Probabilistic Graph Layout for Uncertain Network Visualization

Christoph Schulz, Arlind Nocaj, Jochen Goertler, Oliver Deussen, Ulrik Brandes,
and Daniel Weiskopf, Member, IEEE Computer Society

Fig. 1: Visualization of an uncertain network. Multiple samples are drawn from a probabilistic graph model and embedded in a single
layout by anchoring the sampled graphs to the expected graph. The spatial distribution of sampled nodes is depicted using splatting
and boundary shapes. Sampled edges are bundled using network topology. From left to right: tree overview, detail with splatted nodes,
and detail with clustered shapes.

Abstract—We present a novel uncertain network visualization technique based on node-link diagrams. Nodes expand spatially in our
probabilistic graph layout, depending on the underlying probability distributions of edges. The visualization is created by computing a
two-dimensional graph embedding that combines samples from the probabilistic graph. A Monte Carlo process is used to decompose
a probabilistic graph into its possible instances and to continue with our graph layout technique. Splatting and edge bundling are used
to visualize point clouds and network topology. The results provide insights into probability distributions for the entire network—not only
for individual nodes and edges. We validate our approach using three data sets that represent a wide range of network types: synthetic
data, protein—protein interactions from the STRING database, and travel times extracted from Google Maps. Our approach reveals
general limitations of the force-directed layout and allows the user to recognize that some nodes of the graph are at a specific position

just by chance.

Index Terms—Uncertainty visualization, graph layout, graph visualization, edge bundling, Monte Carlo method.

+

1 INTRODUCTION

We present a technique for probabilistic graph layout and visualization,
allowing visual inspection of uncertain networks and their statistical
properties. Our aim is to visualize the distribution of possible real-
izations of a probabilistic graph that reflect certainty and uncertainty
equally well. We see this as a natural extension of previous work done
on uncertainty in the context of graphs, e.g. knowledge engineering and
visual variables.

Various approaches have been developed to visualize exact
graphs [40]. Yet many applications contain uncertain data due to
inaccuracies, incompleteness, and inference. Typically, uncertainty is
encoded as a visual variable [18] [30] into an exact graph layout. Al-
though this is a valid strategy, we argue that the nature of a probabilistic
graph is hard to understand by inspecting individual elements. The
different realizations of the graph, together with their probabilities, also

 Christoph Schulz and Daniel Weiskopf are with VISUS, University of
Stuttgart. E-mail: firstname.lastname @visus.uni-stuttgart.de.

e Arlind Nocaj, Jochen Goertler, Oliver Deussen, and Ulrik Brandes are with
University of Konstanz. E-mail: firstname.lastname @uni-konstanz.de

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

called possible worlds, are not encoded into the graph layout. Putting
individual relations into context is no longer sufficient with an increas-
ing number of nodes and edges, which further increases the layout’s
importance in terms of comprehension. Graph mining is bound to help,
but getting visual confirmation seems appropriate when dealing with
statistics. Our technique reveals statistical properties by transforming
probability distributions into a two-dimensional embedding using graph
layout techniques. Many uncertain graph models denote the existence
of an edge using a probability; however, uncertainty is a fuzzy concept
in visualization. Hence, we prefer the term probabilistic graph over
uncertain graph. Figure 1 shows our visualization for a simple tree
with probabilistic edge weights. A node is not just a single point but
an entire point cloud, hence each node can occur in many regions or
simply put: reflect uncertainty.

Our contribution is threefold. First, our work provides a model of
probabilistic graphs. Second, we propose a formal description of the
graph layout problem, along with a practical approximated solution. We
present a visualization technique for probabilistic graphs that combines
splatting, edge bundling, clustering, and graph coloring. At last, we
demonstrate and validate our technique using representative example
data sets.

2 RELATED WORK

This work builds upon research on graph theory, graph visualization,
and uncertainty visualization.

Graph Models: Graphs are are commonly used to represent net-
works composed of nodes and edges. Sometimes the existence of the
relationship between two nodes is unknown due to inaccuracies, incom-
pleteness, and inference under false assumptions [35]. For example,
in biology nodes can be used to represent proteins while edges are
used to represent interactions between proteins. Protein—protein in-
teraction is an uncertainly measured or predicted process [41]. Other
examples of uncertainty in graphs are the link-prediction influence [29]
and obfuscated identities [4] for social networks.

The term probabilistic graph [26] is not to be confused with ran-
dom graph [13]—the latter is used in conjunction with generative data
models. Querying and mining uncertain graphs has recently received
considerable attention [32]. These graphs differ from exact graphs in
that their model expresses possible worlds instead of the actual world.
Choosing good representatives that reflect the expected world can be
difficult. Nevertheless, most algorithms and people work with instances
of these graphs, which can be problematic [32]. Our probabilistic
graphs can be considered one type of uncertain graph, and our ap-
proach employs probability functions instead of scalar values, leading
to a powerful model. Hence, we can represent complex probabilistic
processes such as dice experiments on an edge.

Graph Theory: Kobourov et al. [25] provide an overview of force-
directed graph drawing algorithms. Brandes et al. [7] evaluate different
types of graph distance-based drawing algorithms. Our work is based
on stress majorization [17] and offline dynamic graph drawing [5]. In
contrast to linking layouts over time sequentially, we align possible
layouts to a reference layout using anchoring and stress majorization.
Our approximated solution can be considered as a possible example
of implementation. We distinguish ourselves from model estimation
approaches, which may seem visually similar [20], since we propagate
instead of estimating uncertainty.

One problem was to find a solution to the graph coloring problem
because the number of nodes likely exceeds the number of visually
distinctive colors, like noted by Ware [43]. We conservatively assume
this number to be somewhere between 6 and 12 colors. Our solution
is based on the ideas by Gansner et al. [16] and the Welsh-Powell
algorithm [44]. We provide a discussion of how our probabilistic graph
coloring differs from the classic graph coloring problem and provide a
heuristic solution.

Graph and Uncertainty Visualization: For the purpose of our
work, we outline overlaps and differences between graph and uncer-
tainty visualization. We believe that structure and uncertainty of the
underlying data are equally important. Hence, we use these two design
dimensions to arrange related work.

The field of graph visualization is broad, as indicated by the large
number of surveys for different types of graph data: Von Landesberger
et al. [40] provide a classification of graphics according to their depen-
dence and structure. Beck et al. [2] classify the depiction styles for
dynamic graphs, which is helpful in evaluating possibilities for the rep-
resentation of uncertain graphs. Our work adapts graph splatting [38]
and hierarchical edge bundling [21]. The former is used to convey
distribution of nodes and edges, whereas the latter is used to emphasize
topology and keep visual clutter at a minimum. While visually simi-
lar, we distinguish ourselves from graph bundling [23], where image
processing techniques are used to bundle generic graphs.

Uncertainty received broader attention in scientific visualization [8],
even though uncertainty is present in information visualization affine
data [1] and visual analytics [11]. For example, Feng et al. [15] propa-
gate statistical uncertainty to parallel coordinates using a density-based
approach, and Berger et al. [3] deal with uncertainty of predictions dur-
ing sensitivity analysis of multivariate parameter spaces using scatter
plots and parallel coordinates.

There is much research in the field of perception and awareness of
uncertainty. For example, according to MacEachren et al. [30], the
use of fuzziness is considered a good visual variable for uncertainty.
Elmqvist et al. [36] considered the use of color for uncertainty, which
we employ to depict node stress and color labels. There is an ongoing
debate within the community, whether uncertainty is the proper term,

03 0.7 0.75
. [— 0.25
T T ’ T T
0 1 0 1
O O O
(@)
OLOLO 0.3x0.75=0.225
OLH 0.3x0.25=0.075
O#OLO 0.7x0.75=0.525
OLO#O 0.7x0.25=0.175
(b)

Fig. 2: Decomposition of a simple probabilistic graph (a) into all its
realizations and their occurrence probabilities (b).

because of cultural baggage and the fact that it tends to overemphasize
uncertainty over certainty. Sacha et al. [34] argued for the concept of
trust, which is closely related to quality in database science. We apply
previous work on visual variables and neglect this discussion by calling
our model a probabilistic graph.

The combination of graph visualization and uncertainty has recently
received attention. Wang et al. [42] studied the uncertainty within graph
layouts. Guo et al. [18] investigated the use of visual variables to depict
uncertainty of graph edges. Vehlow et al. [39] identified the concept of
uncertainty for fuzzy clustering of communities. Lee et al. [28] visual-
ized structural uncertainty in hierarchies. Our work differs in that we
do not try to concentrate on local features of a graph. Instead, we trans-
form probability distributions using graph layout techniques. During
the following discussion, we distinguish between uncertainty inherent
to data (probabilities) and uncertainty introduced by our visualization
technique (stress and distortion) as much as possible.

3 GRAPH MODEL

Let GP = (V,E,F) be a probabilistic graph of an uncertain network
with V being a set of nodes, E a set of edges, and F = (f;;) ijleE @
set of probability density functions (PDFs). The domain of f;; is a
continuous random variable (weight) that maps to probability density:

The PDFs are normalized:

[tiwydw=1 @

Furthermore, we assume that all probabilities are mutually indepen-
dent, hence the joint probability density function of the entire graph is

defined as:
[T fewe) 3)

e={i,j}€E

f(wla"'aw‘E‘):

Based on this assumption, the area under this function must also be
equal to 1:

[Om gl = @

Note that the independence assumption can be relaxed, as long as
we have a way of sampling from the probability distribution.

For numerical computation, we discretize the continuous PDF for
edge ij at weight positions a;;; € Rg’, where k indexes the discrete
weight. Here, we restrict ourselves to non-negative weights because
typical graph layout algorithms require distance metrics, i.e., positive
definiteness. In this way, we replace the continuous PDFs by discrete
probability mass functions (PMFs) for a set of outcomes A = {a;; ¢ }:

G
probabilistic sampled force-directed
graph graphs layout

Fig. 3: Overview of the probabilistic graph layout process.

It is important to note that this definition is different from the one used
by Zou et al. [45] where A = {0,1} denotes the existence of an edge,
because an edge weight of 0 is handled differently than a non-existing
edge by graph layout algorithms.

Figuratively speaking, our model allows us to decompose a prob-
abilistic graph into all possible weighted graphs. In Figure 2a, we
demonstrate this concept using a simple and discrete probabilistic
graph to prevent state explosion. The decomposition can be performed
by sampling edge weights from each PDF, i.e., its parameter space.
Exhaustive sampling results in all possible realizations of the graph,
like shown in Figure 2b. Since we assume that the edge weights of the
probabilistic graph are independent, we can also compute the probabil-
ity for each realization. The probabilities sum up to 1, which is in line
with Equation 4.

4 GRAPH LAyouT

In this section, we describe our conceptual and numerical approach to
probabilistic graph layout. An exhaustive enumeration of all possible
realizations of a probabilistic graph is impractical, especially with an
increased number of nodes, edges, and discrete random variables. This
exponential relationship between a growing number of dimensions and
the required amount of samples to sufficiently represent the space is
also referred to as curse of dimensionality.

The basic idea is to compute a graph layout using a Monte Carlo
process by sampling and combining realizations to derive probability
distributions of the nodes in a two-dimensional space. Hence, we aim
at combining a representative subset of all possible realizations in a
single layout. Simple stacking of exact graph layouts would result
in confusing and unreadable results, due to ambiguities in the graph
layout procedure. Furthermore, and in contrast to linear dimension
reduction techniques, such as principal component analysis (PCA),
graph layout algorithms are generally non-linear, which aggravates
the problem. Therefore, if one considers graph layout as a projection
from a high-dimensional space to R?, the projections must be made
coherent. We suspect that there are multiple solutions to this graph
drawing problem with different trade-offs.

Our approach combines a Monte Carlo method with dynamic graph
drawing techniques, i.e., we extend a stress-based force-directed layout
method to combine a set of possible realizations in a static visualization.
Figure 3 shows the main steps of our approach:

1. Sample weighted graphs G‘IV, N GZV from G” by sampling the
edge weights independently.

2. For each sample GIW: compute its node positions P; using a force-
directed layout with alignment to reference node positions Pg.

force-directed layout
tied to reference

probabilistic
graph layout

3. For each node: use its positions in Py,. .., P, as approximation to
its distribution in 2D space.

Similar graphs that are laid out using a force-directed method may
result in similar layouts that are transformations of each other, e.g.,
they can be rotated or reflected. The alignment with the reference
ensures coherence of sampled layouts and resolves most transformation
problems that arise. We now discuss the force-directed layout and the
alignment.

4.1

The state-of-the-art approach for drawing general undirected graphs
is stress minimization [17,24], a variant of multidimensional scaling
applied to graph-theoretic distances. This approach, in particular, out-
performs spring embedder variants [7]. Let G = (V, E) be a graph with
n = |V| nodes. For any pair of nodes {i, j}, with i, j € V, there is an
ideal distance d;j € RY.

The deviation of a layout P = (py,...,p,) € R"*? from the ideal
distances is quantified using the stress function [27]

Force-directed Layout

2

stress(P) = Zwij (Ilpi = pjll = dij) (6)

i<j

where the weighting is typically chosen to be w;; = 1/ dizj to better

emphasize local distances and || - || denotes the Euclidean norm. For
graph drawing, the weighted lengths of the shortest paths are used for
the ideal distances. Since we have a weighted graph G = (V,E, W) with
w;i; € W denoting the strength of a link, we use the inverted weight
with zero mapped to infinity for the shortest path computation. Infinite
distances are replaced by a distance that is 1.5 times the maximum of all
pairwise finite distances within the collection of sampled networks [5].
A single node connected over such an edge will be placed far away from
the main graph, but will not vanish completely to infinity. As suggested
by Brandes et al. [7], we initialize the layout with PivotMDS [6] and
optimize by using stress majorization [17], until we obtain a local
minimum for the stress function.

4.2 Alignment with Anchoring

We want to combine layouts of multiple independent samples into one
final visualization. Hence, we need to make sure that the layouts are
not unnecessarily flipped or rotated. We achieve this by stabilizing the
layout of each sample using anchoring [5] on a reference layout. In
order to obtain such a reference layout, we first compute an expected

" '

"
’y & ™

(@ (b)

Fig. 4: Node splatting: (a) For each splat, a rendering primitive is com-
puted. (b) Afterward each splat is ray-casted and blended.

graph, G})EV, by fixing the weight of each edge to the function’s expected
value E[f;;]:

wij =E[fij] = Y aijx fij(aijx) (7)
%

We then use the positions Pg from the force-directed layout of Gg as
the reference positions Pr for the anchoring.

The main idea of anchoring is to incorporate the reference layout
into the stress function with control of its influence using a trade-off
parameter. Given the layout P; of a sampled graph G}'V, the overall
stress with respect to the stability parameter o and reference layout Pg
is:

2
stress(P; Pr,a) = (1— o) - stress(P,-) +a- Z ‘ pi —Dr 8)

veV

This affine combination allows us to do smooth blending between
stacked stress-based layouts and the reference layout. If other positions
such as geographic locations are given for the nodes, these can be used
as reference layout, too.

5 GRAPH VISUALIZATION

Our visualization technique is a combination of node splatting, edge
splatting and bundling, graph coloring, and density-based clustering
that we will discuss in the following. We base our discussion around
one question: how can we convey a distribution for each node and
network topology at the same time?

5.1 Node Splatting

We obtain a collection of points per node in R? from our Monte Carlo
based graph layout. The idea is to approximate an underlying continu-
ous distribution or scalar field for each node by applying kernel density
estimation (KDE) to the Monte Carlo samples.

Our approach is based on graph splatting [38], which is essentially
KDE applied to nodes. Formally, kde, is defined by a set of samples

X1,...,Xn, a kernel k, and a bandwidth parameter A:
1 & t—x;
k = J
dey(r) = — j§1k< ;) ©)

The choice of kernel k is less important because bandwidth /4 has more
influence. The only requirement is that k is a smooth function because
discontinuities would become visible as edges in the final visualization.
While kernels like the Epanechnikov kernel might provide slightly
better results, we choose a Gaussian kernel for its simplicity. The
correct choice of kernel when facing the highly non-linear projections
from graph drawing remains to be clarified.

We exploit modern graphics hardware to achieve interactive frame
rates. Rendering all nodes is done in a single draw-call by ray casting
and blending quads, like shown in Figure 4. The size of a quad is

Fig. 5: Different node bandwidths, from undersmoothed (a) to over-
smoothed (c).

determined by the bandwidth parameter, while the density is evaluated
per pixel.

The splats undersmooth or oversmooth a node distribution depend-
ing on the bandwidth £, like shown in Figure 5. An undersmoothed
KDE works well, while an oversmoothed KDE seems rather flat. We
presume that undersmoothed KDEs work well because stippled nodes
are perceptually supported by edge lines hinting to node locations [37].
This presumption is supported by the fact that neither edges lines nor
node dots work without each other.

5.2 Edge Splatting

We investigated different techniques to depict edges between node
instances. Drawing one straight line between nodes hampers the mental
association of nodes and edges (Figure 6a), whereas drawing straight
lines between all node samples quickly leads to visual clutter concealing
the topology, but depicting the distribution of edges well (Figure 6b).
We believe that the network structure and mental association of node
and edges should be visible at the same time. We achieve this by
adopting hierarchical edge bundling [21] (Figure 6¢), even though
this conceals the distribution of edges. Presumably, the favored edge
style depends on what aspect of the layout is of interest. In terms of
hierarchical edge bundling, we define a set of edges between two sets
of sampled nodes as one level of hierarchy.

(@) (b) ()

Fig. 6: Different edge styles: (a) straight lines between centroids,
(b) straight lines between all samples, (c) bundled lines between all
samples.

Formally, a bundled edge is defined as rational quartic Bézier curve
C(r) with points p; € R? and corresponding weights w; > 0:

Clipw)= 3, (‘?)f’(l 0wy

i=0 \}

(10)

We set p; and p3 to the centroids of the clusters, while pg and p4
represent the source and target positions of sampled nodes, respectively.
The remaining point p3 is set to the midpoint of the segment (py, p3).
An example of such a quartic curve is depicted in Figure 7. The
bundling strength can be controlled using the weight wy with other
weights set to one. A high bundling strength emphasizes network
structure at the cost of the visibility of the node distribution, whereas a
low bundling strength emphasizes sample-to-sample connectivity.

The rendering of edges works similar to that of nodes, i.e., we splat
line primitives and blend them appropriately. The main differences is
that we use a thin box kernel instead of a thick Gaussian one.

Fig. 7: Bundled edge connecting two node samples with a quartic Bézier
curve. The point p; is the midpoint of the segment (p1, p3). To achieve
the bundling effect, the control points are shared among all edges. The
strength of the bundling can be set through the weight w;.

5.3 Node Coloring and Labeling

Node samples are spread around their reference node, which poses a
number of challenges for labeling:

Distinctness: A node’s label should clearly separate a node from
other nodes. We have to resort to color labels because text labeling each
sample would cause visual clutter. It has been shown that the number
of visually distinctive colors is limited [43]. Hence, we have a classical
graph coloring problem.

Distribution: Node samples may not be spatially close to each
other, i.e., there may be gaps. This will dramatically reduce the trust
in the coloring, if two nodes get the same color, while being close to
each other. Therefore, we have to extend the classical graph coloring
problem to respect spatial proximity.

Overlap: The final layout heavily depends on how the reference
layout was chosen. Hence, nodes may overlap because node distribu-
tions expand into each other. This is problem is especially pronounced
if the standard deviation is bigger than than the (usually small) expected
value of the PMF. If colors are blended with less than 180° hue distance,
new colors will be generated [9]. This is a perceptual problem that we
acknowledge and ignore for complexity reasons.

After stating the problem, we solve it approximately by reducing it
to well-known problems. We compute a country graph [16] based on
nodes and their samples, like illustrated in Figure 8. A country graph
GC consists of probabilistic nodes V¥, node samples V", probabilistic
edges E”, and Delaunay edges EP [12] of the sampled points P:

G¢ = (vPuvW ECUEP) a1
We solve the resulting graph coloring problem using the Welsh-Powell
algorithm [44]. We choose this algorithm because it is easy to imple-
ment and it may be replaced by other graph coloring algorithms. The
Welsh-Powell algorithm is greedy and computes the number of required
colors during assignment, which we choose from a predefined color
palette [19]. Colors are added using interpolation, as required. Note
that we assume that the provided color palette is good enough in terms
of color perception.

5.4 Clustering

We choose to implement an auxiliary approach to analyze nodes, based
on the observation that node distributions have outliers and may fall
apart, i.e., into several clusters. We do not make assumptions about
the PMFs, particularly it is not necessary that the PMFs are normally
distributed. Arbitrary PMFs and flipping in the layout can lead to a
non-coherent distribution of node positions.

Identifying node clusters can be a tedious task for users, which is
why we provide automatic support for this process. Clustered node
positions allow us to filter and abstract node distributions, like shown
in Figure 9. We choose contour shapes to depict clusters because they
been proven useful to group sets, e.g. for Bubble Sets [10], and color
was already used. Visual scalability of our cluster shapes does not
matter because the clusters are usually filtered with machine-aid to

Fig. 8: (a) Visualization of a tree network and its (b) proximity (or country)
graph. We use the country graph to determine colors for labeling.

\ \

(a) contour and splats (b) contour and concave hull

Fig. 9: Clustering of node samples. Split clusters are visually recognized
as one cluster by the half-opened contour.

search for interesting nodes, hence the number of overlapping shapes
can be kept low.
The main steps of our approach are:

1. Cluster each set of node positions.
2. Optional: Filter clusters.
3. Compute a smooth concave hull of each cluster.

4. Compute a hull contour with visibility based on cluster-to-cluster
geometry, inspired by cel shading.

We use DBSCAN [14] for clustering because it is reasonably fast
and insensitive to outliers, depending on the chosen parameters. Other
clustering algorithms may also suffice. Next, we calculate the Delaunay
triangulation [12] to compute the convex hull of each cluster, flex edges
inward to achieve the desired concavity [33]. Other algorithms such as
a-shapes or marching squares may also work. The concave hull is then
fitted with a B-spline and re-sampled to obtain a smooth shape. Last,
we compute a contour to convey togetherness of clusters by opening
the line toward other clusters of the same node—a node may have many
clusters, each of which has a centroid toward which we open the line.
Let c;, c; be centroids of a node’s clusters and 7 € [0..1] a visibility
threshold. The hull of cluster i consists of line segments with index
k. The corresponding outward-pointing unit-length normal vectors are
denoted by #; ;. The visibility of a line segment is then defined as:

CETRSY
Al — A<t (12)
jzi \lej =il

The combination of splatting and clustering allows us to analyze the
resulting layout top—down and bottom—up simultaneously. We describe
this concept by example. We draw 1000 samples from a probabilistic
graph. We start analysis by zooming out to get an overview and adjust
the KDE bandwidth so that nodes are visible and stippled. Next, we
know from experience that at 1000 samples a good proximity threshold

.1

PN

{ A
A

N 3

3

(@ (b)

I
n
i

Iy
11
Ll

I
I
T 1

A
.
a

A
il

A
Al
'y

(©

Fig. 10: Starlike graph. (a) Layout of expected graph. (b) Layout of probabilistic graph. (c) For each edge: distribution of PMF (top row), sampled
edge weight (center row), and Euclidean edge length for samples (bottom row). While the different PMFs on edges are not visible in (a), they are
clearly visible in (b), as the orange node is split in three pieces: one for each possible combination of the bimodal PMF on edges (5,1) and (5,3).

~
o
B3

50% 1

stress increase

n
a
B3

0% T v v v
0% 25% 50% 75%

anchoring stability

(a) stress increase

(b) & = 0.05

(c) a=0.15

(d) stress at o« =0.15

Fig. 11: Visualization of the starlike graph for various stability values «. (a) Average increase in stress for various stability values. Up to o = 0.2,
the stress is increased by at most 15%. (b) The flipping and rotation problems of the force-directed layout result in much clutter. Anchoring on
the reference layout stabilizes the resulting layout (c) at @ = 0.15. The stress of each node (d) is distributed rather well; from low to high stress:

blue—yellow—red.

for DBSCAN to filter noise is between 10 to 50. Hence, we only need
to fine-tune the proximity radius for DBSCAN based on one typical
node of choice. The resulting clustering should be fine for most nodes,
therefore we can filter all nodes with less than two clusters along with
corresponding shapes. Instead of the number of clusters, other criteria
could be based on shape and spatial distance of clusters. The remaining
nodes are potentially interesting, hence we can adjust the bandwidth
for those nodes without being distracted by filtered nodes. Furthermore,
we can estimate DBSCAN noise filtering parameters when rendering
node splats and shapes at the same time.

6 RESULTS

For evaluation purposes in the context of this paper, we use synthetic
data, protein—protein interactions (PPI), and travel times by car.

6.1 Synthetic Data

We use synthetic graph data to get an understanding of the technique,
demonstrate some effects, and gain some trust in the visualization
technique.

Figure 10 shows a starlike graph consisting of 5 nodes and 8§ edges.
The PMFs on the edges are either unimodal or bimodal (Figure 10c,
top row), but all of them have the same expected value.

The simple weighted graph layout shown in Figure 10a does not
reveal anything about how distributions might interact within the
network—the graph seems uniform, even though it is not. In con-
trast, the distributions get quite visible with our probabilistic graph
layout shown in Figure 10b. For the outer nodes, it is easy to grasp
whether a node is connected to unimodal or bimodal distributions by
counting clusters within a node. For the center node, an interaction
between two bimodal distributions is revealed, since it is thorn apart
into three clusters. Note that this aggregation is related to what is
called strength of a node for weighted graph layouts, i.e., the sum of

all incoming weights. While our minimalistic example seems artificial
and tailored, it demonstrates the potential of our approach and allows
us to discuss validity using ground truth data, i.e., if the image still
reflects the initial probabilities on edges. Graph drawing is a dimension-
reduction technique, which means we inherit all of its problems. We
consider the PMF of an edge well reflected if it is not distorted by our
layout algorithm.

The foremost thing that affects validity is the stability value o shown
in Figure 11. A very low value results in visual clutter, whereas a very
high value pins the entire distribution to the expected value. We choose
our example stability value by inspecting stress of our anchored layout
Sq over the reference layout stress Sg, i.e., relative stress ‘;—: introduced
by anchoring. The basic idea is to get a good trade-off between having
a visual reference and additional stress (Figure 11a). Increased stress
means that it is more likely that distributions are not well reflected in the
final layout. Also note that the discrete points get visible at low stability
values (Figure 11b), because of the specified splat size. Retrospectively,
there might be better techniques to reconstruct nonlinearly projected
continuous distributions.

To further quantify this distortion, we compare the PMF, sampled
edge weights, and the Euclidean distance between connected nodes
shown in Figure 10c. Apparently, all distributions are well reflected.

Another possibility to investigate the quality of the probabilistic
graph layout is to inspect the stress mapped to nodes, like shown in
Figure 11d. Stress is relative, hence low does not necessarily mean
good, and high does not always imply bad, but it allows us to compare
two regions relatively to each other. We believe that it is important to
mix relative stress and absolute function distance for validation and to
gain some trust in our visualization technique. The reduction of the
distortion can be made part of the optimization by choosing the right
stability value, but it cannot be eliminated, since it is inherent to graph
drawing.

N Iy
3 \i\} D At BF. g
- {\: . N:\\
8. ™
' 4 \

Fig. 12: Synthetic tree. The zoomed-in view shows abstracted node
clusters of competing nodes, resulting in flipping.

Another interesting aspect is flipping, which requires more complex
graphs to appear, like shown in Figure 12. The first aspect to notice is
the strong scattering of several leaf nodes, due to the tendency toward
edge weights of 0 and the high degree of freedom in graph layout,
which causes the leaf nodes to flee from surrounding nodes. The detail
view in Figure 12 shows a number of competing nodes. Note that node
clusters (shapes) are restricted to nodes with at least two clusters. It is
difficult to estimate whether nodes compete because it depends on the
network topology, the reference position, and the PMFs in decreasing
order of importance. For example, the distribution of the blue leaf node
in the zoomed-in view of Figure 12 is divided into three major clusters.
This can be disambiguated by comparing the PMF to its corresponding
Euclidean distance distribution.

6.2 STRING Database

We examined data from the STRING database', which contains known
and predicted protein—protein interactions. Each interaction is associ-
ated with a score s € [0, 1] that is based on genetic, experimental, and
literature data [41]. We interpret the score as PMF f for the interaction
to actually be true, i.e.:

Fow) = {ls ifw=0

s ifw=1 (13)

This example is interesting for two reasons: First, two-valued dis-
tributions are at the lower end of what our technique can handle in
a meaningful way. Second, it exploits zero-replacement heuristics to
create clearly separated clusters, i.e., crumbled nodes are less expected
to be true than coherent nodes.

Our first example is a query for pancreatic alpha-amylase (Amy2).
The evidence view from the STRING database website depicts the
amount of information available to a set of links between the nodes
(Figure 13a), whereas the expected view maps the score to value (Fig-
ure 13b). When inspecting the number of connections in the evidence
view, we can tell that the number of connections does not directly cor-
relate to the expected value, which causes some additional confusion
when discovering the strong link between Amy2 and Si (Score: 0.934),
whereas in our visualization these proteins are very close to each other
without much of deformation. The other proteins can be grouped in
descending order by score As < 0.05: group 1 (Pygm, Pygb, Pygl),
group 2 (LOC286960, Athll, Ctrbl), and group 3 (Cela3b, Gne, Pepf).

This order corresponds roughly to our perceived order by node
coherency except for Athl (Figure 13c). The reason for this is that the
network topology keeps Athl coherent, which can be confirmed by

Uhttp://string-db.org/

(c) (d)
Amy2 Gne Si Amy2 Si Pygm Pepf Amy2
Py N
e e N
)
Si Athl1 Si Pygl Cela3b Ctrb1 Athl1 Gne
) A
Pa) P A
R —_— e~ N — =N -\
Ctrb1 Amy2 Pygm Amy2 Amy2 LOC286960 Cela3b Amy2
N P P
ey e e
N N P
Si Pygb Amy2 AthI1 Amy2 Pygb Amy2 Pygl
I AN

()

Fig. 13: Protein—protein interaction network Amy2: (a) Evidence view,
(b) layout of expected graph, (c) layout using our technique, (d) stress
mapped to node colors (blue: low, red: high), () PMFs (function plots
at the top), sampled edge weights (center plots), Euclidean distances
(bottom plots).

inspecting the distortion of distributions for Ath1l shown in Figure 13e,
and stress mapped to nodes shown in Figure 13d. Furthermore, we
can confirm that this is caused by network topology by inspecting
visualizations with varying stability values shown in Figure 14. Note
that orbiting of nodes around each other increases more quickly than
nodes falling apart with decreasing stability and destabilizing the layout
a bit aids in perceiving the network topology due to orbiting. Very low
stability values increase the amount of visual clutter, whereas very high
stability values match the layout of the expected graph (reference for
anchoring).

Our second example is a search query for P450 (cytochrome) ox-
idoreductase (POR) with an increased search radius. Increasing the
search radius inevitably creates a hairball, due to the nature of protein—
protein interactions. All structure is concealed due to the sheer amount
of edge crossing and coloring in the expected graph (Figure 15a). This
is different with our visualization (Figure 15b), because the shape of
many nodes indicate an orbit and thus structure.

Whether the aggregation and two-dimensional representation of
simple distributions is useful to biologists is a question for future work.
We strongly suspect that “piling” information from edges in nodes is a

h

(a) ¢ =0.01 (b) ¢ =0.3 (c)a=04 (d) a=0.5 (e) a=0.6

200%4

& 150%
g
2

"5 100%
¢
@

50% 4

0%- , . .
25% 50% 75%
anchoring stability
(fla=0.7 (9) a=0.8 (h) =09 (i) stress increase

Fig. 14: Visualization of Amy2 for various stability values «. The flipping and rotation problems of the force-directed layout result in much clutter (a).
Anchoring on the reference layout (black dots) with, e.g., a = 0.3 stabilizes the layout.

.ml

vemLs

.
creacs

£ %

.c\pzcn

e
Ociracs

Fig. 15: Protein—protein interaction network POR: (a) layout of expected graph, (b) our technique illustrating the orbiting effect.

good idea because of the reduced number of visual elements (node vs.
node—edge—node).

6.3 Travel Times by Car

We have experimented with travel times by car between cities. This is
interesting because it is geo-referenced, non-trivial real-world data.

We interpret cities as nodes that are connected by edges representing
major roadways. We then look at the estimated time needed to travel
from one city to another. This approximated duration strongly depends
on the traffic that is predicted for this road during the given time of
day. For example, when traveling from city A to city B, it will make
a difference if we drive this route during the rush hour or through the
night, when overall traffic might be low.

‘We have extracted a data set of predicted travel durations between
the cities using the Google Directions API by sampling major roadways
for connected cities. Specifically, we have queried the travel time esti-
mates for a coherent week in time intervals of one hour. The extracted
network consists of eight cities located in the south of Germany and in
Switzerland.

In order to get a PMF for each connection, we first build a histogram

of the predicted travel times. Normalizing this histogram gives us a
discrete PMF over the durations. Note that the durations are distances
between two nodes. However, for our graph model we need weights,
therefore we use inverted durations between two cities as weights. Note
that the independence assumption is unlikely to be true—travel times
are highly correlated—but we ignore this issue here.

Cities in our data set have fixed geographic locations. Hence, we can
use each respective reference position for anchoring, like indicated in
Section 4.2. As long as this influence is not exaggerated, the graph can
still unfold its structure through the layout. Note that when using geo-
graphic positions instead of the expected graph, we have to make sure
that the average geographic distance between cities is approximately
the same as the average shortest path distance in the sampled graph.

Traffic data usually implies directed edges. Our initial idea was to
add virtual nodes and edges to make the graph undirected, without
aggregating the travel timings between two cities. Unfortunately, the
resulting layout was too confusing to do visual inference on travel
times. The conversion from a directed graph to an undirected graph
by introducing virtual nodes and edges has too much influence on the
layout. See supplemental material for more information.

Frankfurt Worzburg | | Karlsruhe Stuttgart | | Stuttgart Ulm Ulm Munich

Karlsruhe Frankfurt Nuremberg Munich | _{Stuttgart Wiirzburg | | Wirzburg Ulm

Karlsruhe Nuremberg | |Nuremberg Wiirzburg | | Stuttgart Zurich Zurich Munich

0002 !

density

0001 o

0000

5000 7500 10000 12500
value

(a) PMFs for travel times between cities

Munich

Munich

Zurich Zurich

Wuerzburg

Karlsruhe

Frankfurt Frankfurt

(b) =02 () x=02

Frankfurt Wuerzburg

Nuremburg

Karlsruhe -

Stuttgart

" Zurich " Zurich

(d) o = 0.2, geo-referenced (e) a =0.2, geo-referenced

Fig. 16: (a) Travel duration by car in 8 major cities in southern Germany
and Switzerland, pivoted to Karlsruhe. The probabilistic graph anchored
to expected layout (b, c) and geo-locations (d, e). Note that the choice of
anchor mainly affects rotation.

Therefore, we had to simplify by pivoting on one city, i.e., filtering
all edges that would lead back to the pivot city. The resulting graph
is non-starlike and allows us to visually infer travel times originating
from one city. Figure 16 shows the sampled and filtered PMFs, the
graph anchored to the expected graph (like before), and the graph
anchored to the geo-locations of the cities (experimental). Note that
the differences between the expected and geo-referenced layout are
rather small, because anchoring with low stability values is more about
directions, not about exact reference points. Hence, geo-referencing
seems like a valid modification of our technique. Furthermore, the inner
nodes depict a preferable direction, roughly reflecting travel times of
the entire network, even though Zurich is over-exaggerated compared
to Stuttgart or Karlsruhe.

7 LIMITATIONS AND CHALLENGES

We summarize the limitations of our approach and discuss the most
important issues that need to be addressed. While our approach benefits
from the generality of force-directed methods, it also inherits partly
their weaknesses.

Layout Stability: In the force-directed layout approach, nodes can
obtain completely different positions through small structural changes.
Different local optima may result in reflected or rotated positions for
parts of the graph. While this effect can also happen in our approach, it
happens less frequently, due to the alignment with the reference layout.

Layout Ambiguity: As for the force-directed layout, it is often not
clear whether the position and shape of a point cloud are due to the
edge weights or due to the graph structure. Here, we see the need to
incorporate more quantitative measures that would allow us to better
convey the reason why a node is on this position. A simple way to do
that would be to add noise on top of the incident edges of a single node,
and see which influence this change has on its position.

Clearly, if the layout of a single graph sample does not convey the
graph structure, e.g., if it looks like a hairball [31], then our approach is
not likely to work either. Nevertheless, techniques [31] for untangling
such complex structures are likely to work for our approach as well.

Computational Scalability: Our implementation of the force-
directed method needs &(r2- (n+m) +n? - r), where n is the number
of nodes, m the number of edges, and r the number of iterations for
stress majorization. While this only scales to graphs of medium size,
other more scalable force-directed methods could be used as well [22].
The runtime to determine cluster regions for one node is on average
O (klogk), where k is the number of sampled graphs.

Perceptual Scalability: The more problematic limitation is in
the visual distinction of the different node regions. The set of distin-
guishable colors is quickly exhausted, especially if the node regions
are not connected. Our half-opened shapes (node clusters) allow us
to search and select a limited number of distinguishable regions on
top of splatting. Here, we see the need for better depiction techniques
(set and distribution). In addition to that, tracing edges is hard and
mapping to visual variables other than color is a big challenge. Note
that the edge bundles reflect the connection between identical nodes in
the graph. Thus, visual identification of single edges in such a bundle
is typically not required, unless distribution and outliers of edge lines
are of interest.

8 CONCLUSION AND FUTURE WORK

We have presented a novel approach for uncertain network visualization
that maps probability distributions of edges to visually perceivable
splats and shapes. In this context, we have explored many aspects of
filtering and depicting a set of overlapping clusters of points while
maintaining the visibility of the underlying network topology.

We have applied our approach to several data sets, i.e., synthetic data,
protein—protein interaction data, and travel time data with geographic
reference. While it is sometimes complicated to interpret the results,
due to the alternation of nodes between positions, this also allowed
us to assert problems of the underlying force-directed layout method.
Although not developed for this purpose, we think that our visualization
approach would help analyze the impact of parameters of graph layout
techniques.

Further graph layout, coloring, and visualization methods need to
be developed that consider the full spatial distribution of point clouds.
After examining the influence of our layout and visualization technique
on various data sets, it remains to investigate its effectiveness and
efficiency with controlled user experiments.

ACKNOWLEDGMENTS

We would like to thank the German Research Foundation (DFG) for
financial support within projects AO1 and BO2 of SFB/Transregio 161.

REFERENCES

[1] C. Aggarwal and P. Yu. A survey of uncertain data algorithms and ap-
plications. [EEE Transactions on Knowledge and Data Engineering,
21(5):609-623, 2009. doi: 10.1109/TKDE.2008.190

[2] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of
dynamic graph visualization. Computer Graphics Forum, 2016. doi: 10.
1111/cgf. 12791

[3]

(4]

[3]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

W. Berger, H. Piringer, P. Filzmoser, and E. Groller. Uncertainty-aware
exploration of continuous parameter spaces using multivariate prediction.
Computer Graphics Forum, 30(3):911-920, 2011. doi: 10.1111/j.1467
-8659.2011.01940.x

P. Boldi, F. Bonchi, A. Gionis, and T. Tassa. Injecting uncertainty in
graphs for identity obfuscation. Proceedings of the VLDB Endowment,
5(11):1376-1387, 2012. doi: 10.14778/2350229.2350254

U. Brandes and M. Mader. A quantitative comparison of stress-
minimization approaches for offline dynamic graph drawing. In Graph
Drawing, 19th International Symposium, GD 2011, pp. 99-110. Springer,
2012. doi: 10.1007/978-3-642-25878-7_11

U. Brandes and C. Pich. Eigensolver methods for progressive multidi-
mensional scaling of large data. In Graph Drawing, 14th International
Symposium, GD 2006, pp. 42-53. Springer, 2006. doi: 10.1007/978-3-540
-70904-6_6

U. Brandes and C. Pich. An experimental study on distance-based graph
drawing. In Graph Drawing, 16th International Symposium, GD 2008, pp.
218-229. Springer, 2009. doi: 10.1007/978-3-642-00219-9_21

K. Brodlie, R. Allendes Osorio, and A. Lopes. A review of uncertainty in
data visualization. In J. Dill, R. Earnshaw, D. Kasik, J. Vince, and C. P.
Wong, eds., Expanding the Frontiers of Visual Analytics and Visualization,
pp. 81-109. Springer, London, 2012. doi: 10.1007/978-1-4471-2804-5_6
J. Chuang, D. Weiskopf, and T. Moller. Hue-preserving color blending.
IEEE Transactions on Visualization and Computer Graphics, 15(6):1275—
1282, 2009. doi: 10.1109/TVCG.2009.150

C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing set
relations with isocontours over existing visualizations. IEEE Transactions
on Visualization and Computer Graphics, 15(6):1009-1016, 2009. doi: 10
.1109/TVCG.2009.122

C. Correa, Y.-H. Chan, and K.-L. Ma. A framework for uncertainty-aware
visual analytics. In IEEE Symposium on Visual Analytics Science and
Technology, pp. 51-58, 2009. doi: 10.1109/VAST.2009.5332611

B. Delaunay. Sur la sphere vide. a la mémoire de georges voronoi. Bulletin
de I’Academie des Sciences de I’URSS. Classe des sciences mathematiques
et na, 7:793-800, 1934.

P. Erdos and a. Rényi. On random graphs. Publicationes Mathematicae,
6:290-297, 1959. doi: 10.2307/1999405

M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. Second
International Conference on Knowledge Discovery and Data Mining, pp.
226-231, 1996. doi: 10.1.1.71.1980

D. Feng, L. Kwock, Y. Lee, and R. M. Taylor II. Matching visual saliency
to confidence in plots of uncertain data. IEEE Transactions on Visualiza-
tion and Computer Graphics, 16(6):980-989, 2010. doi: 10.1109/TVCG.
2010.176

E. R. Gansner, Y. Hu, and S. G. Kobourov. GMap: Drawing graphs as
maps. In Graph Drawing, 17th International Symposium, GD 2009, pp.
405407, 2009. doi: 10.1007/978-3-642-11805-0_38

E. R. Gansner, Y. Koren, and S. C. North. Graph drawing by stress
majorization. In Graph Drawing, 12th International Symposium, GD
2004, pp. 239-250. Springer, 2004. doi: 10.1007/978-3-540-31843-9_25
H. Guo, J. Huang, and D. H. Laidlaw. Representing uncertainty in graph
edges: an evaluation of paired visual variables. IEEE Transactions on
Visualization and Computer Graphics, 21(10):1173-1186, 2015. doi: 10.
1109/TVCG.2015.2424872

M. Harrower and C. A. Brewer. ColorBrewer.org: An online tool for
selecting colour schemes for maps. The Cartographic Journal, 40(1):27—
37, 2003. doi: 10.1179/000870403235002042

P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent space approaches to
social network analysis. Journal of the American Statistical Association,
97(460):1090-1098, 2002. doi: 10.1198/016214502388618906

D. Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. I[EEE Transactions on Visualization and Computer
Graphics, 12(5):741-748, 2006. doi: 10.1109/TVCG.2006.147

Y. Hu. Efficient, high-quality force-directed graph drawing. Mathematica
Journal, 10(1):37-71, 2005.

C. Hurter, O. Ersoy, and A. Telea. Graph bundling by kernel density
estimation. Computer Graphics Forum, 31(3):865-874, 2012. doi: 10.
1111/5.1467-8659.2012.03079.x

T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information Processing Letters, 31(1):7-15, 1989. doi: 10.1016/
0020-0190(89)90102-6

S. Kobourov. Force-directed drawing algorithms. In R. Tamassia, ed.,

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

(36]

(37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

Handbook of Graph Drawing and Visualization, pp. 383-408. CRC Press,
2013.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles
and Techniques — Adaptive Computation and Machine Learning. The MIT
Press, 2009.

J. B. Kruskal. Nonmetric multidimensional scaling: A numerical method.
Psychometrika, 29(2):115-129, 1964.

B. Lee, G. G. Robertson, M. Czerwinski, and C. S. Parr. CandidTree: Visu-
alizing structural uncertainty in similar hierarchies. In Human-Computer
Interaction, INTERACT’ 07, pp. 250-263. Springer, 2007. doi: 10.1007/
978-3-540-74800-7_20

D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social
networks. Journal of the American Society for Information Science and
Technology, 58:1019-1031, 2007. doi: 10.1002/asi

A. M. MacEachren, R. E. Roth, J. O’Brien, B. Li, D. Swingley, and
M. Gahegan. Visual semiotics & uncertainty visualization: An empiri-
cal study. IEEE Transactions on Visualization and Computer Graphics,
18(12):2496-2505, 2012. doi: 10.1109/TVCG.2012.279

A. Nocaj, M. Ortmann, and U. Brandes. Untangling the hairballs of multi-
centered, small-world online social media networks. Journal of Graph
Algorithms and Applications, 19(2):595-618, 2015. doi: 10.7155/jgaa.
00370

P. Parchas, F. Gullo, D. Papadias, and F. Bonchi. Uncertain graph pro-
cessing through representative instances. ACM Transactions on Database
Systems, 40(3):1-39, 2015. doi: 10.1145/2818182

E. Rosén, E. Jansson, and M. Brundin. Implementation of a fast and
efficient concave hull algorithm. Project report, University of Uppsala,
2014.

D. Sacha, H. Senaratne, B. C. Kwon, G. Ellis, and D. A. Keim. The role
of uncertainty, awareness, and trust in visual analytics. IEEE Transactions
on Visualization and Computer Graphics, 22(1):240-249, 2016. doi: 10.
1109/TVCG.2015.2467591

M. Skeels, B. Lee, G. Smith, and G. Robertson. Revealing uncertainty
for information visualization. In Proceedings of the Working Conference
on Advanced Visual Interfaces, pp. 376-379. ACM, 2008. doi: 10.1145/
1385569.1385637

S. Tak and A. Toet. Color and uncertainty: It is not always black and
white. EuroVis — Short Papers, 2014. doi: 10.2312/eurovisshort.20141157
M. Tory, C. Swindells, and R. Dreezer. Comparing dot and landscape
spatializations for visual memory differences. IEEE Transactions on
Visualization and Computer Graphics, 15(6):1033-1039, 2009. doi: 10.
1109/TVCG.2009.127

R. Van Liere and W. De Leeuw. GraphSplatting: Visualizing graphs as
continuous fields. IEEE Transactions on Visualization and Computer
Graphics, 9(2):206-212, 2003. doi: 10.1109/TVCG.2003.1196007

C. Vehlow, T. Reinhardt, and D. Weiskopf. Visualizing fuzzy overlap-
ping communities in networks. IEEE Transactions on Visualization and
Computer Graphics, 19(12):2486-2495, 2013. doi: 10.1109/TVCG.2013.
232

T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. van
Wijk, J.-D. Fekete, and D. Fellner. Visual analysis of large graphs: State-
of-the-art and future research challenges. Computer Graphics Forum,
30(6):1719-1749, 2011. doi: 10.1111/j.1467-8659.2011.01898.x

C. von Mering, L. J. Jensen, B. Snel, S. D. Hooper, M. Krupp,
M. Foglierini, N. Jouffre, M. A. Huynen, and P. Bork. STRING: Known
and predicted protein-protein associations, integrated and transferred
across organisms. Nucleic Acids Research, 33:D433-7, 2005. doi: 10.
1093/nar/gki005

Y. Wang, Q. Shen, D. Archambault, Z. Zhou, M. Zhu, S. Yang, and
H. Qu. AmbiguityVis: Visualization of ambiguity in graph layouts. JEEE
Transactions on Visualization and Computer Graphics, 22(1):359-368,
2016. doi: 10.1109/TVCG.2015.2467691

C. Ware. Foundations for an applied science of data visualization. In
Information Visualization, pp. 1-30. Elsevier, 2013. doi: 10.1016/B978-0
-12-381464-7.00001-6

D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic
number of a graph and its application to timetabling problems. The
Computer Journal, 10(1):85-86, 1967. doi: 10.1093/comjnl/10.1.85
Z.Zou,J. Li, H. Gao, and S. Zhang. Mining frequent subgraph patterns
from uncertain graph data. IEEE Transactions on Knowledge and Data
Engineering, 22(9):1203-1218, 2010. doi: 10.1109/TKDE.2010.80

	Introduction
	Related Work
	Graph Model
	Graph Layout
	Force-directed Layout
	Alignment with Anchoring

	Graph Visualization
	Node Splatting
	Edge Splatting
	Node Coloring and Labeling
	Clustering

	Results
	Synthetic Data
	STRING Database
	Travel Times by Car

	Limitations and Challenges
	Conclusion and Future Work

