (2). The pseudocode for applying
xNES to solve our problem is shown in Algorithm 1
where I = diag(1, ..., 1) ∈ RM∗M and f(p) is the goal
of optimization. The xNES is updated by making use of
Adaptation Sampling (AS) in [5].

Initial solution and parameter setting. The xNES re-
quires two inputs to describe the initial solution: µinit
represents the initial mean vector of the multinomial
distribution and covariance factor A depicts the covariance
information. Although the influence of initialization does
not last long (i.e., even a bad initial solution can yield a
reasonable result after numerous iterations), we find that
using the result of the permutation of the stroke groups,
which is transformed from topological ordering as µinit,
leads to a rapid convergence of the iteration process. The
computation time for optimization is related to the number
of the stroke groups and ranges from a few seconds (14
strokes) to less than four minutes. The default parameters
are set in Table 1.

5.5 Dynamically drawing strokes
Stroke direction. Determining the direction of an individual
stroke is equivalent to judging which of the two outer skeletal

Algorithm 1 Exponential Natural Evolution Strategies(xNES)
Require: fitness function f(p) = c(p) + d(p, p∗), initial

solution µinit, covariance factor A
1: initial σ ←

√
| det(A)|, B ← A/σ

2: repeat
3: for k = 1...λ do
4: draw sample valuek ∼ N (0, I)
5: valuek ← µ+ σBT valuek
6: sort valuek and get the permutation pk

7: evaluate the fitness f(pk)
8: end for
9: sort {(valuek, pk)} with respect to f(pk)

10: Compute gradients ∇δJ,∇σJ,∇BJ
11: Update parameters µ, σ, B :
12: µ← µ+ ηµ · σB · ∇δJ
13: σ ← σ · exp (ησ/2 · ∇σJ)
14: B ← B · exp (ηB/2 · ∇BJ)

15: until stopping criterion is met

TABLE 1
Default parameters for xNES in Algorithm 1

Parameter Default Value
λ 2 ∗ (4 + b3 + log(M)c)
A I
ηµ 1
ησ

9+3log(M)

5M
√
M

ηB
3+3log(M)

5
√
M

points is the starting point. In accordance with the guidelines
in Section 4.3 (D1, and D2), the skeletal point preferred as
the first point is measured by the average ink wetness and
thickness of pixels nearby.

(a) Stroke direction (b) Connected domains

Fig. 9. Stroke direction and connected domains.

Animation. The last step is to dynamically display the
stroke sequence given the permutation of a set of strokes
and the direction of each stroke. Inspired by the flood filling
algorithm, we take the start point of an individual stroke
as the initial seed point. The process of reproducing the
stroke is treated as obtaining new seeds from the footprints
of the stroke. For thin strokes (scale of less than 30 before
being normalized), the eight-connected domain (see Fig. 9(b)
left) is used to probe the new seed. The twelve-connected
domain (see Fig. 9(b) right) is used for the remaining strokes.
The display speed can be controlled by adjusting the refresh
frequency. When drawing the stroke with a certain refresh
frequency, the speed is attenuated with the increment of
the stroke width. In our system, we use an ellipse-shaped
footprint model to improve the visual effect. By finding the
minimum bounding ellipse of the new footprints during
each refresh, we yield the results that are similar to those of
previous methods (see Fig. 10).
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Fig. 10. Dynamically drawing a stroke.

6 RESULTS AND DISCUSSION

We implement our system on a PC with 3.4 GHz Intel
Core i7 and 16 GB DDR3 memory. After all the strokes
are obtained, the calculation time of stroke ordering ranges
from 10 seconds to 4 minutes, depending on the number of
strokes in a painting.

6.1 Evaluation
Dataset. Traditional Chinese brush painting involves basic
imageries that are widely used to introduce painting
skills. Our painting image set (see Fig. 11 top), which
contains 19 input ink-wash paintings, overlays the following
imageries: landscape painting (Example 7), bird-and-flower
painting (Examples 2, 4, 5, 11, 13 and 15), insect-and-fish
painting(Examples 3 and 17), and some other imageries that
usually appear in the tutorial of Chinese brush paintings.
Some parts of the paintings were drawn by artists we
invited, and the rest are the masterpieces of the masters
such as Qi Baishi (http://www.chinaonlinemuseum.com/
painting-qi-baishi.php).

Experimental settings. For each painting, we invited six
artists with more than seven years of painting experience
to manually sort strokes A1-A6 though an online game (see
supplemental materials).

To evaluate the soundness and effectiveness of the
proposed guidelines, we apply a quantitative evaluation
by comparing our results with three ”weak orders” and
the order from the artists. Both the multi-stage structure
and guidelines are encoded into the energy equation as
consistency cost, variation cost, and regulation term. We
generate three weak orders for each painting by ignoring
one of the three parts in Equations (2), (3), and (6): W1 by
removing the consistency cost from the energy function, W2
by removing the variation cost, and W3 by removing the
regulation term.

We likewise conduct a user study to evaluate the
perceived quality of our solutions compared with alternative
strategies. We choose three baseline methods for comparison:
the topological ordering Topo (Section 5.3), the order
submitted to Fu et al.’s method [15] in which the branch-and-
bound B&B algorithm serves as the optimizer, and thickest-
ink-first ordering TFO which is used in Yang et al. [18]. To
use the mechanism by Fu et al. [15], who built a two-level
representation of a painting and optimize the order in each
level, we first split all strokes into two sets: zero-in-degree
strokes in the Hasse diagram are considered in the primary
level, whereas the others are considered in the detail level.
Then, we apply branch-and-bound search to each level to
find an optimized order of Equation (2). Fig. 12 shows the
reconstruction results of paintings 1, 4, 9, and 18 generated
by different methods. For consistency, the scheme of stroke
direction determination shown in Section 5.5 is used for all
methods when generating animation.

Experiment I. We evaluate the degree of consistency
between our results and the results of artists relative to that

of W1-W3 and the artist’. The rank correlation coefficient (see
Equation 6) is used to measure the consistency of two ordered
lists. As shown in Fig. 13, for each pair under comparsion, we
calculate Spearman’s ρ to measure the similarity between two
orders for each painting and show the average correlation
coefficients. Intuitively, the Spearman correlation between
two subjects(methods) will be high when observations have
a similar rank and low when observations have a dissimilar
rank. The results in Fig. 13 indicate the following:

• Although all artists are skilled in ink-wash painting,
their results are not absolutely consistent (none of
the average correlation coefficients equals 1). Nev-
ertheless, they are all significantly correlated. Such
observation confirms the main motivation throughout
our work: although the drawing process is individual
and involves personal preferences, artists generally
follow certain principles because of some conventions.
This condition guarantees that an order created by a
computer is sensible and usable in teaching Chinese
brush paintings.

• The average correlation coefficients between our
results and those of other artists are significantly cor-
related, and the coefficients show that our algorithm
can generate reasonable solutions that are consistent
with those for well-trained painters.

• The average correlation coefficients between the three
week orders and the artists are not significantly
correlated. This lack of correlation means that the
results generated without a multi-stage structure or
consistency/variation cost are not consistent with
those of other artists. Such observation implies that
the multi-stage structure and guidelines are necessary
for solving this problem.

The quantitative evaluation and statistics above suggest can
be made that the proposed approach can generate reasonable
results that are consistent with those of artists.

Experiment II. We evaluate the relative effectiveness of
our algorithm compared with three baseline methods: Topo,
B&B, and TFO. For each stimulus, we first ask a participant
to watch two anonymous animations, one is generated by our
method and the other is randomly picked from the results
of the three contrast methods. We then ask the participant to
choose the result that is more reasonable. Ten examples are
randomly picked from the image set for each participant. A
total of 63 participants (34 males, 29 females, age range of 20-
45) from different backgrounds, age groups and backgrounds
attended the comparison of 10 pairs of animations. Most of
the participants had been well trained in Chinese painting,
and some of them are reported to be artists. Each example is
evaluated by more than 30 participants on average, and our
algorithm is compared with each local method by more than
200 times. Table 2 shows the statistics. Each row shows the
competition between our method and the one indicated on
that row. The mean of the comparisons shows the average
times our method is compared with the other methods on
each image. The mean of wins indicates the number of times
(or percentage) our method wins the competitions for each
image. From the statistics, our method generally outperforms
all competitors. Fig. 11(a) shows the normalized votes for the
five methods. For paintings with low complexity and few
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Fig. 11. Experimental results. Left: normalized votes for our method and average of the three contrast methods in II. Right: mean DA for individual
orders made by the best local method, our method, and one of the artists in Experiment III.

Fig. 12. Screenshots after drawing the input paintings 1,4,9, and 18 with the same number of strokes using different methods. Our results are on the
lowest row.

TABLE 2
User study results II. The first column indicates the type of the local
method, and the second column shows the average number of our

method was compared with the other methods.

Lower Bound Upper Bound

ToPo 10.95 9.10(84%) 0.84 8.68 9.53

BB 11.05 8.94(80%) 0.92 8.49 9.41

TFO 11.16 10.10(90%) 0.46 9.87 10.34

Contrast

Methods

Mean of

Comparisons

Mean (%)of

wins
Std.dev

95% confidence interval

strokes (Example 9), the contrast methods also perform well.
The reason is that for those images, the differences among
the orders computed by different methods are not overly
significant.

Experiment III. In this experiment we evaluate our
method among other subjects to determine whether the
results retrieved by our method could be used in a tutorial
on Chinese brush painting. For each painting, we randomly
pick one result from the artists’ as reference and choose the
best performing local method as a contrasting method . The
participants were requested to rate the degree of accuracy
of an order on a discrete scale from 1 to 5, where 1 means

completely wrong and 5 means completely right. Fig. 11(b)
plots the mean and the corresponding standard deviation for
individual orders, based on the basis of the feedback from
40 participants with ages between 30 and 44 years(all with
artistic training) for each example. First, we test the inter-
rater reliability to verify the objectivity of the collected scores.
Kendall’s tau (τ ) coefficient is usually used to measure the
reliability coefficient when more than two raters are involved.
The results of τ = 0.681 and sig. = 5.44e−14 confirm that the
subjects have a general consensus with regard to the rating
of the degree of accuracy. Then, we perform a one-sample
t-test (test value=4) on the scores of our method to verify the
accuracy of our results. The results show that no significant
difference (p-values > 0.05) between the mean value of the
scores for our results and the value of 4, which in the range
of scores means “approximately correct”. A paired t-test on
the scores between our method and those by other artists
shows no significant difference (p-values > 0.05) between the
two sets of results for most of the models. The results proved
that our method has the ability to find a reasonable solution.
As expected, a paired t-test between our method and the best
local method shows significant difference between the two
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Fig. 13. Correlation among different rankings. For clarity, the results are
shown in two visual ways. The lower left part of the figure shows the
average values in percentage and the upper right part shows the values
in a fan chart.

methods for most of the models.

6.2 Applications

Education. In learning Chinese brush painting, one of the
most important parts is to understand the composition
process of a painting. Therefore, in a painting class students
often practice by following the teacher in drawing a painting
stroke by stroke. Our system boosts the possibility of creating
a large number of stroke sequences from various paintings
that might help to teach good ordering of strokes. We also
develop an interactive mobile application (APP.) to help
people understand the creation process of brush paintings
(see Fig. 14). The main interface of our APP. displays a
painting with all strokes initially set to gray. Then, the system
highlights the boundaries of the strokes one by one. The user
needs to slide across the current highlighted stroke to unlock
the next one. This APP. are useful in teaching kids some basic
knowledge of Chinese brush paintings in early education
before they can hold a brush for a long time to draw (which is
usually at an age of 7 to 8 years). The APP. is also interesting
for adults if they want to learn painting because the painting
process is always the most important part for understanding
such paintings.

Animation. Animation generally contains more infor-
mation than a static painting. By adding strokes one by
one in the determined order of our system, we can easily
produce animations that simulate the process of creation.
Vivid drawing animations can be produced by augmenting
animations with appropriate background music. Since
drawing speed attenuates with increasing stroke width [23],
we slow down the drawing speed slightly for such strokes
(see supplementary video).

We show the utility of our synthesized painting anima-
tions in two applications. Aside from using them for tutorial

videos for teaching painting skills, our animations can also
show multiple strokes at a time to generate different visual
effects in commercials. Please see the supplementary video
for examples of dynamic paintings. Another application is
for story telling (or video scribing) via painting animation
with additional narration. Previous video scribing works
were created using pen-and-ink style. With our technology,
this multimedia form can now be created in Chinese brush
painting style (see Fig. 15). Note that for a static scene, we
manually partition the individual components and assign
the component order with respect to the narration.

Painting from nature. To create their paintings, artists
often go to the wild to draw natural objects or scenes.
Utilizing an image stylization technology such as presented
by [27], we can convert real images into brush paintings
(see Fig. 16). We then use our system to produce an
animation to simulate the painting process from nature (see
supplementary video).

6.3 Limitations

Developing a general method to reconstruct the drawing
process of arbitrary Chinese brush painting is actually
difficult because of the many unconventional cases produced
by some special and complicated techniques. In some cases,
semantic information becomes crucial for getting a good
stroke order. For example, in flower paintings, artists often
like to draw petals first, and then leaves and other elements.
However, the lack of high-level information in the guidelines
may cause an unnatural drawing order in our results. The
main reason is that a global optimization strategy is used
to order the strokes, and this strategy only formulates low-
level, feature-based guidelines for the objective function. The
lack of integration of semantic information during stroke
ordering may separate some strokes that should be drawn
together. Although our framework works well for paintings
of small freehand style, it is still difficult to use to construct
the drawing process of large impressionistic ink landscapes
and other meticulous painting styles due to the difficulties
in stroke extraction. And the rules are not totally suitable for
handling the outline strokes.

In this work, we mainly focus on the ordering of
strokes during the whole process of drawing. This focus
is valid for computer-learning digital art analysis and for
painting education, artwork research, and development
of new art forms with computer. For the rest of the
parts of the drawing process, we adopt some efficient
and straightforward solutions. We build an ellipse-shaped
footprint model for animation rendering. Although this
method can generate compelling results, it does not take
the stroking force and drawing velocity into consideration.
During animation, the stroke directions are modeled roughly
by the two painting preferences. However, directions may
be distinctively different for different objects and may be
influenced by the convenience of the mechanical movement
toward the subjects wrists and fingers, as well as the visibility
of existing strokes. Hence, no universal principle exists for
the direction of strokes in Chinese brush paintings. No
complicated physical brushes and movement models are
built because they are beyond the main scope of this work.
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(a) Start of painting; highlighting of the first stroke (b) Painting process; highlighting the strokes one by one by following the creation order (c) Completion of painting; all strokes have been slided

Fig. 14. Our mobile APP intends to help people understand and learn the creation of Chinese brush paintings.

Fig. 15. Animation for vivid storytelling. See the accompanying video for
the narrated animation.

Photo PhotoPainting Painting

Fig. 16. Image stylization for painting process reconstruction.

7 CONCLUSION AND FUTURE WORK

We introduced the problem of the animated construction
of Chinese brush paintings, and summarized the key
principles of drawing order from art canons. We first
define a partially ordered relation over the set of painting
strokes and then construct a diagram structure to serve as
a multi-stage drawing order. After encoding corresponding
ordering guidelines into an energy function, we obtain an
optimal ordering using a natural evaluation strategy from a
topological sorting result of the Hasse diagram. We tested
our framework on a range of input paintings and evaluated
the results via some experiments. Lastly, we demonstrated
some potential applications, especially for making tutorial
videos.

In the future we will explore data-driven approaches
for learning specific drawing styles of artists, which can
be integrated as an additional attributes into our process
to construct personalized drawing sequences. Furthermore,
there are specific drawing principles for specific categories of
Chinese brush paintings (insects, flowers, birds, etc.), so we
will try to create more detailed guidelines to customize the
construction of a drawing process according to the content
of an input painting. Lastly, we want to develop a more
advanced stroke rendering method for dynamically showing
the rhythm of drawing.
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