
-generAItor: Tree-in-the-loop Text Generation for

Language Model Explainability and Adaptation

THILO SPINNER, ETH Zurich, Zurich, Switzerland

REBECCA KEHLBECK, University of Konstanz, Konstanz, Germany

RITA SEVASTJANOVA, ETH Zurich, Zurich, Switzerland

TOBIAS STÄHLE, University of Konstanz, Konstanz, Germany

DANIEL A. KEIM, University of Konstanz, Konstanz, Germany

OLIVER DEUSSEN, University of Konstanz, Konstanz, Germany

MENNATALLAH EL-ASSADY, ETH Zurich, Zurich, Switzerland

Large language models (LLMs) are widely deployed in various downstream tasks, e.g., auto-completion, aided

writing, or chat-based text generation. However, the considered output candidates of the underlying search

algorithm are under-explored and under-explained. We tackle this shortcoming by proposing a tree-in-the-

loop approach, where a visual representation of the beam search tree is the central component for analyzing,

explaining, and adapting the generated outputs. To support these tasks, we present generAItor, a visual an-

alytics technique, augmenting the central beam search tree with various task-specific widgets, providing

targeted visualizations and interaction possibilities. Our approach allows interactions on multiple levels and

offers an iterative pipeline that encompasses generating, exploring, and comparing output candidates, as well

as fine-tuning the model based on adapted data. Our case study shows that our tool generates new insights

in gender bias analysis beyond state-of-the-art template-based methods. Additionally, we demonstrate the

applicability of our approach in a qualitative user study. Finally, we quantitatively evaluate the adaptability

of the model to few samples, as occurring in text-generation use cases.

CCS Concepts: • Computing methodologies → Natural language generation; • Human-centered com-

puting → Graphical user interfaces; Visualization systems and tools; • Mathematics of computing

→ Exploratory data analysis;

Additional Key Words and Phrases: Large language models, beam search tree, natural language generation,

explainability, language transformers, visual analytics

ACM Reference Format:

Thilo Spinner, Rebecca Kehlbeck, Rita Sevastjanova, Tobias Stähle, Daniel A. Keim, Oliver Deussen,

and Mennatallah El-Assady. 2024. -generAItor: Tree-in-the-loop Text Generation for Language Model

Explainability and Adaptation. ACM Trans. Interact. Intell. Syst. 14, 2, Article 14 (June 2024), 32 pages.

https://doi.org/10.1145/3652028

Authors’ addresses: T. Spinner, R. Sevastjanova, and M. El-Assady, ETH Zurich, Zurich, Switzerland; e-mails:

thilo.spinner@inf.ethz.ch, rita.sevastjanova@inf.ethz.ch, menna.elassady@ai.ethz.ch; R. Kehlbeck, T. Stahle, D. A.

Keim, and O. Deussen, University of Konstanz, Konstanz, Germany; e-mails: rebecca.kehlbeck@uni-konstanz.de,

tobias.staehle@uni-konstanz.de, keim@uni-konstanz.de, oliver.deussen@uni-konstanz.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2160-6455/2024/06-ART14

https://doi.org/10.1145/3652028

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

https://orcid.org/0000-0002-1168-1804
https://orcid.org/0000-0002-0095-5865
https://orcid.org/0000-0002-2629-9579
https://orcid.org/0009-0001-5983-8807
https://orcid.org/0000-0001-7966-9740
https://orcid.org/0000-0001-5803-2185
https://orcid.org/0000-0001-8526-2613
https://doi.org/10.1145/3652028
mailto:permissions@acm.org
https://doi.org/10.1145/3652028
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652028&domain=pdf&date_stamp=2024-06-05

14:2 T. Spinner et al.

1 INTRODUCTION

Recently, large language models (LLMs) have gained increased popularity, especially in the field
of natural language generation (NLG). At the latest, with the introduction of ChatGPT,1 LLMs
have been made accessible to a wider, more general audience. However, despite their growing
recognition and notable accomplishments, they still face several limitations. Common failures,
even for state-of-the-art models, are repetitive content, the lack of factual accuracy, often referred
to as hallucination [Ji et al. 2023], and biases [Alba 2022]. However, the perceived high quality
of LLM outputs makes identifying errors in their predictions difficult, which is aggravated by
a lack of explainability and accessibility [Zhao et al. 2024]. Gaining understanding and access
to the model’s decision-making process is fundamental for recognizing errors in their outputs,
calming concerns about overestimating the model’s capabilities, and empowering users to guide
the model’s predictions to align with their intentions. Particularly, the chat interface of ChatGPT
and other chat- or completion-based approaches omit important information on uncertainties or
viable alternatives from the users. While text-based interfaces may fulfill the needs for a broad,
general audience, interested non-experts and linguistic experts require more in-depth insights
and control.

We identify three primary shortcomings in the current state-of-the-art for interacting with
LLMs: lack of explainability, comparability, and adaptability. Explainability refers to under-
standing of the model’s decision process, including the way a language model predicts its output,
its sampling strategy, and the probabilities of these outputs. For example, explanations of a pre-
diction’s certainty can provide the user a hint on possible hallucinations. Comparability, i.e., a
simple yet effective comparison of multiple generated outputs, can enable the user to assess more
specific nuances in the model’s predictions. This kind of contrastive explanation [El-Assady et al.
2019] is particularly relevant for linguistic experts. For instance, by adapting prompts with typ-
ical names from varying ethnic groups and comparing the predictions, the user can assess the
model’s biases, if present. And last, adaptability is relevant when the generated output is not sat-
isfactory. The insights gained from explainability and comparability empower the user to steer
the model towards their intentions. Concretely, the user should be able to edit problematic parts;
e.g., by correcting made-up facts and making these changes permanent; e.g., by fine-tuning the
model.

Since almost all modern LLMs have committed themselves to the transformer architecture, be-
sides their number of trainable parameters, the quality of the training data is the decisive factor for
a model’s performance [Lauscher et al. 2021; Mishra et al. 2022]. Therefore, studying the model’s
behavior is closely linked to studying its inputs and outputs, representing a local approximation of
the information the model has learned during training. Our proposed approach, thus, focuses on
making these inputs and outputs accessible and explorable to the user. A straightforward way to
achieve this is to make the search algorithm transparent. The most prominent algorithm to sample
sequences from the probability distributions output by the model is beam search. By sampling the
decision-space [El-Assady et al. 2018] through expanding the most promising sequence in a limited
set of candidate sequences, the algorithm results in a tree, scanning the search space for sequences
with high overall probability. Beam search is thus commonly used in language model explanation
methods, such as the visual interface by Lee et al. [2017], Seq2Seq-Vis [Strobelt et al. 2018], or
GenNI [Strobelt et al. 2022].

In this article, we propose a tree-in-the-loop interaction paradigm, which leverages a visual rep-
resentation of the beam search tree (BST) as the central component of the generAItor visual

1https://openai.com/blog/chatgpt

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

https://openai.com/blog/chatgpt

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:3

analytics technique. We reveal and explain the model’s decision-making process by laying out
the BST and augmenting it with additional explanations, such as token probabilities, semantic
keyword coloring, and sentiment annotations. Comparative explanations are facilitated by juxta-
posing multiple BSTs, allowing the user to compare the model’s predictions under slightly varied
inputs. Furthermore, we enable the user to interact with the tree, allowing them to adapt and
steer the model’s predictions, for example, by overriding model decisions, editing predicted se-
quences, or fine-tuning the model. To facilitate an effective analysis through visual interactive
methods, we identify five main tasks in the context of informed text generation: model prompt-
ing and configuration, tree exploration and explainability, guided text generation, comparative
analysis, and BST and model adaptation. Each of these tasks places distinct demands on the tools
available.

To be able to fulfill these demands in a combined approach, we design a modular, widget-based

workflow, where task-specific widgets enhance the BST with tailored controls, interaction possi-
bilities, and visualizations. Each widget adds a very specific functionality. However, in symbiosis,
a selected set of task-supporting widgets, in interaction with the search tree, enables novel, power-
ful modes of analysis; e.g., comparative analysis is facilitated by two particular widgets, allowing
linguistic experts to observe changes in the tree under slight variations of the starting prompt.
This reveals biases in the observed model, whose identification and mitigation is one of the most
burning issues with state-of-the-art language models [Alba 2022].
In this article, we contribute: (1) A detailed problem analysis of the challenges of explainabil-
ity, controllability, and adaptability in the context of various text generation tasks. (2) A novel
visual analytics technique called generAItor, tackling these challenges in an interactive tree-in-
the-loop-approach. (3) An implementation of the generAItor technique in a web-based visual an-
alytics workspace. (4) A three-fold evaluation of the generAItor technique, including (4.1) case
studies, showcasing the generative and comparative capabilities of our technique, (4.2) a qualita-
tive user-study, proving the usability of the implementation, and (4.3) a quantitative evaluation,
confirming the ability to adapt the model to user-preferences with few training samples.

2 RELATED WORK

In the following, we present our related work on language modeling, semantic similarity, con-
trolled text generation, and bias analysis.

2.1 Language Modeling

Language models (LMs) are probability distributions over word sequences and a core component
of natural language processing (NLP) systems [Bengio et al. 2000]. With the emergence of the
transformer architecture [Vaswani et al. 2017], there was a paradigm shift away from recurrent
neural networks [Rumelhart et al. 1986], since transformers allow parallel computations, speeding
up training times, and prove superior in capturing long-term dependencies [Vaswani et al. 2017].
They use the attention mechanism [Bahdanau et al. 2014], which directs the focus on important
tokens in the input sequence. Nowadays, numerous pre-trained transformer architectures are avail-
able for public use [Wolf et al. 2020]. There are different types of transformers, whereby the two
main categories are masked language models and generative language models.
Masked LMs — BERT [Devlin et al. 2018] is a transformer-based LM that was trained on masked
language modeling (i.e., cloze) and next-sentence prediction tasks and is commonly fine-tuned for
diverse text classification tasks [Howard and Ruder 2018]. Due to its pre-training objective, BERT
(as well as other masked language models) is not suitable for text generation tasks. We use BERT

for masked word prediction in the ontological replace functionality .

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

14:4 T. Spinner et al.

Generative LMs — Text can be generated using generative transformer models, such as GPT-
2 [Radford et al. 2019b], GPT-3 [Brown et al. 2020], or GPT-4 [OpenAI 2023]. These are autoregres-
sive models that were pre-trained on the causal language modeling task, learning to predict the
next word in the input sequence. For a broader overview, see the survey on pre-trained language
models for text generation by Li et al. [2021]. In our work, we use GPT-2 and Bloom [Scao et al.
2023] for text generation; however, the approach is designed to support other transformer-based
LMs as well.

2.2 Semantic Similarity

Word Taxonomies and Ontologies — Leveraging semantic graphs and knowledge bases, such as
YAGO and DBpedia, it is possible to infer concept or topic hierarchies via language models [Chen
et al. 2021; Huang et al. 2020; Zhang et al. 2018] or expand existing taxonomies [Jiang et al. 2022;
Xu et al. 2022]. Methods such as OntoEA [Xiang et al. 2021] align entities by jointly embedding
ontologies and knowledge bases. Taxonomies can be used to improve recommender systems [Tan
et al. 2022] and help with entity recognition [Li et al. 2022] or translation [Li et al. 2022]. WordNet
information can be integrated into pre-trained language models for improved sense disambigua-
tion, e.g., ARES [Scarlini et al. 2020], or used to build human-readable concept vectors [Conia
and Navigli 2020]. For our method, we use ARES and BERT embeddings in conjunction to create

domain-specific predictions with an ontology graph created from the BabelNet [Navigli and
Ponzetto 2012] semantic graph.
Embedding Similarity — In language models, each token of the input text is mapped to a high-
dimensional vector. Related work has shown that these context-dependent embeddings encode dif-
ferent context/language properties. Although BERT is the most widely analyzed language model
so far [Rogers et al. 2020], other transformer models, such as GPT-2, and their produced embed-
ding spaces have also attracted computational linguistics’ and visual analytics researchers’ atten-
tion [Ethayarajh 2019; Sevastjanova et al. 2022]. Prior research has shown that semantic informa-
tion, such as word senses and semantic roles, is captured best in the higher layers of transformer
models [Reif et al. 2019; Sevastjanova et al. 2022; Wiedemann et al. 2019]. Thus, these contextu-
alized embeddings are commonly used as features for semantic similarity tasks. In our work, we
apply a dimensionality reduction technique on embeddings extracted from the used LMs to map
the tokens to unique colors based on their coordinates in the two-dimensional space. With this
approach, tokens with a semantic similarity get assigned to similar colors [El-Assady et al. 2022].

2.3 Controlled Text Generation

Algorithmic Approaches — In general, controlling the style and information of natural lan-
guage generation is one of the applications identified by Gatt and Krahmer [2018]. One challenge
of integrating knowledge into text generation is the automatic steering of the generation in a
particular direction. Using plug-and-play language models is one possibility to steer text genera-
tion [Qin et al. 2020]. Concerning pre-trained language models, it is possible to control, e.g., the
sentiment [Dathathri et al. 2019; Hu et al. 2017], keywords [He 2021], or the topic [Dathathri et al.
2019]. Frameworks such as FAIR [Hua and Wang 2020] allow the generation of content-controlled
text by combining BERT with BART [Lewis et al. 2020]. A larger overview is given in the survey
by Zhang et al. [2022]. Building on this, many approaches now integrate external resources such
as knowledge bases. More details can be found in the survey by Yu et al. [2022]. However, these
techniques do not allow immediate intervention in the decision process, which we specifically
target with our approach.

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:5

Visual Interactive Approaches — Focusing on interactive editing, Du et al. [2022] provide in-
teractive suggestions in their tool to achieve high-quality text edits with minimal human effort.
Padmakumar and He [2022] use a human-in-the-loop approach to replace text segments for the
task of creative image captioning. Gehrmann et al. [2019] propose an interactive framework that
allows users to control generative segments through a process called collaborative semantic in-
ference. Following this, Strobelt et al. [2022] create GenNi, an interface for collaborative text gen-
eration. They guide the model output using explicitly defined constraints. The user has to know
beforehand how he wants to control the model output, as it is not possible to adapt the state during
inference. With Wordcraft, Yuan et al. [2022] present an interactive interface that allows writers
to create stories with the assistance of large language models. Their system lets authors re-write,
replace, and auto-generate text, as well as define custom requests to the language model. In con-
trast, our approach enables direct interaction with the model’s outputs by exposing predictions
and probabilities in the beam search tree.

2.4 Bias Analysis

Current research explores not only what the models learn but also when they fail and which
limitations they have, such as different types of biases [Garrido-Muñoz et al. 2021]. For instance,
Blodgett et al. [2020] present a taxonomy for fairness definitions that machine learning researchers
have defined to avoid existing bias in AI systems. Mehrabi et al. [2021] define the bias problem
specifically in language modeling tasks in a formal way and explore how it has been treated in
related work regarding their detection and correction.

In masked language models, the detection of bias is typically done by applying templates or pre-
defined word lists. For instance, the Word Embedding Association Test (WEAT) [Caliskan et al.
2017] measures the association between two target word sets (e.g., male pronouns and, e.g., female
pronouns) based on their cosine similarity to words from two attribute sets (e.g., terms related to
science or art) to make conclusions about encoded biases. Liang et al. [2021] show that the analysis
of biases in text generation can be more nuanced, e.g., biases can arise during the generation of any
token [Nadeem et al. 2021]. Alnegheimish et al. [2022] find that bias “evaluations are very sensitive
to the design choices of template prompts.” According to the authors, the use of template-based
prompts tends to evoke biases from the model’s default behavior rather than reflecting the actual
correlation between gender and profession, analyzed in their work. Thus, we propose a tree-based
approach for comparative, exploratory bias analysis, allowing the detection of biases in variable-
length sequences and the identification of subtle nuances in the model’s predictions. For a detailed
case study, showcasing the benefits of our comparative approach, see Section 6.1.

3 PROBLEM CHARACTERIZATION

With recent advances in language generation and the release of ChatGPT, language models have
made their way into mainstream use. While automatic text generation through language models
can support the author through corrections, suggestions, or chat-based question answering, un-
derstanding of the model’s capabilities and limitations and access to its predictions is still limited.
However, such understanding and access are crucial for raising awareness of dangers (e.g., biased
outputs, hallucinations), allaying fears of its potential (e.g., overestimation of a model’s capabili-
ties), and enabling users to steer the model’s predictions towards their intention (e.g., by selecting
or modifying outputs).

While the average user might not be willing to invest time and effort in investigating the be-
havior of language models, we identify two primary user groups with different interests and re-
quirements for language model analysis. We define non-experts as interest-driven persons
with an affinity for technical advancements and the wish to explore modern language models.

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

14:6 T. Spinner et al.

The term “non-expert” only refers to the user’s experiences with large language models and their
background in computational linguistics; they can still be domain experts in other fields. Examples
could be a journalist who writes about language models and wants to understand their capabilities
and limitations or a writer who wants to use LLMs to generate text with a specific style or topic.
Analogously, we define linguistic experts as users working in (computational) linguistics, with
a main focus on the analysis of model behavior. An example could be a linguist who wants to ob-
serve biases encoded in the model [Spinner et al. 2023]. Our approach is targeted towards both user
groups, with shifting focus on the tasks our system supports. For the non-experts, understanding
of the model’s capabilities, exploration of outputs, investigation of uncertainties, and the ability to
adapt model outputs are primarily important. In contrast, the linguistic expert is interested in the
close analysis of model outputs, e.g., to observe learned syntactic and semantic structures, identify
model defects, or assess model biases. In the following, we specify the challenges and tasks for the
derived user groups.

3.1 Challenges

The challenges are derived from research gaps in related work and from discussions with non-
experts , machine learning experts, and computational linguists .
Explainability — Despite the impressive performance of state-of-the-art language models,
their predictions are often underexplained, as deep-learning-based models are typically black
boxes, making explainability a major challenge [Danilevsky et al. 2020]. However, language mod-
els have the advantage of interpretable inputs and outputs (namely: text) and easy-to-understand
prediction mechanisms, which we aim to leverage to solve this challenge. We identify two primary
aspects of explainability regarding language models: model and output explainability. Explainabil-
ity is important for both the non-expert and the linguistic expert .

Model explainability relates to explanations of the model’s algorithmic approach, such as provid-
ing information on the model’s architecture, the used search algorithm, or the influence of random-
ness (cf., reproducibility) [Spinner et al. 2020]. Particularly, mainstream media often fail to explain
the primary mechanism behind LLMs: predicting the likelihood of tokens to follow a sequence
of previous tokens. Although some articles briefly touch the topic [Metz 2022; Roose 2023], there
is much misinformation through excessive abstraction and a lack of easy-to-follow visualizations
and interactive systems that could impart a thorough understanding to non-experts. Understand-
ing this mechanism is crucial to raising awareness of a model’s limitations and allaying fears of
its potential. Output explainability refers to explanations of the model’s token representations and
output probabilities, such as token embedding similarity or output certainty.
Comparability — The ability to explore the space of possible model outputs is vast and cur-
rently underexplored [Alnegheimish et al. 2022]. For the analysis, instance-based comparability of
generated outputs is essential for linguistics, e.g., for bias analysis or hypothesis generation. Par-
ticularly, non-template based, explorative analysis enables hypotheses generation and inductive
learning [Sternberg and Sternberg 2016].

Adaptability — Even state-of-the-art language models often fail to produce output that
aligns with human intentions and sticks to facts [Ji et al. 2023; LeCun 2023]. Therefore, adaptability
is essential to employ language models in real-world scenarios. Again, we differentiate two sub-
aspects: output adaptability and model adaptability. Output adaptation refers to direct edits of
the model’s predictions, e.g., to correct hallucinated facts, re-prime the model through entering
custom text, or select from alternative outputs, targeting both the non-expert and linguistic
expert . That followed, model adaptation relates to model fine-tuning with the edited data to
make changes permanent for future sessions, which is also relevant for both user groups.

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:7

3.2 The Tree-in-the-loop Approach

To address the challenges identified above, we propose the tree-in-the-loop paradigm, a novel ap-
proach to interactively explore and adapt the predictions of language models through the visual-
ization of the beam search tree.

With the invention of transformers, the architecture of state-of-the-art models is well estab-
lished, shifting the focus for performance improvements on the training process and the quality
of training data [Ouyang et al. 2022]. Consequently, understanding a model’s behavior involves
examining its inputs and outputs, which reflect the “knowledge” it has acquired during training.
Therefore, our approach emphasizes making these inputs and outputs more user-accessible and
explorable.

In each step, when predicting the next token for a given input sequence, the model outputs a
probability distribution over all known tokens. The final text has to be constructed by sampling
from this probability distribution. A common heuristic to choose the output with the highest prob-
ability is beam search. Beam search is a greedy search algorithm that expands the k most likely
sequences in each step, resulting in a tree with k nodes in each tree level. k is called the beam
width. Branches with low overall probability stall in this process, resulting in a tree with varying
depth. The deepest leaf node with the highest probability is then chosen as the final output. Often,
additional parameters are used to increase the diversity of the generated text, e.g., by penalizing
the repetition of n-grams or by adding randomness to the sampling process, e.g., through top-k
sampling or temperature scaling.

Most interfaces only present the user with the final text, discarding all information about the
sampling process, such as uncertainties of predictions, alternative outputs, or the influence of pa-
rameters such as the beam width or an n-gram penalty. To enable an understanding of the model’s
prediction process, we aim to make this information accessible to the user. This is most straight-
forwardly done by visualizing the beam search tree, which is easy to understand and interact with.
Furthermore, it provides a direct representation of the underlying sampling algorithm and thus
does neither neglect information nor introduce false rationalization.

The tree-in-the-loop approach is the extension of the beam search tree with additional aug-
mentations, visualizations, and interaction possibilities. This makes the tree accessible to non-
technical users and supports linguistic experts in the advanced analysis of linguistic
phenomena.

3.3 User Tasks

From the before-discussed challenges of explainability, adaptability, and comparability, we derive
the following user tasks, as depicted in Figure 1. While some tasks are essential to load and interact
with LLMs, others are optional and only relevant for specific use cases.
Model Prompting and Configuration — To choose and assess models from the large variety of
pre-trained LLMs [Wolf et al. 2020], the user has to be able to load different models. Furthermore,
the user should be able to provide a prompt to the model and configure parameters for the pre-
diction algorithm. After interactively editing outputs and, potentially, fine-tuning the model, the
user should be able to save the refined sequences and model for future sessions. Since these tasks
describe basic interactions with the model, they are equally important for the linguistic expert

and the non-technical user .

Tree Exploration & Explainability — The beam search tree, used to sample model outputs,
should be transparent and accessible to the user, allowing them to explore alternatives and assess

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

14:8 T. Spinner et al.

Fig. 1. The five main tasks of interactive text generation as supported by generAItor (see Section 3.3). The
beam search tree is the key element (see Section 4), facilitating visualization and interaction with the model’s
decisions. Each task has a set of widgets associated (see Section 5), providing task-specific visualizations, con-
trols, and interaction possibilities. Following our proposed tree-in-the-loop paradigm, the tasks are interwoven
and can be combined in an iterative process, centered around the beam search tree.

the certainty of the model’s predictions, addressing the explainability challenge . Supporting
beam search exploration, semantic annotations of the tree should be provided, e.g., to identify topic
similarity or to discover undesired patterns like looping structures. This is important for both the
non-expert and for the linguistic expert , who are interested in the close analysis of
model outputs and need a higher-level overview to cover large trees.

Guided Text Generation — Using the start prompt or existing sequences from the tree, the user
should be able to query the LLM to extend the beam search tree with new predictions. Since the
beam search tree might grow to a significant size, a text view should be provided to close-read
generated text and navigate the beam search tree to a local context. Also, for longer texts, an
overview of the topics touched facilitates an overview and understanding of the generated text.
This task mainly targets the non-expert , who is likely to generate longer texts.

Comparative Analysis — Comparative analysis tackles the comparability challenge and is
particularly important for the linguistic expert , who is interested in the close analysis of model
outputs. Different trees can be generated and compared by varying start prompt and beam search
parameters, allowing to assess the effects of those changes. Semantic annotations and aggregated
representations should be provided to quickly identify the key differences between trees. This
facilitates, e.g., generating new hypotheses, analyzing model biases, or investigating the influence
of function words on the predictions.

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:9

Fig. 2. The beam search tree visualization. Edge width and label encode the probability of a node to follow
its predecessor. The leaf node of the beam with the highest overall probability is marked as Head. Keywords
are highlighted using semantic colors. The branch color encodes the sentiment of the sequence up to a node.

BST Adjustment & Model Adaptation — Enabling adaptation to domain and personal user
preferences, it should be possible to edit the generated text. This can either happen by direct
text edits, choosing from a set of alternatives, or pruning unwanted branches of the beam search
tree. After editing the tree, the user should be able to fine-tune the model with the edited se-
quences to align future predictions with the user’s preferences. Both addresses the adaptability

challenge . This task is important for non-experts who need domain adaptation or
for linguistic experts who want to observe the influence of such adaptation on the LLMs’
predictions.

4 TREE VISUALIZATION & MODEL CONFIGURATION

The beam search tree is central to our generAItor technique, therefore being the main component
visible throughout the analysis. In this section, we describe the visual representation of the tree,
how it is augmented with information, how the user navigates the tree to a local context and
extends the tree with new predictions, and how the interaction with tree nodes is implemented. By
augmenting the tree with task-specific widgets , we provide tailored controls, visualizations,
and interactions, supporting model prompting and configuration and tree exploration and
explainability .

4.1 Beam Search Tree

Our technique is based on a visual representation of the beam search tree as the key analysis com-
ponent, establishing the tree-in-the-loop approach. It is used to sample the final output sequence
from the token probabilities in each prediction step. In the tree visualization, nodes encode se-
quences and edges their order, as depicted in Figure 2. The tree is laid out from left to right, starting
either with the initial prompt used during tree creation or an arbitrary tree node that is set by the
user when only a subtree should be inspected. Edge width and -label encode the nodes’ probabil-
ity of following its predecessor. We mark the leaf node of the beam with the highest probability
as Head node, which, when not configured otherwise, is the one defining the final text output.
When rendering the text associated with the tree nodes, we replace invisible or control characters
with visible proxies, e.g., white spaces with and newlines with . The tree visualization imparts
the uncertainty of tokens and sequences and lets the user explore next-likely alternatives in the
form of stalled branches .

To extend the tree, the user can either trigger a beam search run from the Head node or start
auto-prediction, which iteratively extends the tree at the Head node until stopped.
Loop Detection — We automatically detect repeating node sequences in the tree and denote them
with a dotted edge, as shown in Figure 2. This allows the user to quickly identify repeating patterns,

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

14:10 T. Spinner et al.

which are often unwanted model defects, telling linguistic experts about the model’s limitations
or probably miss-chosen search parameters [von Platen 2020].
Keyword Highlights — We extract and highlight keywords from the sequences in the tree, allow-
ing users to intuitively distinguish less-important nodes, e.g., stop words, from meaningful nodes,
e.g., proper nouns . As shown in Figure 2, we color the keyword nodes in the tree visualization
according to their semantic embeddings [El-Assady et al. 2022], enabling a quick impression of the
semantic similarity between the concepts present in the tree. Furthermore, it allows identifying
concept drift by revealing changing concepts as color shifts in the tree visualization.
Sentiment Highlights — Facilitating visual perception of the sentiment of tree branches, we color
the edges in the tree visualization according to the sentiment of the sequence up to the edge’s target
node, as shown in Figure 2. The sentiment is estimated by applying a three-class RoBERTa-based
sentiment classifier, which was trained on social media posts [Hartmann et al. 2021].

4.2 Model Prompting and Configuration

Tree Creation and Selection — The tree selection panel (in Figure 4) allows loading
existing trees into the workspace and creating new ones. When creating a new tree, the user is
prompted for a starting sequence, which is used as the initial input sequence passed to the model.
The starting sequence also forms the root node of the tree.

Prediction Parameters — The prediction parameters panel (in Figure 4) allows the user
to specify the parameters used when executing a beam search step. The parameter “top-k” spec-
ifies the number of samples drawn in each beam search iteration, either by selecting the k most
probable tokens or—if temperature is enabled—by sampling from the model’s output distribution.
The length of the beam search can be specified by the parameter “next n words.” Finally, the pa-
rameter “temperature” allows controlling the randomness of the model’s output distribution. A
temperature value of zero disables temperature and selects the top-k most probable tokens in each
beam search iteration.
Model Snapshots and Tracking — The model tracking panel allows the user to load
different pre-trained models, e.g., from HuggingFace [Wolf et al. 2020].
Out of the box, generAItor provides access to GPT-2 Base, GPT-2
Large [Radford et al. 2019a], and Bloom [Scao et al. 2023], but other,
transformer-based models can easily be added. More specifically, our
approach is model (transformer) agnostic; only the embedding projec-

tion (cf.,) has to be re-computed for new model variants. Besides
loading pre-trained models, the model tracking panel also allows the
user to create snapshots of adapted models . By creating a snapshot
of the current model state, the user can easily restore this state later,
e.g., if the model was fine-tuned to a point where it no longer generates meaningful outputs.

4.3 Tree Exploration and Explainability

Tree Style Toggles — The beam search tree is augmented with color information and can
be visualized in different levels of detail. Particularly, the edges can be
colored by sequence sentiment, the nodes’ fill color can be set based on
their semantic embedding color, the nodes’ stroke can be set to represent

their token probability, and word lists (see) can be colored by a cate-
gorical color scale. Furthermore, the tree’s level of detail can be switched
between Full, showing all node texts and using full node spacings; Collapsed, hiding all node texts

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:11

and only showing the tree’s structure with minimal spacings; and Semi-Collapsed, only showing
the node text for nodes occurring in active word lists (see Figure 6).

2D Embedding Map — The 2D embedding map (in Figure 4) shows an image of
the currently selected two-dimensional semantic color map [El-Assady et al. 2022], used to

color the keywords in the tree visualization. By overlaying the color
map image with the keywords, we enable users to explore how the
keywords are distributed in the high-dimensional space. The posi-
tion of keywords on the colormap is computed by a two-dimensional
UMAP [McInnes et al. 2018] projection, which we priorly anchored
on the keywords extracted from 150k sentence pairs in the MultiNLI
dataset [Williams et al. 2018]. This allows the detection of semantic
similarity between keywords and the identification of the major con-
cepts present in the tree. By hovering a beam search branch, the user

can filter the keywords visible on the embedding map to only show the keywords of the hovered
branch. Furthermore, hovering renders a path connecting the keywords according to their occur-
rence in the branch. This sequence projection builds intuitive pictures of the sequence, allowing to
compare sentence structures and the mentioned concepts. Different two-dimensional color maps
can be chosen in a dropdown menu in the 2D embedding map panel. The side figure shows the
beam sequence “The movie was shot in New York City” on the “Teuling 2” color map [Teuling
et al. 2010].

5 TEXT GENERATION, COMPARISON, & MODEL ADAPTATION

Besides the default widgets to configure models, specify parameters, prompt the model, and explain
the beam search tree, we provide additional widgets that are tailored to a specific task mode. We
distinguish between two main modes: controlled text generation (Section 5.1) and comparative
analysis (Section 5.2). Each mode has a dedicated set of widgets enabled by default. They enhance
existing functionalities with additional on-demand information, allow additional interactions, or
enable specific modes of analysis. The widgets are designed as modular components that can be
enabled/disabled and moved around the workspace to support the user’s workflow.

5.1 Text Generation and BST Adaptation

Guided text generation provides tools to support the user in the informed generation of text, partic-
ularly to close-read generated text, navigate the beam search tree, and select desired sequences. Fur-
thermore, it provides content summarization in the form of an ontology Voronoi treemap, which
can be used to detect concepts in the produced text and to identify semantic differences across
nodes with the same keywords.

5.1.1 Widgets Supporting Guided Text Generation. Text View — While the
beam search tree visualization supports understanding, exploration, and interaction on
a highly detailed level, it is hard to read the final output text from only observing
beams and nodes. Therefore, a text output panel displays the
full sequence of the main branch, which in turn is highlighted
in gray in the tree visualization. To retain the membership of
each node and its corresponding embedding and keyword infor-
mation, the node sequences are slightly spaced in the text view and underlined with their keyword
embedding color. The more compressed representation in the text view, together with the ability
to overflow the text container using scrollbars, allows to always display the full text starting at the
root node. We use this advantage of the text view to allow tree filtering: By opening the context

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

14:12 T. Spinner et al.

menu on a text node, the node can be set as start node (). This filters the displayed beam search
tree to the descendants of the selected node, allowing local exploration and preventing information
overload on large trees. In return, leaf nodes can be set as end node () in case a branch different
from the one with the highest beam probability contains the preferred output text. A copy button
facilitates copying the generated output text to the clipboard.

Node Context Menu — The nodes in the beam search tree offer a feature-rich context
menu, shown in the middle-right of Figure 1. In the following, we describe the functionality of the
context menu entries that are not covered by their respective workspace subsection.

Edit / Remove. The edit entry allows altering the text of the selected node manually.
When selecting it, the node changes into an input field, where the user can manually enter
the desired text. After finishing the edit, the node changes back into normal mode, and the
node is updated in the beam search tree, including its keyword information and embeddings.
The remove entry allows removing the selected node and all its descendants from the tree.
Predict. Alternative to predicting at the current Head node, the user can also predict from
any node in the tree by selecting the predict entry from the context menu. The parameters are
specified in the prediction parameters panel.
Ontological Replace. Based on information extracted from an underlying ontology graph
and the usage of a masked language model, the ontological replace entry provides alternative
suggestions to replace the selected node with.
Re-train to Here. The re-train to here entry allows fine-tuning the model with the beam se-

quence up to the selected node, addressing task . Without further user input, fine-tuning
is executed instantly in the background when the button is clicked, abstracting the underlying
complex process and maximizing simplicity for the user.

Ontology Voronoi Treemap — Through an underlying ontology graph, we provide a
Voronoi treemap visualization to support the user in getting an overview of the concepts closely

linked to the keywords present in the tree. The extracted keywords from
the beam search tree are attached to nodes in the ontology hierarchy of
BabelNet [Navigli and Ponzetto 2012]. We grow a subsumption hierarchy
from these keywords, whose nodes become more and more general. Finally,
nodes are connected to their respective subdomains and domains (e.g., dog
→ Animal → BIOLOGY). Although the whole ontology graph allows an
in-depth view of the subsumption hierarchy, the readability of the graph
worsens as the number of leaf nodes increases. Instead, we utilize a Voronoi
treemap visualization, allowing the user to view the hierarchy in four pre-
defined layers: domains, subdomains, synsets, and keyword instances. Do-
mains and subdomains provide an overview of the concepts in the beam

search tree. Synsets aggregate similar keywords. The keyword instance layer shows all keywords.
Keywords can appear multiple times in this layer, as one keyword can appear at different positions
in the beam search tree. Because the surrounding context of a keyword differs for each node, their
embeddings differ, resulting in different colors, e.g., the keyword “walk.” To allow the user to in-
vestigate this further, hovering over a cell of the Voronoi treemap highlights the respective nodes
in the beam search tree, enabling them to inspect the keywords in their context.

Ontological Replace — Using our tool, text generated by the model can be adapted to the
user’s preferences by selecting branches or editing model outputs. However, sometimes, the pre-
dictions from the model are not what the user has in mind. We offer an alternative way of adapting
the model tree using domain-specific, context-sensitive alternatives. If the user is unsure about a
suitable replacement word and requires guidance, then he can use the ontological replace function.

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:13

Fig. 3. Text generation workflow as described in Section 5.1.2. (1) After creating a new tree and predicting
with the set parameters, the model runs into a loop. By choosing a different branch, this issue can be
resolved. (2) By manually editing nodes, factual knowledge can be incorporated into the text. (3) The
ontology tree gives an overview of concepts connected to the generated text. (4) Ontological replacements
suggest alternatives.

With the information currently in the ontology graph, it
is possible to generate predictions for a specific node and
group them by domain. These domain predictions can be
from the current domains in the beam search tree, or the
user can manually add domains from a predetermined se-
lection. The domains and their respective suggestions are
words that the language model might not have suggested
in its top-k prediction, making it an intermediate mode
between manual editing and automatic prediction of the
model, even allowing out-of-distribution suggestions. Extensive implementation details, includ-
ing figures of the underlying NLP pipelines, can be found in Appendix A.

5.1.2 Workflow Demonstration: Text Generation. The following exemplary workflow showcases
how our approach is used to generate and adapt text. To demonstrate, we utilize GPT-2 Base2 [Rad-
ford et al. 2019a] as the language model. Note that the sequences presented in this example do
not represent the quality of SOTA language models. Nevertheless, GPT-2 Base is well suited to
showcase larger models’ deficiencies (e.g., repetitions, hallucination) in brief examples. Since our
approach is model-agnostic, other LMs can be loaded instead.

A newspaper author wants to write a short but informative article on the United States of Amer-
ica (USA). As a basis, he uses a fact sheet containing information on population, geography, and so
on, of the USA. In the generAItor workspace, he creates and loads a new tree () with the starting
sequence “The United States of America” (Figure 3(1)). After setting the beam search parameters ()
to k = 3 and n = 10, he starts predicting at the head node. After two beam steps, the branch with
the highest probability gets stuck in a loop: “The United States of America is a nation of immigrants,
of immigrants, of immigrants, of immigrants.” However, by manually selecting () the second-best
scoring branch, he can steer the output to be more intelligible: “The United States of America is a
nation of immigrants, of immigrants from all over the globe.” Accepting this output as the starting
sequence, he hides earlier parts of the tree () and executes further prediction steps (). At points
where the model is stuck or factual information should be integrated into the article, he uses man-
ual node edits () to set a new baseline or enter numbers from the fact sheet (Figure 3(2)); e.g., he

2https://huggingface.co/gpt2

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

https://huggingface.co/gpt2

14:14 T. Spinner et al.

changes the hallucinated prediction “With more than 1.5 million people” to “With more than 331

million people and a GDP of 25.035 trillion USD,” leading to the prediction “. . . , America is the
largest economy in the world.” By repeating this process, the author compiles a diverting article.
Observing the ontology Voronoi treemap (), he can check on the major concepts covered by his
article, which after a while include Society, Politics, Places, and Feelings, leaving him satisfied
with the diversity of his text (Figure 3(3)). After a while, the model again predicts “The USA is a
nation of immigrants.” The author decides to use the ontological replace function (), which sug-
gests multiple domains, including “Person,” “Society,” and “Politics” (Figure 3(4)). From the political
domain, various replacements sound promising. The author chooses the suggestion “democracy.”
He concludes the article with: “The USA is a nation of democracy.” The author is satisfied with the
result and decides to re-train the model to the tree’s current state (). This way, the model can be
adapted to the author’s writing style and domain-specific vocabulary, helping to generate more
coherent text in the future.

5.2 Comparative Analysis

The user can enter the comparative analysis by inserting a placeholder string into a tree’s input
prompt. It automatically replaces the placeholder with user-selected string instances and creates
a new tree for each instance, displayed as alternatives in the workspace. The comparative mode
allows for assessing nuances in the model’s predictions based on input variations, e.g., for bias
detection. The case study on comparative analysis in Section 6.1 gives several examples on how
the comparative mode can be used to generate different hypotheses and evaluate biases in model
predictions.

5.2.1 Widgets Supporting Comparative Analysis. Template Node & Multi-Tree — The
comparative mode is entered by creating a tree with the placeholder <PH> in the starting sequence,
facilitating comparison over trees with slightly varying starting sequences. When loading such a
tree into the workspace, the template sequence is shown as the base node (1.a in Figure 4). The user
can now create a list of replacements for the placeholder (1.b in Figure 4). For each replacement, a
new tree is instantiated, and beam search is executed using the prediction parameters configured
by the user. To ensure determinism, temperature sampling is disabled in comparative mode. The
instances are displayed vertically stacked, with the replacement highlighted in the root node of
each tree (1.c in Figure 4).

Domain-specific Word Lists — The user can select domain-specific word lists to enable
targeted comparison between the tree instances (2.a in Figure 4). Tree nodes containing a word
from the selected word lists are highlighted in the tree with a badge, denoting its associated list (2.b
in Figure 4). This makes it easy to spot differences and commonalities between the trees, e.g., to de-
tect gender bias between male and female person names (for exhaustive examples, see Section 6.1).
The user can either choose from a set of pre-defined word lists from different domains [Deep NLP
2023], covering typical bias analysis tasks, such as Male/Female Occupations, Appearance, and
Negative/Positive Characteristics, or upload their own word lists.

For keyword-based analysis in trees of increasing size, we include a semi-collapsed tree view,

activatable in the tree style toggles and shown in Figure 6. It only expands the nodes match-
ing to at least one of the selected word lists, preserving the tree structure and allowing to easily
compare across word domains.

UpSet Plot — Visual comparison between tree instances is facilitated by the domain-specific
word lists, semantic embeddings, and the possibility to semi-collapse the tree. However, if high val-
ues for the prediction parameters k and n are chosen, then the tree can grow large. Therefore, we

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:15

Fig. 4. The generAItor workspace in comparative analysis mode with the associated widgets opened. The
tree visualization as the central element shows alternative beam search results under different replacements
of the <PH> node. Words occurring in one of the selected word lists are highlighted in the tree. The Upset plot
shows the overlap of the selected word lists in the alternative trees. The edges of the tree are colored based
on sentiment analysis, with red indicating negative sentiment and green indicating positive sentiment.

offer an alternative summarization view of the relations between occurrences of words from the
word lists and the template replacements. We use UpSet [Lex et al. 2014] plots for this, a visu-
alization technique showing overlaps between set-typed data (2.c in Figure 4). Particularly, we
visually highlight which tree instances have overlapping words and, in consequence, also overlap-
ping word lists. Each row represents one set, in our case, one tree instance. Tree instances that
have the same overlap are shown as one column in the UpSet plot, with gray connected nodes.
This column is one set intersection, and the nodes that participate in this intersection are shown
as a joined list. Underneath the UpSet plot, we show the currently selected word lists that are part
of the set intersection and list the specific words that appear in the tree along with the overall
count of these words. This allows users to get a quick overview of which tree instances have sim-
ilar predicted words grouped by their word lists; e.g., the user can investigate the prediction tree
of female names containing female-connoted occupations vs. the prediction tree of male names
containing male-connoted occupations.

5.2.2 Workflow Demonstration: Comparative Analysis. The following exemplary workflow
showcases how our workspace supports comparative analysis:

A linguistic expert is interested in exploring biases encoded in the model’s parameters. He thus
creates a prompt “<PH> is great. One could even say that” as shown in Figure 4. The placeholder

<PH> includes words such as John, Jayden, and Jessica. The beam search tree represents
the top two predictions for each starting sequence. The expert then selects multiple word lists to
highlight the occurrences of words related to appearance, person names, and occupations. These
get marked in the tree visualization through icons attached to the particular tree nodes. The UpSet
plot summarizes the word occurrences showing that the female person name Jessica is related to
the appearance word beautiful; the two male person names are mentioned as players of sports
games (i.e., player, quarterback), confirming the stereotypical gender biases encoded in the lan-
guage model [Lu et al. 2020]. The case study in Section 6.1 describes more details on the workflow.

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

14:16 T. Spinner et al.

5.3 Model Adaptation

After adapting the beam search tree as part of tasks and or after identifying desired se-
quences as part of tasks and , the user might want to feed those changes back and fine-tune
the model, accordingly. This can be done by executing the re-train to here () functionality from

the node context menu . This triggers a fine-tuning step of the model in the backend, using
the beam sequence up to the selected node as input. The current model state can be saved at any

time using the model snapshots and tracking widget , enabling the user to restore fine-tuned
models from previous sessions or discard potentially overfitted models by returning to an earlier
state.

Section 6.3 provides an extensive evaluation of the fine-tuning functionality. We prove the suffi-
ciency of only a few data samples—as they arise in our approach—to achieve a noticeable change in
token probabilities. Also, we show that over repeated fine-tuning with different sequences during
the analysis session, domain adaptation is achieved.

6 EVALUATION

This section provides a three-fold evaluation of our approach. Starting with a case study on com-
parative analysis in Section 6.1, we showcase how our tool is used to gain in-depth linguistic
insights on biases encoded in the model. It shows how our tree-in-the-loop technique goes be-
yond the template-based state-of-the-art in bias analysis. In Section 6.2, we provide two qualita-
tive user studies with six non-experts and four computational linguists , showcasing the
usability of our tool for guided text generation and comparative linguistic analyses , respec-
tively. Finally, Section 6.3 presents a detailed evaluation of the ability to fine-tune LLMs using
the relatively small sample size of training data arising in our approach, showing that domain
adaptation indeed is possible in the described scenarios. Moreover, in our work “Revealing the
Unwritten” [Spinner et al. 2023], we present additionally insights into state-of-the-art linguistic
challenges, created with the generaitor interface.

6.1 Case Study: Comparative Analysis on Social Biases

In this case study, a linguistic expert aims to learn patterns relevant to designing bias eval-
uation methods. Since the bias evaluations for generative language models are sensitive to the
design choices of template prompts [Alnegheimish et al. 2022], the expert’s goal is to find out in-
teresting linguistic structures that should be taken into account during systematic bias analysis.
He thus uses the generAItor workspace to explore different examples3 and generate new linguistic
hypotheses (cf., inductive learning [Sternberg and Sternberg 2016]).

The expert begins the analysis session by exploring the model’s potential gender biases. For
this purpose, he creates a prompt “After receiving their degree, <PH> wants to become” whereby the

<PH> stands for a placeholder of different female and male person names. The predictions
for John and Jessica are listed in Table 1. The expert can confirm findings from related work [Lu
et al. 2020] showing that language models tend to learn stereotypical gender-profession associa-
tions, such as John is more likely to become a lawyer and Jessica is more likely to become a nurse.
Since the exploration in the generAItor workspace is not limited to a fixed-sized template, i.e., the
generated token sequences can be of any length, the expert observes that the stereotypical associa-
tions are followed by the person’s doubts regarding his or her chosen profession (see Table 1). This
motivates the expert to explore an additional prompt, i.e., “The reason <PH> did not become a doctor
was.” The model’s output shows a new perspective of gender bias, i.e., the model’s assumptions

3We showcase these examples in a reduced online demo of generAItor, available under https://demo.tree.generaitor.dbvis.de

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

https://demo.tree.generaitor.dbvis.de

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:17

Table 1. Example Sequences Generated in the Comparative Mode of generAItor by Instancing
the <PH> Node

Prompt Prediction

After receiving their degree, John wants to become a lawyer. He’s not

sure if he’ll be able to afford it.
After receiving their

degree, <PH> wants to

become
After receiving their degree, Jessica wants to become a nurse, but she

doesn’t know how to do it.

The reason John did not become a doctor was because he was a man of

God.
The reason <PH> did not

become a doctor was
The reason Jessica did not become a doctor was because she was afraid

of the consequences of her actions.

The reason, why Mr. Smith was afraid to become a doctor, was because

he was afraid of being accused of being a pedophile.
The reason, why <PH> was

afraid to become a doctor,

was
The reason, why Mrs. Smith was afraid to become a doctor, was because

she was afraid of being accused of witchcraft.

Varying between male and female person names reveals a strong social bias in GPT-2’s predictions.

about a female person’s fears (i.e., “The reason Jessica did not become a doctor was because she was
afraid of the consequences of her actions.”). To investigate this in more detail, the expert defines
a new prompt “The reason, why <PH> was afraid to become a doctor, was.” The generated outputs
(see Table 1) confirm the previous observations. In particular, the model predicts that a male per-
son is afraid to become a doctor because “he was afraid of being accused of being a paedophile” and
the female person is afraid because “she was afraid of being accused of witchcraft.” These examples
motivate the expert to design experiments for investigating biases related to a person’s dreams,
fears, assumptions, and so on.

The expert is aware that the semantic meaning of a sentence can be influenced by changing a
single word, not only semantically rich content words but also semantically poor function words
(e.g., adverbs such as even or conjunctive adverbs such as however) [Corver and van Riemsdijk
2001]. The role of function words has already been investigated for masked language modeling
tasks [Kalouli et al. 2022]. The linguistic expert is thus interested in exploring the role of differ-
ent function words on generative language model prediction outcomes. In particular, the expert
investigates the impact of the function words even and however. Even is an adverb that is used to
refer to something surprising, unexpected, unusual, or extreme. However is an adverb typically
used to introduce a contrast in a sentence to emphasize something that contradicts the previously
stated statement. The expert first creates a prompt “<PH> is great. One could say that” whereby

the <PH> stands for a placeholder of different female and male person names. As shown
in Figure 5, the model predicts that male person names are more likely to become players of sports
games and female person names are more likely to become an actress. The expert then extends the
prompt by adding the adverb even, as shown in Figure 4. Although most of the predictions stay
the same, the model also captures the functionality of the word even by predicting a stereotypical
phrase Jessica is great. One could even say that she is the most beautiful woman in the world. All
sentences have a positive sentiment. This motivates the expert to explore how the model captures
the functionality of the conjunctive adverb however. He defines the prompt “<PH> is great. However,
one could say that” and observes that the model captures the functional meaning of however, since
it generates sentences that contradict the prefix <PH> is great. Interestingly, most of the predictions
have a similar context to those sentences generated with the prompt without the function word

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

14:18 T. Spinner et al.

Fig. 5. The prompt “<PH> is great. One could say that” generates predictions mentioning different professions.

however, i.e., the model talks about players of sports games. In most predictions, however, the model
uses the negation not to generate the contrast. As shown in Figure 6, this also leads to changes
in the sentiment of the sentences, i.e., they change from positive to negative ones. This example
highlights the limitations of template-based methods for bias analysis. First, a single prompt gen-
erates sentences where the attribute of interest (e.g., player, jerk) occurs at different positions (i.e.,
at positions 6 and 7 in Figure 6). This insight would be missed by using strict templates with fixed
attribute positions. Second, this example shows that some words (e.g., adverbs, negations) change
the semantic meaning of the sentence. Simply counting the occurrences of attributes such as a per-
son’s occupations without considering the occurrences of negations would generate false results
about the encoded biases. These insights motivate the expert to design targeted experiments for
exploring the role of function words in current bias detection methods.

6.2 Evaluation of Usability and Usefulness

We evaluate the usability of our system in a qualitative user study with six non-experts
and four linguistic experts who were previously unfamiliar with the workspace. The non-
experts are presented with the generative mode of the workspace, while the linguistic ex-
perts primarily work with the comparative mode. The study aims to assess whether the system
is intuitive to use, if it is suitable to tackle the tasks identified in Section 3.3, and gather feedback
for possible future use-cases and improvements. For the linguistic experts , we additionally
evaluate whether the workspace is suited for them to generate new hypotheses and observe their
problems of interest.

6.2.1 Non-expert Study. Study Setup — After capturing the participants’ background and prior
experiences with large language models, we introduce them to the generative workspace and its
functionalities. We then ask them to solve the task described in Section 5.1.2 using the workspace
in a pair-analytics session [Arias-Hernandez et al. 2011]. The model loaded in the workspace
is the GPT-2 Base model. Finally, we collect qualitative and quantitative feedback using a ques-
tionnaire and a semi-structured interview. The pair-analytics session took 15 to 25 minutes, the
whole study including the introduction and feedback questionnaires took 30 to 45 minutes per
participant.

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:19

Fig. 6. The prompt “<PH> is great. However, one could say that” generates predictions that include the nega-
tion not and insult words.

Results — All study participants agreed that the workspace was easy to use, and its design was ac-
knowledged as being simple and tidy. Figure 7 summarizes the quantitative feedback we collected
in the questionnaire after the exploration phase.

Regarding output explainability , the beam search tree visualization helped the participants
detect repetitions in the generated texts and discard them quickly. One participant proposed
a semi-automatic pruning mechanism to remove repetitions from the tree, acting like a user-
controlled n-gram suppression [Paulus et al. 2017]. Another participant noticed the predicted
text to sound rather negative and uttered the wish to observe the sentiment of generated text.
We implemented this feedback by adding automatic sentiment analysis and visualization to the
beam search tree, as shown in Figure 2. Concerning the generative task , the alternative paths
shown in the beam search tree, the manual editing functionality, and the ontology suggestions
were described as helpful to create new ideas and “keep the ball rolling.” While the participants
liked that the workspace allowed them to generate text in a guided manner, they also critiqued
the manual effort they had to put into the process. Suggestions to resolve this issue included
generating text sentence-wise or making the nodes show whole sentences instead of tokens.
When manually adapting model outputs , one participant described the model as “working
against him while steering [the outputs].” To tackle this issue and make domain adaptation

permanent in the model, we implemented the fine-tuning functionality , which we did
not introduce in the study due to time constraints.

6.2.2 Computational Linguist Study. Study Setup — After capturing the participants’ back-
ground, prior experiences with large language models, and linguistic research focus, we introduce
them to the comparative workspace and its functionalities. We then ask them to solve two tasks
using the workspace in a pair-analytics session, both addressing . The first task is investigat-
ing how the RedPajama Instruct 3B model [Computer 2023] handles negations. The second task
is to examine the outputs of the RedPajama Base 3B model for biases. We give the participants a
short introduction to the model and its capabilities for each task. We help with example prompts
during the session if a participant seems stuck. The tasks deliberately focus on an open-ended
exploration to enable the participants to evaluate generAItor’s applicability to their own research
and to generate new hypotheses. After working on both tasks for 10 to 20 minutes each, we collect

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

14:20 T. Spinner et al.

Fig. 7. Results of the quantitative part of the user study. We captured feedback from the non-experts

and the linguistic experts on the usability and usefulness of the workspace.

qualitative and quantitative feedback using a questionnaire. The pair-analytics session took 35 to
55 minutes, and the whole study, including the introduction and feedback questionnaires, took
50 to 70 minutes per participant.
Qualitative Results — All participants agreed that the workspace was intuitive, as the quantita-
tive results in Figure 7 show. All participants could independently work on the tasks after famil-
iarizing themselves with the interface for one to two minutes.

Overall, the beam search tree to explain the model’s outputs was well received, especially how
it organizes probabilities and alternative outputs. One participant showed interest in “the discrep-
ancy between probabilities,” identifying high uncertainty where “variation[s] [are] relatively equal
in probability.” Another participant critiqued that if all tokens have a low probability (i.e., the prob-
ability distribution is relatively flat), then the top-k outputs shown in the BST were misleading due
to other outputs with similar probability being omitted. As a solution, they proposed to “show [. . .]
the distribution across the top 500 or whatever, maybe weighted by probability” upon user request.

The keyword highlighting and semantic coloring was rated helpful to “to get an overview

just by looking at the highlighted words.” The placeholder node was described as “very help-
ful in order to compare outputs resulting from different inputs” and was intensively used by three
of the participants. Here, one participant wished to compare different models in a juxtaposed view.

The wordlists and the upset plot were only used rarely by two of the participants and
ignored by the others.

The explorative nature of the workspace showed strengths and weaknesses. Two participants
were highly engaged in the exploration, coming up with new prompts and ideas to test, while the
other two participants were more reserved and needed more guidance.

Critiqued was the tendency of the RedPajama models to produce whitespaces and linefeeds for
specific prompts, which rendered the outputs in the beam search tree essentially useless. Since this
was a model defect, input sanitization or manually removing the whitespaces and linefeeds from
the outputs was the only way to work around it. However, since this would distort the outputs,
we decided against implementing this functionality.

6.3 Quantitative Evaluation of Model Adaptation

Besides output steering through selection, manual edits, or automated suggestions based on word
ontologies, our system supports model fine-tuning based on the altered outputs with the goal of
adapting the model to the human’s style of writing and to specific domains. We evaluate the effects
of fine-tuning on a local level, observing the changes to the individual tokens being fine-tuned on,
and on a global level, assessing domain adaptation by checking how the model reacts to a test
fraction of the dataset the model was fine-tuned on. generAItors fine-tuning functionality (cf.,

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:21

Table 2. Target Token Probability p and Index Position i after Fine-tuning on Different
Sequences for One and Two Steps, Respectively

Sequence Initial 1 Step 2 Steps

After you’ve watched this movie you’ll be deaf
p 0.000012 0.000181 0.010252

i 1,964 466 13

Behind the trees had hidden a giant gnome
p 0.001175 0.002569 0.009681

i 143 58 10

The american bullfrog is the largest animal
p 0.046493 0.260536 0.828726

i 4 1 1

The results show that fine-tuning for one to two steps already achieves a significant increase in the

probability of the target token.

) and the following experiments use the AdamW [Loshchilov and Hutter 2017] optimizer
with a learning rate of 5 × 10−5. The experiments are performed with the GPT-2 Base model.
Local Adaptation — After fine-tuning to a specific tree node, the node’s probability following the
previous sequence should increase. To evaluate this effect in relation to the number of fine-tuning
passes, we iteratively re-train with the same sequence and measure the top-5 output token proba-
bilities after each step. Figure 8(a) shows the change in token probabilities after fine-tuning for two
and four steps on the sequence “After you’ve watched this movie, you’ll be deaf” , where “deaf” is
the target token manually inserted by the user. Initially, it has a probability of p0(deaf) = 0.000012,
which increases to p2(deaf) = 0.000834 after two and p4(deaf) = 0.315274 after four steps,
corresponding to the index positions i0(deaf) = 1,964, i2(deaf) = 158, and i4(deaf) = 1. Other
examples show similar results, as depicted in Table 2. We observe that fine-tuning for one to two
steps is mostly sufficient to achieve a significant increase in the probability of the target token.
The greater the initial probability of a token occurring in the target context, the greater the risk
of overfitting. However, we did not observe the model losing its ability to generalize to other
contexts despite our experiments’ strong focus on the target token. It should be noted that we
can already perceive effects of global adaptation in Figure 8(a): The semantic context of the input
sentence makes the word “hooked” fit better than the word “able,” leading to a shift of their
probabilities.
Global Adaptation — The number of training samples generated using our workspace will likely
stay far behind the number of samples in datasets typically used to fine-tune models, such as the
IMDB [Maas et al. 2011] (≈ 50k samples) or MultiNLI (≈ 433k samples) datasets. Thus, in the fol-
lowing, we evaluate the model’s capability to learn domain specific knowledge from a (small) set
of training samples. Here, we use the IMDB dataset for binary sentiment classification of movie re-
views. Our goal is to perform parameter sensitivity analysis on the GPT-2 Base model, i.e., evaluate
how the model adapts to dataset-specific target tokens after fine-tuning for a varying number of
steps. We use the perplexity evaluation metric [Jelinek et al. 1977] to measure domain adaption. To
see the effect of the sample size on the model’s performance, we first split the dataset into training
and test subsets (50%, i.e., 25.000 data points each). We repeatedly fine-tune the model from scratch
for 100 runs, where we increase the number of training samplesn by 20 in each run. This means we
fine-tune the base model for n = {20, 40, . . . , 2000} steps while measuring the perplexity on both
the n training samples and the full test subset for each fine-tuned model version. This allows us to
verify the model’s capability to learn domain-specific properties from the data points that it has
seen during the fine-tuning, as well as its generalizability to unseen samples. Figure 8(b) shows the
difference between the perplexity of the training and test data. We can see that the model adapts

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

14:22 T. Spinner et al.

Fig. 8. We measure how the model adapts to a specific target token (a) and a specific domain (b) after fine-
tuning for a varying number of steps, showing that adaptation is possible already with a small number of
training samples as they occur in our target use cases.

towards the training samples; the perplexity in most cases stays in the range between 25 and 30.
The perplexity of the test data is higher and stays in the range between 40 and 45. Nevertheless,
we can also see a general trend, where the perplexity of both the test and training data decreases
with the increased size of the training sample, and the model is able to adapt to the given domain
already with a few hundred of training data points.

7 DISCUSSION

In the following, we discuss our rationales for the presented approach, summarize the most impor-
tant take-home messages, and discuss current limitations and future research opportunities.

7.1 Rationales of Our BST-based Approach and Take-home Messages

Leveraging the Inherent Understanding of Text to Explain LLMs — The way a language
model generates language is often misinterpreted by users, leading to false rationalizations of their
outputs by attributing an understanding of the text’s meaning to the model [Sevastjanova and El-
Assady 2022]. Therefore, explainability of language model outputs is crucial to correctly assess
the model’s capabilities and identify undesired features in the generated text, such as repetitions
or biases. In contrast to other deep learning architectures, the inputs and outputs of LLMs are
text, which is inherently understandable by humans. This accessibility of the model’s inputs and
outputs makes it a good candidate for explaining its behavior.
Exposing the Beam Search Tree to Explain Decision Processes — Beam search being the
most common algorithm to sample text from the LLM’s predictions, combined with the easy un-
derstandability of the resulting tree to non-experts, makes it a natural choice to expose the beam
search tree to explain the model’s decision process. Since the BST is a direct representation of the
underlying search algorithm, it neither neglects important information nor induces false rational-
ization. It is, therefore, a valuable tool for explaining the model’s behavior and communicating
information in the model’s output to the user, such as uncertainties, alternatives, or patterns, e.g.,
repeating content.
Tree Augmentations — Issues with the BST’s complexity and information overload can be ad-
dressed by providing additional visualizations, interactions, and analysis tools. Simple tree trans-
formations, such as the tree collapse and filter functionalities, allow resolving scalability issues
with large trees. Semantic keyword coloring, keyword lists, and the Upset plot provide aggregated
information, providing a high-level overview. The multi-tree view allows comparing trees by jux-
taposition and is particularly useful for the linguistic analysis of nuances in the outputs. Finally,

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:23

the ontology Voronoi treemap and the ontology replace functionality combine the keywords with
ontological knowledge the model cannot deliver.
Providing Augmentations through Modular Widgets — Different tools and augmentations are
relevant depending on the tasks a user wants to solve. As opposed to a dashboard-based approach,
where all visual components are displayed simultaneously, modular widgets allow for more flexible
use of the available (screen) space and the reuse of similar visual variables. This, in return, requires
careful categorization of the available widgets and useful presets for each task so visual variables
(e.g., color or shape) are used only once by simultaneously active widgets to avoid confusion.
Usefulness for Non-technical Users and Linguistic Experts — As our evaluation shows, the
aforementioned mechanisms enable powerful modes of LLM output analysis. Non-technical users
can use the BST to understand the model’s decision process and for informed text generation. Com-
putational linguists can use the BST in an explorative way to generate new insights and hypotheses,
as opposed to the traditional template-based or statistical analysis of existing hypotheses.

7.2 Limitations and Future Work

Applicability to State-of-the-art Models — In this work, we demonstrate our approach using
GPT2 and Bloom. Beyond that, Spinner et al. [2023] show how generAItor can be used to generate
meaningful linguistic insights for different models, including GPT2, Bloom, RedPajama Base, and
RedPajama Instruct [Computer 2023]. We observe that our approach becomes more potent with
larger models as the output diversity increases and the alternatives in the BST become more mean-
ingful. In general, our approach applies to causal language transformers if they (1) provide access
to the high-dimensional token-wise embeddings and (2) output the probabilities of the next top-k
tokens. While the second requirement is imperative to generate the BST, the first requirement is
only needed for the embedding-based widgets.

This means that large parts of our approach are transferable to GPT4 as the current state-of-
the-art in causal language modeling. The OpenAI API provides access to the logprobs of the top-k
tokens, which can be used to generate the BST. Despite the high-dimensional embeddings not
being available for GPT4, the embedding widgets can still be powered from the embeddings pro-
duced by other transformers. Sevastjanova et al. [2022] and Kehlbeck et al. [2021] have studied
the embedding spaces of prominent transformers, suggesting that using the token embeddings of
other models might even be beneficial for semantic token analysis.
Transfer of Our Proposed Techniques to Existing Interfaces — Our approach targets specific
user groups. However, we envision some means of explainability embedded into the prominent
chat- and completion-based interfaces, such as ChatGPT or GitHub Copilot.4 Currently, ChatGPT
only outputs text, and each adaptation has to be triggered by refining the prompt in the hope that
the desired output will be generated. This can be frustrating, especially for hallucinated text parts,
where no easy solution for editing is available. Here, showing alternative outputs and providing the
user with explainability on the likeliness of sequences could bring huge advantages. While GitHub
Copilot does show alternatives, those alternatives remain unexplained. Here, showing probabilities

or annotating structural elements, cf., keyword extraction (Section 4.1) and coloring , could
further improve the usefulness.
Bridging between Explorative and Statistical Analysis — Our approach is explorative in na-
ture, allowing users to generate new hypotheses and insights. However, as noted by one of our
computational linguist participants, a combination with statistical analysis would be beneficial to
validate the generated hypotheses. Therefore, we envision a tighter integration of our approach

4https://github.com/features/copilot

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

https://platform.openai.com/docs/api-reference/completions/create#completions/create-logprobs
https://github.com/features/copilot

14:24 T. Spinner et al.

with statistical analysis tools, e.g., to validate the generated hypotheses with statistical tests. Once
this integration is established, annotating the BST branches with statistical metrics could bridge
the gap between explorative and statistical analysis. For the current version of the system, we de-
cided against annotating the branches with linguistic metrics to prevent the user from drawing
false generalizations from local observations.
Support for Model Developers — Our interface also provides information relevant to model
developers. However, for model debugging and refinement, additional tools, e.g., to observe the
effects of fine-tuning or investigate common errors in model and data, might be needed.
Extension to Other Tasks and User Groups — The presented widgets are well rounded for the
described tasks and target user groups. However, through an extension with additional widgets,
other tasks can be addressed, e.g., informed text summarization for students.
Comparison across Models — While our approach allows loading different generative language
transformers, comparative analysis is yet only possible between prompts. However, this is not a
limitation of our proposed tree-in-the-loop approach and will be implemented in future iterations
of the system, enabling additional modes of analysis.

8 CONCLUSION

We present the tree-in-the-loop paradigm, putting the beam search tree in the center of the gener-
AItor Visual Analytics technique for language model explainability, comparability, and adaptabil-
ity. In our technique, we leverage the beam search tree to explain the model’s decision process,
compare model outputs, and adapt the outputs to user preferences. Enhancing the tree with task-
specific widgets creates synergies between the tree and targeted visualizations, interactions, and in
situ explanations. Finally, we provide a three-fold evaluation of our approach. First, we assess the
applicability of our approach in a case study, showcasing our technique’s comparative capabilities.
Particularly, we show how the interplay between the beam search tree and widgets enables new
analysis modes, leading to interesting linguistic insights on model biases. Second, we perform two
qualitative user studies—the first with six non-experts and the second with four computational
linguists, proving the usability of our approach for text generation tasks and linguistic analyses.
Finally, we quantitatively evaluate the ability to adapt the model to user preferences with relatively
few training samples as they arise in our approach.

APPENDIX

A NATURAL LANGUAGE PROCESSING PIPELINES

This section explains the pipelines that have been implemented to provide the functionalities of
generAItor.

A.1 Natural Language Generation Pipeline

We generate text by using the beam search algorithm, always following the prediction with the
highest probability. The resulting beam search tree is stored as a graph in the backend of our
application. All functionalities of our system use, augment, or modify the tree. In the following,
we describe the different pipelines updating the tree state.
Prediction Pipeline — We use the tokenized beam sequence from the root node up to the Head
node as the model input for the prediction, truncated to GPT-2’s maximal sequence length of lmax =

1,024. Depending on the user settings, the output token probabilities are either top-k selected or—
when temperature is used—top-p sampled. Finally, we append the new tokens to the beam search
tree. The full Prediction Pipeline is depicted in Figure 9.

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:25

Keyword Extraction & Coloring — We use YAKE [Campos et al. 2020] to automatically extract
keywords of an n-gram size of n = 1 from the beam search tree’s sequences. Next, we tokenize the
extracted keywords using the GPT-2 tokenizer, pass them to the GPT-2 model and extract the high-
dimensional embeddings from GPT-2’s layer 11, maximizing the surrounding context captured by
the embeddings [Sevastjanova et al. 2022]. Note that the keywords extracted by YAKE often consist
of multiple split-tokens, e.g., when the keyword is a proper noun. In this case, we average the
high-dimensional embeddings of the split tokens. To reduce the dimensionality of the embeddings
from 768 to 2, we use a UMAP [McInnes et al. 2018] projection pre-fitted onto keywords extracted
from the MultiNLI dataset [Williams et al. 2018]. The now two-dimensional projected embedding
vectors are normalized and used to sample a color on a two-dimensional colormap [Steiger et al.
2015]. The full Keyword Embedding Pipeline is shown in Figure 9.

A.2 BabelNet Embedding Pipeline

To build the ontology graph, we leverage the power of a semantic network (BabelNet [Navigli and
Ponzetto 2012]) and its adjacent disambiguation API (Babelfy [Moro et al. 2014]). First, each key-
word from the beam search tree is disambiguated in context using the Babelfy API. The resulting
BabelNet Synset is used to query a BabelNet Index v5.1. To create a unified ontology graph, part-

of-speech (POS) tags have to be considered, as the hypernym hierarchies inside BabelNet are
disconnected for each POS tag. Therefore, we must expand each keyword with a set of potential
synset nouns that represent it best. We then build and grow the ontology graph, starting with the
keywords as leaf nodes. The keywords are attached to their expanded synsets and we traverse their
hypernym relations upwards. The higher in the hierarchy a synset is, the more abstract it will be.
Therefore, at some point, the synsets are not conveying helpful information to the user. Instead,
it would make sense to reduce the hypernym relation at some point. This decision is made using
another attribute that exists on many BabelNet synsets—its BabelDomain [Camacho-Collados and
Navigli 2017]. Domains are general groups of words that share a similarity or concept. They are
available for many synsets. The domains of BabelNet often cover several concepts, such as Biology.
We split each domain into a collection of subdomains (BIOLOGY - Animal, Person). If a synset does
not have a domain, then we stop traversing the hypernym relations and instead attach the synset
to its most similar subdomain and domain. The ontology graph can grow large quickly, as the hy-
pernym relations are often intertwined and contain many synsets. To simplify the tree, we remove
nodes that only act as connecting nodes between two synsets. The result is a relatively compact
collection of trees, with one tree for each domain. When predictions are made, the initial ontology
graph is expanded with new keywords. Visualizing this ontology graph directly can create large
trees, as multiple instances of the same keyword appear multiple times, creating a multitude of leaf
nodes. We therefore instead simplify the graph further into four distinct layers, where each node
can only have one parent relation. This graph can then be visualized using a Voronoi diagram. We
use the D3 Voronoi treemap5 implementation to create a Voronoi treemap of the hierarchy and
allow the user to select the layer they want to view. As the upper layers aggregate the keywords
to the same synset, they offer a more compact view of the domains and keywords of the prediction
graph. The BabelNet Embedding Pipeline is shown in Figure 10.

A.3 Masked Ontological Replacement Pipeline

To create the domain-specific, context-sensitive suggestions of the ontology replace function,
we combine the power of the semantic network with masked language modeling. The goal is
to replace a specific word with another suggestion that fits its context and can be grouped into

5https://github.com/Kcnarf/d3-voronoi-treemap

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

https://github.com/Kcnarf/d3-voronoi-treemap

14:26 T. Spinner et al.

domains. To solve this, we use a combination of BERT and ARES Embeddings [Scarlini et al.
2020]. ARES embeddings are powerful sense embeddings with high-dimensional representatives
for all WordNet synsets. They were trained in a semi-supervised approach combining a lexical
knowledge base with BERT Large embeddings and place WordNet synsets in the same embedding
space as BERT embeddings. This way, for a given WordNet synset, we can query the closest
BERT embedding and vice versa. Because BabelNet has WordNet bindings for many BabelNet
synsets, we assign each subdomain a BabelNet and their respective WordNet synset. This way,
each subdomain can be assigned to an embedding vector via ARES. The Masked Ontological

Replacement Pipeline can be observed in Figure 11. For each keyword in the Beam Search
Tree, we take the word and its sentence and replace it with the [MASK] token. Afterwards, we
can use top-k prediction on BERT to query a large number of predictions that would otherwise
be impossible to show the user in a compact way (k = 200). We tokenize each predicted word
and extract the model logits in context, extracting and squeezing layers 8–11, which are then
appended to match the ARES embeddings length (n = 2,048). After this step, we have a set of
embeddings for subdomains in the ontology graph and a set of embeddings for the predictions in
the beam search tree. To bring them together, we look for the nearest neighbors of all embedding
vectors. To speed up the process, we created a custom FAISS [Johnson et al. 2019] index, which
we can use to query nearest neighbors efficiently. Subdomains and predictions are matched via
their overlapping nearest neighbors. The resulting predictions are then attached to each keyword
and shown on demand via the ontology replace function.

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:27

F
ig

.9
.

T
h

e
p

ip
el

in
e

to
ex

p
an

d
th

e
b

ea
m

se
ar

ch
tr

ee
an

d
as

si
g
n

th
e

se
m

an
ti

c
k

ey
w

o
rd

co
lo

r
in

fo
rm

at
io

n
to

it
s

n
o

d
es

.

F
ig

.1
0.

K
ey

w
o

rd
s

ar
e

att
ac

h
ed

to
th

e
o
n

to
lo

g
y

g
ra

p
h

vi
a

th
e

B
ab

el
N

et
em

b
ed

d
in

g
p

ip
el

in
e.

T
h

is
g
ra

p
h

is
th

en
fu

rt
h

er
si

m
p

li
fi

ed
an

d
th

e
h

ie
ra

rc
h

y
is

u
se

d
to

cr
ea

te
an

O
n

to
lo

g
y

M
ap

u
si

n
g

a
V

o
ro

n
o

i
d

ia
g
ra

m
vi

su
al

iz
at

io
n

.

F
ig

.1
1.

D
o

m
ai

n
-s

p
ec

if
ic

k
ey

w
o

rd
s

ar
e

att
ac

h
ed

to
ea

ch
n

o
d

e
o

f
th

e
b

ea
m

se
ar

ch
tr

ee
b

y
co

m
p

ar
in

g
th

e
n

ea
re

st
n

ei
g
h

b
o

rs
o
f

th
e

d
o

m
ai

n
’s

A
R

E
S

em
b

ed
d

in
g
s

an
d

th
e

n
ea

re
st

n
ei

g
h

b
o
rs

o
f

th
e

B
E

R
T

p
re

d
ic

ti
o

n
s

th
at

co
u

ld
re

p
la

ce
th

e
k

ey
w

o
rd

o
f

th
e

n
o

d
e.

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

14:28 T. Spinner et al.

ACKNOWLEDGMENTS

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Grant Nos. 390829875 (EXC 2117) and 240796339 (FOR 2111).

REFERENCES

Davey Alba. 2022. OpenAI chatbot spits out biased musings, despite guardrails. Bloomberg. Retrieved from https://www.

bloomberg.com/news/newsletters/2022-12-08/chatgpt-open-ai-s-chatbot-is-spitting-out-biased-sexist-results

Sarah Alnegheimish, Alicia Guo, and Yi Sun. 2022. Using natural sentence prompts for understanding biases in language

models. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies. Association for Computational Linguistics, 2824–2830.

R. Arias-Hernandez, L. T. Kaastra, T. M. Green, and B. Fisher. 2011. Pair analytics: Capturing reasoning processes in collab-

orative visual analytics. In Proceedings of the Hawaii International Conference on System Sciences. IEEE.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and

translate. arXiv:1409.0473

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. 2000. A neural probabilistic language model. Adv. Neural Inf. Process.

Syst. 13 (2000).

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. 2020. Language (technology) is power: A critical

survey of “Bias” in NLP. In Proceedings of the Association for Computational Linguistics. Association for Computational

Linguistics, 5454–5476.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav

Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Ma-

teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever

and Dario Amodei. 2020. Language models are few-shot learners. arXiv:2005.14165

Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. 2017. Semantics derived automatically from language corpora

contain human-like biases. Science 356, 6334 (2017), 183–186.

Jose Camacho-Collados and Roberto Navigli. 2017. BabelDomains: Large-scale domain labeling of lexical resources. In

Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Association

for Computational Linguistics.

Ricardo Campos, Vítor Mangaravite, Arian Pasquali, Alípio Jorge, Célia Nunes, and Adam Jatowt. 2020. YAKE! Keyword

extraction from single documents using multiple local features. Inf. Sci. 509 (2020), 257–289.

Catherine Chen, Kevin Lin, and Dan Klein. 2021. Constructing taxonomies from pretrained language models. In Proceed-

ings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies. Association for Computational Linguistics.

Together Computer. 2023. RedPajama: An Open Source Recipe to Reproduce LLaMA Training Dataset. Retrieved from

https://github.com/togethercomputer/RedPajama-Data

Simone Conia and Roberto Navigli. 2020. Conception: Multilingually-enhanced, human-readable concept vector represen-

tations. In Proceedings of the 28th International Conference on Computational Linguistics. International Committee on

Computational Linguistics.

Norbert Corver and Henk van Riemsdijk. 2001. Semi-lexical Categories: The Function of Content Words and the Content of

Function Words. De Gruyter Mouton, Berlin, New York.

Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, and Prithviraj Sen. 2020. A survey of the state

of explainable AI for natural language processing. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the

Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing.

Association for Computational Linguistics, 447–459.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and Rosanne Liu.

2019. Plug and play language models: A simple approach to controlled text generation. Retrieved from https://arxiv.org/

abs/1912.02164

Deep NLP. 2023. Bias in NLP. Retrieved from https://github.com/cisnlp/bias-in-nlp

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional trans-

formers for language understanding. arXiv:1810.04805

Wanyu Du, Zae Myung Kim, Vipul Raheja, Dhruv Kumar, and Dongyeop Kang. 2022. Read, revise, repeat: A system demon-

stration for human-in-the-loop iterative text revision. In Proceedings of the 1st Workshop on Intelligent and Interactive

Writing Assistants. Association for Computational Linguistics.

M. El-Assady, W. Jentner, R. Kehlbeck, U. Schlegel, R. Sevastjanova, F. Sperrle, T. Spinner, and D. Keim. 2019. Towards XAI:

Structuring the processes of explanations. In Proceedings of the ACM CHI Workshop: Human-centered Machine Learning

Perspectives.

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

https://www.bloomberg.com/news/newsletters/2022-12-08/chatgpt-open-ai-s-chatbot-is-spitting-out-biased-sexist-results
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2005.14165
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/1912.02164
https://github.com/cisnlp/bias-in-nlp
https://arxiv.org/abs/1810.04805

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:29

Mennatallah El-Assady, Rebecca Kehlbeck, Yannick Metz, Udo Schlegel, Rita Sevastjanova, Fabian Sperrle, and Thilo Spin-

ner. 2022. Semantic color mapping: A pipeline for assigning meaningful colors to text. In Proceedings of the 4th IEEE

Workshop on Visualization Guidelines in Research, Design, and Education.

Mennatallah El-Assady, Rita Sevastjanova, Daniel Keim, and Christopher Collins. 2018. ThreadReconstructor: Modeling

reply-chains to untangle conversational text through visual analytics. Comput. Graph. Forum 37, 3 (2018), 351–365.

Kawin Ethayarajh. 2019. How contextual are contextualized word representations? Comparing the geometry of BERT,

ELMo, and GPT-2 embeddings. In Proceedings of the Conference on Empirical Methods in Natural Language and the

International Joint Conference on Natural Language Processing. ACL, 55–65.

Ismael Garrido-Muñoz, Arturo Montejo-Ráez, Fernando Martínez-Santiago, and L. Alfonso Ureña-López. 2021. A survey

on bias in deep NLP. Appl. Sci. 11, 7 (2021), 3184.

Albert Gatt and Emiel Krahmer. 2018. Survey of the state of the art in natural language generation: Core tasks, applications

and evaluation. J. Artif. Intell. Res. 61 (2018), 65–170.

Sebastian Gehrmann, Hendrik Strobelt, Robert Kruger, Hanspeter Pfister, and Alexander M. Rush. 2019. Visual interaction

with deep learning models through collaborative semantic inference. IEEE Trans. Visualiz. Comput. Graph. (2019), 1–1.

Jochen Hartmann, Mark Heitmann, Christina Schamp, and Oded Netzer. 2021. The power of brand selfies. J. Market. Res.

58, 6 (2021).

Xingwei He. 2021. Parallel refinements for lexically constrained text generation with BART. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning for text classification. In Proceedings

of the 56th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics,

328–339.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P. Xing. 2017. Toward controlled generation of

text. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research),

Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, 1587–1596.

Xinyu Hua and Lu Wang. 2020. PAIR: Planning and iterative refinement in pre-trained transformers for long text genera-

tion. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP’20). Association for

Computational Linguistics.

Jiaxin Huang, Yiqing Xie, Yu Meng, Yunyi Zhang, and Jiawei Han. 2020. CoRel: Seed-guided topical taxonomy construc-

tion by concept learning and relation transferring. In Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM.

Fred Jelinek, Robert L. Mercer, Lalit R. Bahl, and James K. Baker. 1977. Perplexity—A measure of the difficulty of speech

recognition tasks. J. Acoustic. Soc. Amer. 62, S1 (1977), S63–S63.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea Madotto, and Pascale

Fung. 2023. Survey of hallucination in natural language generation. Comput. Surv. 55, 12 (2023), 1–38.

Minhao Jiang, Xiangchen Song, Jieyu Zhang, and Jiawei Han. 2022. TaxoEnrich: Self-supervised taxonomy completion via

structure-semantic representations. In Proceedings of the ACM Web Conference. ACM.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7,

3 (2019), 535–547.

Aikaterini-Lida Kalouli, Rita Sevastjanova, Christin Beck, and Maribel Romero. 2022. Negation, coordination, and quanti-

fiers in contextualized language models. In Proceedings of the 29th International Conference on Computational Linguistics.

International Committee on Computational Linguistics, 3074–3085.

Rebecca Kehlbeck, Rita Sevastjanova, Thilo Spinner, Tobias Stähle, and Mennatallah El-Assady. 2021. Demystifying the

embedding space of language models. In Proceedings of the Workshop on Visualization for AI Explainability (VISxAI’21).

Retrieved from https://bert-vs-gpt2.dbvis.de/

Anne Lauscher, Tobias Lueken, and Goran Glavaš. 2021. Sustainable modular debiasing of language models. In Proceed-

ings of the Findings of the Association for Computational Linguistics: EMNLP. Association for Computational Linguistics,

4782–4797.

Yann LeCun. 2023. Do Language Models Need Sensory Grounding for Meaning and Understanding? Retrieved from https:

//drive.google.com/file/d/1BU5bV3X5w65DwSMapKcsr0ZvrMRU_Nbi

Jaesong Lee, Joong-Hwi Shin, and Jun-Seok Kim. 2017. Interactive visualization and manipulation of attention-based neu-

ral machine translation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing: System

Demonstrations. Association for Computational Linguistics, 121–126.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and

Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pre-training for natural language generation, trans-

lation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.

Association for Computational Linguistics, 7871–7880.

Alexander Lex, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot, and Hanspeter Pfister. 2014. UpSet: Visualization of

intersecting sets. IEEE Trans. Visualiz. Comput. Graph. 20, 12 (2014), 1983–1992.

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

https://bert-vs-gpt2.dbvis.de/
https://drive.google.com/file/d/1BU5bV3X5w65DwSMapKcsr0ZvrMRU_Nbi

14:30 T. Spinner et al.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, and Ji-Rong Wen. 2021. Pretrained language model for text generation: A survey. In

Proceedings of the 30th International Joint Conference on Artificial Intelligence. International Joint Conference on Artificial

Intelligence Organization.

Zhuliu Li, Yiming Wang, Xiao Yan, Weizhi Meng, Yanen Li, and Jaewon Yang. 2022. TaxoTrans. In Proceedings of the 28th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and Ruslan Salakhutdinov. 2021. Towards understanding and mitigat-

ing social biases in language models. In Proceedings of the International Conference on Machine Learning. PMLR, 6565–

6576.

Ilya Loshchilov and Frank Hutter. 2017. Fixing weight decay regularization in adam. CoRR abs/1711.05101 (2017).

Kaiji Lu, Piotr Mardziel, Fangjing Wu, Preetam Amancharla, and Anupam Datta. 2020. Gender bias in neural natural lan-

guage processing. Logic, Language, and Security: Essays Dedicated to Andre Scedrov on the Occasion of His 65th Birthday

(2020), Springer International Publishing, 189–202.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. 2011. Learning word

vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies. Association for Computational Linguistics, 142–150.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. 2018. UMAP: Uniform manifold approximation and

projection. J. Open Source Softw. 3, 29 (2018), 861.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2021. A survey on bias and

fairness in machine learning. Comput. Surv. 54, 6 (2021), 1–35.

Cade Metz. 2022. The new chatbots could change the world. Can you trust them? New York Times. Retrieved from https:

//www.nytimes.com/2022/12/10/technology/ai-chat-bot-chatgpt.html

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2022. Cross-task generalization via natural lan-

guage crowdsourcing instructions. In Proceedings of the 60th Annual Meeting of the Association for Computational Lin-

guistics. Association for Computational Linguistics.

Andrea Moro, Alessandro Raganato, and Roberto Navigli. 2014. Entity linking meets word sense disambiguation: A unified

approach. Trans. Assoc. Computat. Ling. 2 (2014), 231–244.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021. StereoSet: Measuring stereotypical bias in pretrained language models.

In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing. Association for Computational Linguistics, 5356–5371.

Roberto Navigli and Simone Paolo Ponzetto. 2012. BabelNet: The automatic construction, evaluation and application of a

wide-coverage multilingual semantic network. Artif. Intell. 193 (2012), 217–250.

OpenAI. 2023. GPT-4 Technical Report. (2023). arXiv:2303.08774

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal,

Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,

Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022. Training language models to follow instructions with

human feedback. In Advances in Neural Information Processing Systems. S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,

K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc., 27730–27744.

Vishakh Padmakumar and He He. 2022. Machine-in-the-loop rewriting for creative image captioning. In Proceedings of the

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.

Association for Computational Linguistics.

Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A deep reinforced model for abstractive summarization. CoRR

abs/1705.04304 (2017).

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bhagavatula, Jena D. Hwang, Ronan Le Bras, Antoine Bosselut, and Yejin

Choi. 2020. Back to the future: Unsupervised backprop-based decoding for counterfactual and abductive commonsense

reasoning. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP’20). Association

for Computational Linguistics.

Alec Radford, Jeffrey Wu, Dario Amodei, Daniela Amodei, Jack Clark, Miles Brundage, and Ilya Sutskever. 2019a. Better

Language Models and Their Implications. Retrieved from https://openai.com/blog/better-language-models/

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019b. Language models are unsuper-

vised multitask learners. OpenAI blog 1, 8 (2019a), 9 Pages.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B. Viegas, Andy Coenen, Adam Pearce, and Been Kim. 2019. Vi-

sualizing and measuring the geometry of BERT. In Advances in Neural Information Processing Systems, H. Wallach,

H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8594–8603.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2020. A primer in BERTology: What we know about how BERT works.

Trans. Assoc. Computat. Ling. 8 (2020), 842–866.

Kevin Roose. 2023. How chatbots and large language models, or LLMs, actually work. New York Times. Retrieved from

https://www.nytimes.com/2023/03/28/technology/ai-chatbots-chatgpt-bing-bard-llm.html

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

https://www.nytimes.com/2022/12/10/technology/ai-chat-bot-chatgpt.html
https://arxiv.org/abs/2303.08774
https://openai.com/blog/better-language-models/
https://www.nytimes.com/2023/03/28/technology/ai-chatbots-chatgpt-bing-bard-llm.html

Tree-in-the-loop Text Generation for Language Model Explainability and Adaptation 14:31

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning representations by back-propagating errors.

Cahiers De La Revue De Theologie Et De Philosophie 323, 6088 (1986), 533–536.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha

Luccioni, François Yvon, Matthias Gallé, et al. 2023. BLOOM: A 176B-Parameter Open-Access Multilingual Language

Model. (2023). arXiv:2211.05100

Bianca Scarlini, Tommaso Pasini, and Roberto Navigli. 2020. With more contexts comes better performance: Contextualized

sense embeddings for all-round word sense disambiguation. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing. Association for Computational Linguistics.

Rita Sevastjanova and Mennatallah El-Assady. 2022. Beware the rationalization trap! When language model explainability

diverges from our mental models of language. In Proceedings of the Communication in Human-AI Interaction Workshop

at IJCAI-ECAI. abs/2207.06897 (2022).

Rita Sevastjanova, Aikaterini-Lida Kalouli, Christin Beck, Hanna Hauptmann, and Mennatallah El-Assady. 2022. LMFinger-

prints: Visual explanations of language model embedding spaces through layerwise contextualization scores. Comput.

Graph. Forum 41, 3 (2022), 295–307.

Thilo Spinner, Rebecca Kehlbeck, Rita Sevastjanova, Tobias Stähle, Daniel A. Keim, Oliver Deussen, Andreas Spitz, and

Mennatallah El-Assady. 2023. Revealing the Unwritten: Visual Investigation of Beam Search Trees to Address Language

Model Prompting Challenges. arXiv:2310.11252 (2023).

Thilo Spinner, Udo Schlegel, Hanna Schafer, and Mennatallah El-Assady. 2020. explAIner: A visual analytics framework for

interactive and explainable machine learning. IEEE Trans. Visualiz. Comput. Graph. 26, 1 (2020).

Martin Steiger, J. Bernard, Simon Thum, Sebastian Mittelstädt, Marco Hutter, Daniel A. Keim, and Jörn Kohlhammer.

2015. Explorative analysis of 2D color maps. In Proceedings of the Computer Graphics, Visualization & Vision Confer-

ence (WSCG’15).

Robert J. Sternberg and Karin Sternberg. 2016. Cognitive Psychology. Nelson Education.

Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter Pfister, and Alexander M. Rush. 2018.

Seq2Seq-Vis: A visual debugging tool for sequence-to-sequence models. IEEE Trans. Visualiz. Comput. Graph. 25, 1 (2018),

353–363.

Hendrik Strobelt, Jambay Kinley, Robert Krueger, Johanna Beyer, Hanspeter Pfister, and Alexander M. Rush. 2022. GenNI:

Human-AI collaboration for data-backed text generation. IEEE Trans. Visualiz. Comput. Graph. 28, 1 (2022), 1106–1116.

Yanchao Tan, Carl Yang, Xiangyu Wei, Chaochao Chen, Longfei Li, and Xiaolin Zheng. 2022. Enhancing recommendation

with automated tag taxonomy construction in hyperbolic space. In Proceedings of the IEEE 38th International Conference

on Data Engineering (ICDE’22). IEEE.

A. J. Teuling, R. Stöckli, and S. I. Seneviratne. 2010. Bivariate colour maps for visualizing climate data. Int. J. Climatol. 31, 9

(2010), 1408–1412.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polo-

sukhin. 2017. Attention is all you need. arXiv:1706.03762 (2017).

Patrick von Platen. 2020. How to Generate Text: Using Different Decoding Methods for Language Generation with Trans-

formers. Retrieved from https://huggingface.co/blog/how-to-generate

Gregor Wiedemann, Steffen Remus, Avi Chawla, and Chris Biemann. 2019. Does BERT make any sense? Interpretable word

sense disambiguation with contextualized embeddings. In Proceedings of KONVENS.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence understanding

through inference. In Proceedings of the Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies. Association for Computational Linguistics, 1112–1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault,

Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Can-

wen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers:

State-of-the-art natural language processing. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing: System Demonstrations. Association for Computational Linguistics, 38–45.

Yuejia Xiang, Ziheng Zhang, Jiaoyan Chen, Xi Chen, Zhenxi Lin, and Yefeng Zheng. 2021. OntoEA: Ontology-guided entity

alignment via joint knowledge graph embedding. In Proceedings of the Findings of the Association for Computational

Linguistics: ACL-IJCNLP. Association for Computational Linguistics.

Hongyuan Xu, Yunong Chen, Zichen Liu, Yanlong Wen, and Xiaojie Yuan. 2022. TaxoPrompt: A prompt-based generation

method with taxonomic context for self-supervised taxonomy expansion. In Proceedings of the 31st International Joint

Conference on Artificial Intelligence. International Joint Conference on Artificial Intelligence Organization.

Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu, Qingyun Wang, Heng Ji, and Meng Jiang. 2022. A survey of knowledge-

enhanced text generation. Comput. Surv. 54, 11s (2022), 1–38.

Ann Yuan, Andy Coenen, Emily Reif, and Daphne Ippolito. 2022. Wordcraft: Story writing with large language models. In

Proceedings of the 27th International Conference on Intelligent User Interfaces. ACM.

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2310.11252
https://arxiv.org/abs/1706.03762
https://huggingface.co/blog/how-to-generate

14:32 T. Spinner et al.

Chao Zhang, Fangbo Tao, Xiusi Chen, Jiaming Shen, Meng Jiang, Brian Sadler, Michelle Vanni, and Jiawei Han. 2018.

TaxoGen. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

ACM.

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, and Dawei Song. 2022. A survey of controllable text generation using

transformer-based pre-trained language models. arXiv:2201.05337 (2022).

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, and Mengnan

Du. 2024. Explainability for large language models: A survey. ACM Trans. Intell. Syst. Technol. 2, 15 (2024).

Received 18 July 2023; revised 26 January 2024; accepted 30 January 2024

ACM Trans. Interact. Intell. Syst., Vol. 14, No. 2, Article 14. Publication date: June 2024.

https://arxiv.org/abs/2201.05337

