
ACM Reference Format
Neubert, B., Franken, T., Deussen, O. 2007. Approximate Image-Based Tree-Modeling using Particle Flows.
ACM Trans. Graph. 26, 3, Article 88 (July 2007), 8 pages. DOI = 10.1145/1239451.1239539 http://doi.acm.
org/10.1145/1239451.1239539.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2007 ACM 0730-0301/2007/03-ART88 $5.00 DOI 10.1145/1239451.1239539
http://doi.acm.org/10.1145/1239451.1239539

Approximate Image-Based Tree-Modeling using Particle Flows

Boris Neubert Thomas Franken Oliver Deussen
University of Konstanz

Figure 1: A tree is modeled using a set of input photographs. We show some examples of input and resulting 3D tree models. If image
information is not available, e.g. the foliage is missing, the user is able to sketch it (right). The models approximate the input images while
forming botanically plausible branching structures.

Abstract

We present a method for producing 3D tree models from input
photographs with only limited user intervention. An approximate
voxel-based tree volume is estimated using image information. The
density values of the voxels are used to produce initial positions for
a set of particles. Performing a 3D flow simulation, the particles are
traced downwards to the tree basis and are combined to form twigs
and branches. If possible, the trunk and the first-order branches are
determined in the input photographs and are used as attractors for
particle simulation. The geometry of the tree skeleton is produced
using botanical rules for branch thicknesses and branching angles.
Finally, leaves are added. Different initial seeds for particle simu-
lation lead to a variety, yet similar-looking branching structures for
a single set of photographs.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—ModelingApplications

Keywords: Image-Based Modeling, Plant models, Botanics

1 Introduction

Modeling complex botanical tree geometry has posed a challenge
for computer graphics for decades. Beginning with abstract branch-
ing structures, the complexity and visual appearance has been en-
hanced over the years in such a way that today many tree models
appear photo-realistic to us. However, creating this type of models

is still cumbersome. To mimic a specific tree or a given tree shape,
usually many parameters must be manually adjusted. Image-based
modeling methods try to overcome this problem by using a set of
photographs to create the geometry directly.

In recent years some techniques have been published that try to cre-
ate exact 3D representations for given trees. In contrast to these
methods our approach produces qualified approximations. Thus,
we avoid registration and many numerical problems while still
achieving plausible branching structures. The models still show
differences to the input; however, we are able to create a variety of
similar models easily by changing parameters in our system.

The input is a small set of photographs of a tree taken from different
views. Usually two images are sufficient for a good approximation.
In contrast to other approaches, we do not need an exact registration
of these images and interactively arrange them in our system. Since
the images typically contain unwanted background we separate the
trees using common algorithms for alpha matting.

The general idea of our approach is to combine a bottom-up con-
struction with internal and external constraints. We compute a
voxel-model of the tree volume with each voxel containing a den-
sity estimate of the trees biomass. Proportional to this density par-
ticles are produced and traced downwards to the tree basis using
a 3D flow simulation. Simple rules direct and force them to form
twigs and subsequent branches. This already creates nice-looking
tree skeletons and, by later adding leaves, complete trees.

To achieve models that are similar to the given input photographs,
particle simulation is directed by the main branching structures
in the input images. Therefore, if possible, we extract the trunk
and the main branches from the photographs and construct two-
dimensional attractor graphs for each input image. These attrac-
tor graphs are combined to influence the 3D particle simulation by
modifying their directions. Subsequently, a triangular mesh is built
around the resulting 3D graph using allometric rules. While we
primarily concentrated on automatic image-based construction, it
is also possible to interactively guide the method to a desired re-
sult. By painting densities and by changing directions for particle
simulation, the produced geometry can be modified in various ways
without the need to adjust many parameters.

ACM Transactions on Graphics, Vol. 26, No. 3, Article 88, Publication date: July 2007.

2 Previous Work

Classical tree modeling is rule-based or uses modeling procedures.
While in L-Systems [Prusinkiewicz and Lindenmayer 1990] for-
mal rules are applied to an initial state, most procedural approaches
use parameterized algorithms [Oppenheimer 1986; de Reffye et al.
1988; Holton 1994; Weber and Penn 1995]. These algorithms also
encode rules, but in a more specific notion. The xfrog system [Lin-
termann and Deussen 1999] tries to combine both approaches.

In a classical L-System, the rule basis has to be written by the
user. Since rules work locally, small changes of values might cause
large changes in the overall shape. Such behavior makes model-
ing quite cumbersome. Various extensions of L-Systems have been
proposed since then, e.g. parametric [Prusinkiewicz and Linden-
mayer 1990], open [Měch and Prusinkiewicz 1996] and differential
L-Systems [Prusinkiewicz et al. 1993]. These extensions are able
to create a variety of effects, but also result in additional param-
eters. Prusinkiewicz et al.[2002] present a modeling interface for
L-Systems to enhance the modeling ease, but still a large set of pa-
rameters has to be defined by the user.

Procedural approaches are usually restricted to produce a limited
number of forms. They are also able to limit the amount of ad-
justable parameters for the user. However, with increasing model
complexity, this amount also increases. While Oppenheimer [1986]
used only some basic parameters, later approaches such as the one
presented by Weber and Penn [1995] have dozens.

In the xfrog system, procedural elements are combined using a sim-
ple rule system, which allows faster modeling. However, the num-
ber of parameters is still large. Ijiri et al.[2005] use interactive edi-
tors based on botanical rules to create plant models. While these ed-
itors allow for an efficient production of flowers and phyllotaxis, the
production of complex trees is not their strength. Okabe et al.[2005]
present a sketch-based interface for trees. Here, the user draws the
outline of a tree skeleton and its shape. However, again many pa-
rameters have to be adjusted to achieve specific species.

Image-based modeling: Shlyakter et al.[2001] direct the growth
of an L-System by given photographs. A visual hull is recon-
structed from the registered input images. The medial axis diagram
of the hull is constructed and used as the tree skeleton. The smaller
branches and leaves are added using an L-System. Our approach
is different in several aspects: Instead of using the medial axis,
we generate the tree skeleton using a particle simulation and are
thereby able to introduce numerous constraints. In contrast to this
approach, we estimate the density of the foliage also using the in-
put photographs. Instead of several hours, our models are computed
within seconds.

A very precise, though complex image-based modeling approach
is described by Reche-Martinez et al.[2004]. In this case a set of
carefully registered photographs is used to determine the volumet-
ric shape of a given tree. The volume is divided into cells; for
each cell a valid visual representation is computed by a set of tex-
tures. The complete set of textures represents the tree quite faith-
fully. However, a large amount of texture space in the order of tens
of megabytes is needed. Also, it is not easy to show the tree under
various lighting conditions since the lighting is already incorporated
into the textures. In our approach we avoid this by creating a 3D
surface model using the images. Also we do not need an exact reg-
istration of the input photographs and instead create an approximate
shape of the given tree.

Another image-based method for modeling smaller plants was pre-
sented by Quan et al.[2006]. Here, an image sequence is recorded
and the model is computed from these images in a semi-automatic

way. Although the results are of high quality, the amount of re-
quired user input prevents modeling complex objects where such a
method would be particularly interesting.

An important inspiration for our approach are particle simulations.
Reeves [Reeves 1983; Reeves and Blau 1985] used them for pro-
ducing trees. They were also utilized for creating other ramified
patterns such as river beds or lightning [Viennot et al. 1989; Ebert
et al. 2003]. Rodkaew et al.[2003] describe an automatic modeling
method that creates a branching skeleton from given random leaf
positions. Particle simulation is used to trace particles from the leaf
positions downwards to the base of the tree. This way it is possible
to yield realistic looking tree models. The authors also perform par-
ticle simulation for the creation of vessels in leaves, which results
in nice images; however, is computationally quite expensive. Fur-
thermore, the resulting branching structures depend strongly on the
initial positions of the particles in the simulation. In our approach
we modify the particle traces to create results that are similar to the
given images. This is done by extending the particle simulation by
direction fields computed from the input images. Additionally, for
the branches biological constraints are imposed, i.e. we are able
to specify the branching angle or the direction in which branches
primarily grow.

3 Overview

Our approach therefore can be seen as particle simulation with ex-
ternal constraints from input images and internal botanical restric-
tions. It can be divided into five steps, which are computed one
after the other. The outline below also reflects the further structure
of the paper:

1. Pre-processing: For each given input image the tree is sep-
arated from the background and a 2D attractor graph is com-
puted.

2. Creation of the voxel model: By back-projecting to the input
images, we fill a voxel-grid with density values. The values
of the voxels are an estimate of the tree density.

3. Computation of direction fields: To incorporate informa-
tion of the input images, we use the 2D attractor graphs to
create direction fields. These fields provide direction vectors
for each input image plane. Combining these vectors for all
image planes yields vectors that direct the particles in the sub-
sequent 3D flow simulation.

4. Particle simulation: In proportion to the density values we
produce random initial positions for particle flow simulation.
The traces of the particles are influenced by forces of neigh-
bors and by the direction fields. As a result we obtain the main
tree skeleton in form of a 3D graph.

5. Production of geometry: The tree skeleton is now converted
into 3D geometry using allometric rules. Tiny branches and
leaves are added and create the final foliage.

4 Pre-processing

Usually our input images contain background objects. Therefore,
we initially need to separate the tree from the background. This is
particularly complicated for natural objects with many holes. For-
tunately, in recent years a number of methods for performing alpha
matting have been published [Ruzon and Tomasi 2000; Pérez et al.
2003; Sun et al. 2004]. Usually the methods are not fully automatic.
A common setup lets the user create an initial trimap that specifies
the pixels of the object, pixels of the background and an uncer-
tainty region. In our case this is done by selecting pixels with ap-

88-2 • Neubert et al.

ACM Transactions on Graphics, Vol. 26, No. 3, Article 88, Publication date: July 2007.

propriate colors in the input images. The separation algorithm fills
the uncertain regions with either opaque (foreground), transparent
(background) or partly transparent pixels based on an interpolation,
which takes into account the image gradients. We interpret the re-
sult from the matting procedure as described by Sun et al.[2004]
as a density estimation of the tree for the corresponding view (see
Figure 2(b)).

In a second step, the images are used to sketch an estimate of the
underlying tree skeleton in the corresponding view. We use the
Livewire approach [Chodorowski et al. 2005] for this purpose. The
algorithm needs a target point – usually the foot point of the tree
or the position of the first branching on the trunk (see Fig. 2(b)).
Additionally, seed points for the branches have to be determined.
This can be done automatically by randomly selecting points on
the tree silhouette or by manually introducing seed points which
usually creates better results.

(a) (b)

Figure 2: (a) Input image; (b) tree density estimation with corre-
sponding attractor graph.

The attractor graph is now computed with every branching forming
a node. The algorithm starts at each seed point and finds a path
through the visual structures of the input image to reach the target
point (this is in fact another kind of particle simulation). The result
reflects the main branching structure of the tree in the image. This
is done for all photographs, we call the resulting graphs attractor
graphs, see Figure 2(b). If no information is contained in the image,
an arbitrary skeleton is produced or the user has to draw it manually.

5 Computing the Tree Density

For now let us assume the camera model of the input images to be
a parallel projection and to have two input images at a right an-
gle. In the previous step we obtained the alpha values of the input
photographs, now we construct an initial 3D estimation of the plant
volume that encompasses a voxel grid. Initial density values for
the voxels are estimated from the input photographs. A discretized
version of the volume rendering equation allows us to compute the
desired solution. Solving for a least-squares solution results in a
refined density volume that is later used for the branching structure
and as a bounding volume for the final foliage. For each voxel Vi in
the grid we assign a density value αi. After initializing the values
we use an iterative algorithm to refine them. In the final density
distribution, voxels with higher α values will belong to parts of the
plant that contain many leaves or branches.

A well known method to generate images from volumetric repre-
sentations is found in [Sabella 1988; Max 1995] using a discrete

form of the volume rendering equation for an emission-absorbtion
model without scattering:

I(sn) =
n

∑
k=0

bk

n

∏
j=k+1

θ j (1)

The value θ j is the transparency of voxel j and bk is the light emit-
ted from the k-th voxel.

Considering the given input images as a solution for Eq. 1, it is pos-
sible to reconstruct the density values of the volume grid V . Reche-
Martinez et al.[2004] use a similar approach to reconstruct the vol-
ume model for their image-based rendering algorithm and rely on
the same assumptions. However, it is important to note that in our
case an accurate reconstruction is not needed as we do not render
images directly from the volumetric reconstruction. Instead we use
the density information to subsequently produce the density of a
surface representation of the plant. This allows us to apply a simple
reconstruction method and a relatively coarse grid with typically
25×25×25 voxels.

To initialize the density αi for the i-th voxel Vi we project the voxel
back onto each input image. We determine the average density of
the projected area and use the minimum value as an initialization
for αi. Note, that the resolution of the voxel grid is typically much
coarser than the input images we use, so many pixels are combined
for one projected area. This initial value would only be correct if
all other contributing voxels had zero density and therefore is an
upper limit for the transparency. Voxels with initial density values
below a predefined threshold are rejected and not considered in the
following steps. This can be seen as implicit space carving and
reduces the complexity in the following steps considerably without
reducing the quality of the resulting density estimate.

We solve the resulting system of linear equations in an iterative
way similar to Reche-Martinez et al.[2004]. In Figure 3(a) a set
of three input density images is shown. The initial alpha values of
the voxel grid can be seen in Figure 3(b), the least squares solution
of the equation system is shown in Figure 3(c). In the solution we
consider negative results as to be empty voxels. In subfigure (d)
the computed density values for one image plane are shown. Their
values are indicated by the size of grey squares.

6 Particle Tracing

Using the density values we create initial particle positions for the
main tree skeleton. The particles are placed randomly in the voxels
in proportion to their density. Since we do not have specific botanic
measurements about the total number of branches in different tree
species, we use heuristics that are manually adapted if necessary.
For medium-sized trees we use between 500 and 1000 particles, for
large models between 1000 and 2000.

As mentioned above, we extend the method by Rodkaew
et al.[2003] in order to achieve specific tree skeletons and shapes
according to our input photographs. This is done by introducing
the attractor graphs to particle tracing and by establishing additional
rules. First, we would like to describe the general simulation fol-
lowed by our refinements.

A particle pi is represented by a position xi, velocity x′i, and mass
mi. It moves under the influence of time-dependent forces repre-
sented by fi(xi,x′i, t). The Newtonian law gives us fi = mi · x′′i and
x′′i = fi/mi which is a well studied differential equation of second
order [Hockney and Eastwood 1988; Witkin and Baraff 1997] and
usually written in the form of coupled first order differential equa-
tions:

[xi,x′i] = [x′i, fi/mi] (2)

Approximate Image-Based Tree-Modeling using Particle Flows • 88-3

ACM Transactions on Graphics, Vol. 26, No. 3, Article 88, Publication date: July 2007.

(a) (b) (c) (d)

Figure 3: Estimating the tree density: (a) Initial density values for three input images; (b) voxel grid by back-projection; (c) refined voxel
grid; (d) density values for one image plane. High density values are marked by large squares.

This system can be iteratively solved using an explicit Runge-Kutta
method as found in Press et al. [1992, p. 707ff.]. During simulation
the positions of the particles are updated according to their mass and
external forces. The mass can be seen as some kind of reluctancy
of a particle to change the current orientation and/or velocity.

One important aspect of the force is to implement the particle attrac-
tion. This attraction is needed to form the tree skeleton. Particles
close to each other are forced to join and subsequently move for-
ward together. This is implemented by searching the nearest neigh-
bor for each particle and combining them if their distance is below
a given threshold. The basic particle tracing mechanism can be
written as follows:

Procedure ParticleTrace
Initialize particle positions according to voxel density
while particles not at tree basis do

forall particles pi do
determine forces fi
determine velocities and positions (Eq. 2)

determine nearest neighbor and join if close enough

The particle traces are stored as a 3D branching graph, which de-
scribes the main tree skeleton. This basic simulation is now refined
in order to match our modeling requirements.

7 The Direction Field

The simulation so far combines the particle traces to small branches
that merge and form the skeleton. The particles are directed towards
the tree basis and towards their respective nearest neighbors. Ad-
ditionally, for each 2D attractor graph from the input images (see
Section 4) we create a two-dimensional discrete vector field in the
according image plane. Our goal is to direct the particles in such a
way that they simultaneously move towards the attractor graphs in
any of the image planes that correspond to these input images.

We project the particle position into each of the image planes using
the respective projection. Then, we determine the direction vector
from the vector fields in the global coordinate system. With two
input images at a right angle, we would obtain two vectors perpen-
dicular to each other. Generally speaking, we get a set of direction
vectors for which we compute the average. This vector, when be-

ing projected back to the image planes, is the average direction and
is used as part of the external force that is applied to the particle.
Theoretically there is a chance that all direction vectors might sum
up to zero, however our practical experiments have never supported
such a case.

The direction field is computed by applying a distance transform
to the attractor graph. For each position xi, j in the direction field
the closest point on the attractor graph gi, j is computed, let vi, j =
gi, j − xi, j be the vector pointing towards the gi, j. Additionally we
compute the tangential vector of the graph ti,k at position gi, j .

Normalized versions of these two vectors, v̄i, j and t̄i, j, rsp., are used
for computing the forces on a particle close to xi, j. We modeled this
force as a weighted sum using the blending function h(d) which
depends on the distance d = |vi, j| to the graph:

fi, j = h(d) · v̄i, j +(1−h(d)) · t̄i, j (3)

If the blending function is linear, particles far away from the graph
are directed towards gi, j and particles close to the graph into the
tangential direction ti, j in gi, j. If instead we use a constant function
h(d) for all d > 0, the particles are directed at a fixed angle towards
the closest point gi, j on the nearest graph segment.

The direction vectors fi, j are computed for a two-dimensional grid
which is embedded in each of the image planes. The resolution for
these grids does not need to match the resolution of the voxel grid
nor the resolution of the images. In our practical tests a grid of 100
by 100 proved to be sufficient.

In Figure 4 we demonstrate the particle flow for a two-dimensional
case. Figure 4(a) shows a direction field for a linear blending func-
tion h(d), in (b) for a constant function. Subfigure (c) shows the
result for a flow simulation using the field of subfigure (a), but with-
out attraction between particles. In (d) the field of (b) is used, this
time including attraction. The branches now have a nearly fixed
branching angle due to the given field. Finally, subfigure (e) shows
particle flows with linear h(d) and attraction, the mostly used case.
In this case the graph follows the given direction field quite well.

8 Creating the Tree Geometry

So far we have created a 3D graph that represents the main branch-
ing structure of our desired model. For each of the segments within

88-4 • Neubert et al.

ACM Transactions on Graphics, Vol. 26, No. 3, Article 88, Publication date: July 2007.

(a) (b) (c) (d) (e)

Figure 4: (a) Direction field for a given graph and linear blending function h(d), the vectors close to graph segments point down the graph;
(b) for a constant blending function, the vectors point at a given angle towards the nearest segment; (c) result for linear blending without
particle attraction; (d) result for constant blending including particle attraction; (e) result for linear blending including particle attraction.

the graph we store a number indicating how many particles were
combined to form this segment. The graph is converted into ge-
ometry by assigning each branch a thickness and by introducing
appropriate geometry to the branchings.

In our approach, we determine the thickness of the branches based
on a rule that has already been discovered by Da Vinci in the 16th
century and holds for many trees (see [Deussen and Lintermann
2005, pp. 32ff]). It was introduced to computer graphics by Holton
[1994]. The rule specifies the relation between the diameter of a
branch and the diameters of its children:

r2 = a ·∑r2
i

where r is the radius of the main branch, ri are the radii of the
branching twigs, a is a constant. We compute the thickness of a
branch by using the stored number of particles. They reflect the
overall number of sub-branches and therefore can be used to de-
termine the cross-section [Holton 1994]. The branch geometry is
now created by connecting discs of the required thickness that are
positioned along the branch in certain distances and that are ori-
ented perpendicular to the branch. These discs are triangulated and
textured.

(a) (b)

Figure 6: (a) Creation of the tiny twigs; (b) leaf primitives.

The process allows us to create convincing structures of several
hundred branches. However, the geometric complexity of natural
trees consists in large part of tiny branches and twigs that branch
from larger ones in a more regular way. Instead of creating these
tiny branches using our global particle simulation we decided to
give the user the opportunity to gain finer control over the appear-
ance of these branches. This control can also be achieved using a
sketch based system as presented by Okabe et al.[2005], adapted

in a way that the user sketches examples only for higher branch-
ing levels that are subsequently applied to the whole plant or us-
ing a parameterized approach that allows us to incorporate further
botanic laws. One of these laws is the Golden Section placement
rule, which arranges leaves at a deviation angle about 137.5◦ along
a twig; other prominent angles are 90◦, 180◦. For many species
plagiophototropism directs the leaves perpendicular to the sunlight
[Deussen and Lintermann 2005, pp. 24ff] (see Fig. 6(a)). The pa-
rameters that are interactively chosen by the user during this final
modeling step are length, rigidity, and frequency of the small twigs,
leaf size and texture.

To create the foliage texture we use photographs of natural leaves,
add an alpha buffer and use a quad or a small set of triangles to
support the texture (see Fig. 6(b)). The positions of the leaves are
determined by the density values of the voxels resulting in models
where parts with high density values will contain many leaves. For
trees as in Figure 2 the leaves appear in spatially clustered regions
that we cannot represent with our course grid - therefore we refine
the leaf arrangement by projecting the position of each leaf to the
image planes and discarding leaves that are projected to empty or
very sparse regions.

9 Results and Discussion

Figure 7 shows two tree models with their corresponding input pho-
tographs. Animations of the models can be found in the accompa-
nying video. The geometric complexity of the models is 555,000
triangles for the first tree and 285,000 triangles for the second. In
both cases the given shape and structure of the input is approxi-
mated quite faithfully by the models. In Figure 8 a pine tree is
created from two photographs that show significant occlusion and
other trees in the background.

The modeling works in most parts at interactive rates. The pre-
processing separates the tree in the input images and creates the
attractor graph interactively. The volume model is created within a
few seconds. The flow simulation of the particles needs about 5–
10 seconds for 1000–2000 particles and 200 iterations. The branch
geometry can be produced within a matter of seconds and the leaves
are also added within seconds even for complex models. All times
were recorded on a standard PC with 3 GHz.

In many cases the trees in the images are partly occluded by other
objects or have a shape that is deformed due to natural reasons. In

Approximate Image-Based Tree-Modeling using Particle Flows • 88-5

ACM Transactions on Graphics, Vol. 26, No. 3, Article 88, Publication date: July 2007.

(a) (b) (c) (d)

Figure 5: (a)-(b) Two results for a given direction field and different initial positions; (c) detailed view to chiseled and smoothed branches;
(d) complete tree skeleton of an oak tree (see Figure 9).

this case it is easy to fix the problem in the input images by drawing
and removing density. Another situation is due to the seasons. We
had three photographs of an oak at winter time. So we created a
tree skeleton (Figure 5) and added density to the images by simply
painting some strokes. The result is a tree model that looks natural
and reflects the sketched density by its branches and foliage.

9.1 Limitations of the Method

While creating nice, high quality models, our method has some
limitations: As outlined above, the branching patterns at smaller
branches are influenced not only by branching angles but also by
specific patterns in which branches appear. Such branching pat-
terns are hard to simulate using particle flows since in this case
complicated interaction of particles during the flow simulation is
needed or a post-processing step after simulation has to be per-
formed. A moved branch might interact with other branches, or cur-
vature might need to be adapted, etc. We are not able to solve this
completely, however, to minimize these problems we introduced
the above mentioned compound leaves: a number of simple leaves
arranged procedurally on a small twig.

We were also not able to create all tree species as convincingly as
others. Some trees change their shape and structure among branch-
ing levels. This is hard to simulate without creating different direc-
tion fields and particle rules for different branching levels. Also we
found it hard to create very steep branching angles with our simu-
lation since particles merge when getting too close.

10 Conclusions and Future Work

We have presented a new image-based modeling method for 3D tree
geometry. By imposing image constraints in the form of captured
branching patterns and density distributions we are able to adapt
particle simulation to a given set of input images. This enables us
to create convincing tree models that approximate a given shape.
Using different initial positions for the particles, different but simi-
lar tree skeletons can be produced. Tiny twigs and leaves are added,
the method runs at interactive rates and allows also for the model-
ing of trees by manually altering input images and direction fields

for the flow simulation. We tested the approach with several sets of
input images.

In the future we plan to couple the approach with Level-of-Detail
data structures since the produced models are often too complex for
interactive applications. Our branching graph already incorporates
a hierarchy since it has larger and smaller branches. For distant
models only the large branches might be shown together with an
visual approximation of the foliage. Smaller branches and leaves
might be generated on the fly when needed.

Acknowledgements

This work was supported in part by the BW-FIT research cluster
“Gigapixel displays” as well as the Karl Steinbuch Foundation,
the German Israel Foundation GIF and the DFG Graduiertenkol-
leg/1024 “Explorative Analysis and Visualization of Large Infor-
mation Spaces” at the University of Konstanz.

References

CHODOROWSKI, A., MATTSSON, U., LANGILLE, M., AND
HAMARNEH, G. 2005. Color lesion boundary detection us-
ing live wire. In Proceedings of SPIE Medical Imaging: Image
Processing vol. 5747, 1589–1596.

DE REFFYE, P., EDELIN, C., FRANCON, J., JAEGER, M., AND
PUECH, C. 1988. Plant models faithful to botanical structure and
development. In Computer Graphics (SIGGRAPH ’88 Proc.),
J. Dill, Ed., vol. 22, ACM SIGGRAPH, 151–158.

DEUSSEN, O., AND LINTERMANN, B. 2005. Digital Design of
Nature - Computer Generated Plants and Organics. Springer-
Verlag.

EBERT, D., MUSGRAVE, K., PEACHEY, P., PERLIN, K., AND
WORLEY, S. 2003. Texturing and Modeling: A Procedural
Approach. Morgan Kaufmman.

HOCKNEY, R. W., AND EASTWOOD, J. W. 1988. Computer Simu-
lation using Particles. Taylor & Francis, Inc., Bristol, PA, USA.

88-6 • Neubert et al.

ACM Transactions on Graphics, Vol. 26, No. 3, Article 88, Publication date: July 2007.

(a) (b) (c) (d)

Figure 7: One example of the created tree models: (a) input photographs; (b) 3D model in view corresponding to upper photograph; (c) view
corresponding to lower photograph; (d) another view.

HOLTON, M. 1994. Strands, gravity and botanical tree imagery.
Computer Graphics Forum 13, 1, 57–67.

IJIRI, T., OWADA, S., OKABE, M., AND IGARASHI, T. 2005.
Floral diagrams and inflorescences: interactive flower model-
ing using botanical structural constraints. ACM Transactions on
Graphics 24, 3, 720–726.

LINTERMANN, B., AND DEUSSEN, O. 1999. Interactive modeling
of plants. IEEE Computer Graphics and Applications 19, 1, 56–
65.

MAX, N. 1995. Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics 1, 2, 99–
108.

MĚCH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of
plants interacting with their environment. In SIGGRAPH 96
Conf. Proc., ACM SIGGRAPH, 397–410.

OKABE, M., OWADA, S., AND IGARASHI, T. 2005. Interactive
design of botanical trees using freehand sketches and example-
based editing. Computer Graphics Forum 24, 3, 487–496.

OPPENHEIMER, P. 1986. Real time design and animation of fractal
plants and trees. In Computer Graphics (SIGGRAPH 86 Conf.
Proc.), vol. 20, 55–64.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. ACM Transactions on Graphics 22, 3 (July), 313–318.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1992. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1990. The Algo-
rithmic Beauty of Plants. Springer-Verlag, New York.

PRUSINKIEWICZ, P., HAMMEL, M. S., AND MJOLSNESS, E.
1993. Animation of plant development. Computers Graphics
(SIGGRAPH 93 Conf. Proc.), 351–360.

PRUSINKIEWICZ, P., MÜNDERMANN, L., KARWOWSKI, R., AND
LANE, B. 2002. The use of positional information in the mod-
elling of plants. In SIGGRAPH 2001 Conf. Proc., 289–300.

QUAN, L., TAN, P., ZENG, G., YUAN, L., WANG, J., AND
KANG, S. B. 2006. Image-based plant modeling. ACM Trans-
actions on Graphics 25, 3 (July), 599–604.

RECHE-MARTINEZ, A., MARTIN, I., AND DRETTAKIS, G. 2004.
Volumetric reconstruction and interactive rendering of trees from
photographs. ACM Trans. Graph. 23, 3, 720–727.

REEVES, W., AND BLAU, R. 1985. Approximate and probabilistic
algorithms for shading and rendering structured particle systems.
In Computer Graphics (SIGGRAPH ’85 Conf. Proc.), vol. 19,
313–322.

REEVES, W. 1983. Particle systems – a technique for modeling a
class of fuzzy objects. Computer Graphics 17, 3, 359–376.

RODKAEW, Y., CHONGSTITVATANA, P., SIRIPANT, S., AND
LURSINSAP, C. 2003. Particle systems for plant modeling. In
Plant Growth Modeling and Applications, 210–217.

RUZON, M., AND TOMASI, C. 2000. Alpha estimation in natural
images. In IEEE Conference on Computer Vision and Pattern
Recognition, Volume I, 18–25.

SABELLA, P. 1988. A rendering algorithm for visualizing 3D scalar
fields. In Computer Graphics (SIGGRAPH 88 Conf. Proc.), 51–
58.

SHLYAKHTER, I., ROZENOER, M., DORSEY, J., AND TELLER,
S. 2001. Reconstructing 3D tree models from instrumented
photographs. IEEE Computer Graphics and Applications, 53–
61.

SUN, J., JIA, J., TANG, C., AND SHUM, H. 2004. Poisson mat-
ting. ACM Transactions on Graphics 23, 3 (July), 315–321.

VIENNOT, X., EYROLLES, G., JANEY, N., AND ARQUÉS, D.
1989. Combinatorial analysis of ramified patterns and computer
imagery of trees. In Computer Graphics (SIGGRAPH ’89 Conf.
Proc.), vol. 23, 31–40.

WEBER, J., AND PENN, J. 1995. Creation and rendering of realis-
tic trees. In SIGGRAPH 95 Conf. Proc., 119–128.

WITKIN, A., AND BARAFF, D., 1997. Physically based modeling:
Principles and practice. Siggraph ’97 Course notes.

Approximate Image-Based Tree-Modeling using Particle Flows • 88-7

ACM Transactions on Graphics, Vol. 26, No. 3, Article 88, Publication date: July 2007.

Figure 8: Pine tree generated using our approach. Left: input photographs.

Figure 9: Sketch-based modeling of an oak. Left: input photographs; middle: sketched density; right: resulting model. Please note the hole
in the left part of the tree that can also be found in the sketched density of the corresponding view. The skeleton of the oak is shown in Figure
5(d).

88-8 • Neubert et al.

ACM Transactions on Graphics, Vol. 26, No. 3, Article 88, Publication date: July 2007.

