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Figure 1: Reconstruction of a scanned tree using our lobe-based tree representation: a) photograph; b) point set; c) lobe-based representa-
tion with 24 lobes (22 kB in total); d) synthesized tree (25 MB in total).

Abstract

We present a lobe-based tree representation for modeling trees. The
new representation is based on the observation that the tree’s foliage
details can be abstracted into canonical geometry structures, termed
lobe-textures. We introduce techniques to (i) approximate the ge-
ometry of given tree data and encode it into a lobe-based repre-
sentation, (ii) decode the representation and synthesize a fully de-
tailed tree model that visually resembles the input. The encoded
tree serves as a light intermediate representation, which facilitates
efficient storage and transmission of massive amounts of trees, e.g.,
from a server to clients for interactive applications in urban envi-
ronments. The method is evaluated by both reconstructing laser
scanned trees (given as point sets) as well as re-representing exist-
ing tree models (given as polygons).

Keywords: Plants synthesis and reconstruction, Point-based mod-
eling, Rule-based tree modeling, Natural phenomena

1 Introduction

Trees are ubiquitous in nature and urban scenes and play an im-
portant role in enriching the realism of virtual environments. In
past years many procedural methods have been developed for the
design and creation of geometric tree models [Deussen and Linter-
mann 2005; Palubicki et al. 2009]. From a small set of rules, such
as those used in L-systems, these techniques can create visually ap-
pealing tree models, which can be extremely complex in geometry

and large in size. Given the high computation expense, such proce-
dural operations cannot be performed during rendering time, such
that applications have to deal with these heavy models. Further-
more, controlling the resulting geometric shape and conforming to
specific characteristics of individual trees are still difficult issues
[Stava et al. 2010; Benes et al. 2011; Talton et al. 2011]. A num-
ber of reconstruction methods have been developed that allow for
modeling specific trees from real world data such as sets of photos
[Reche-Martinez et al. 2004; Neubert et al. 2007] or 3D scans [Xu
et al. 2007; Livny et al. 2010]. While the precise reconstruction
of such models is steadily increasing, again, these methods tend
to produce enormous amounts of geometry details representing the
fractal structure of a tree.

In this paper, we present a novel representation of tree models,
which captures the main characteristics of an individual tree and
yet does not create too many structural nuances. The new repre-
sentation is based on the observation that a tree’s foliage details can
be abstracted into canonical geometry parts, whose outer shapes we
call lobe-geometry (or simply lobes). A tree can be simply repre-
sented by a set of lobes, which serve as a light weight intermediate
representation, from which the full tree model can be efficiently
synthesized by instancing (or texturing) the lobes with pre-defined
patches.

The patches need to be stitched together to form a meaningful
branching structure; this is inspired by patch-based texturing. In our
case, however, the patches are small, predefined pieces of branch
geometry that we combine using a discretization of botanic param-
eters such as branch width and vertical angle. The method therefore
could also be seen as an intelligent instancing that is directed by
botanic and geometric constraints.

Besides the overall shape of the foliage, the individual tree geome-
try is mostly determined by its main branching structure. This part
of the model is encoded in the form of a skeletal graph with as-
sociated allometric information. The skeletal graph, together with
the lobes and a set of associated species-specific parameters, forms
what we call a lobe-based tree representation, which can be decoded
and synthesized back to a full tree that resembles the original tree
model. Figure 1 illustrates the process.
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The main contribution of the paper is the introduction of the lobe-
based representation of tree geometry and the further introduction
of techniques to (i) approximate the geometry of given tree data and
encode this representation, (ii) decode the representation and syn-
thesize a fully detailed tree model that visually resembles the input.
The achieved advantages are an extremely light-weight, yet highly
representative representation of tree geometry, which not only fa-
cilitates efficient storage, transmission, and rendering of massive
amounts of trees, but also eases tree modeling, whether for design
or reconstruction.

2 Overview

Figure 2 illustrates the overall tree modeling and synthesis pro-
cess: an input tree model, in this case a point set, is converted into
the lobe-based representation – an encoding process, and subse-
quently reconstructed from it by texturing the lobes and producing
the branch geometry – a decoding process. The encoded tree rep-
resentation requires only a significantly small memory footprint for
an individual tree. The efficiency of the decoding process, mainly
lobe texturing, enables us to render many detailed trees.

A key factor for achieving high fidelity of the final tree represen-
tation is the construction and assignment of the lobe textures. It
requires pre-generating a species library including parameters and
sets of patches (textons), which are used for producing the lobe
textures and reflect the characteristics of distinct species. The given
tree data is initially classified into certain species based on its statis-
tical properties. The result of this classification subsequently guides
the assignment of proper parameters from the species library.

The remainder of the paper is organized as follows. After dis-
cussing related work, we start in Section 4 by describing the lobe-
based representation, followed by model reconstruction (Section 5).
In Section 6 we describe the applicability of our representation for
modeling and rendering of large urban scenes acquired by LiDAR
scanners. Trees in such a scene are automatically processed, clas-
sified and encoded. Later they are rendered interactively with high
visual fidelity. We show a number of results in Section 7, followed
by discussions and conclusions (Section 8).

3 Related Work

Tree modeling has enjoyed considerable research attention in recent
years, for both designing virtual trees and reconstructing real trees.

Rule-based systems are traditionally used for tree modeling [Honda
1971; Prusinkiewicz and Lindenmayer 1990], along with particle-
systems [Reeves and Blau 1985], and space colonization [Greene
1989; Palubicki et al. 2009] frameworks. A good introduction
is given by Deussen and Lintermann [2005], in which they also
present the Xfrog modeling method which combines rule-based and
procedural modeling.

In recent years efforts have been made to take guidance from either
the user or the target constraints (photos or scans). Sketch-based ap-
proaches, such as [Ijiri et al. 2006; Anastacio et al. 2006; Tan et al.
2008; Wither et al. 2009], directly guide the design of tree objects.
In [Okabe et al. 2006; Chen et al. 2008] sketching is enhanced
by using examples taken from a library of tree models. Stava et
al. [2010] use clustering techniques to detect patterns in a given 2D
vector image and represent the patterns by rules of an L-System. A
more challenging goal is inverse modeling to pinpoint the outcome
towards a desired shape. Talton et al. [2011] have developed an
optimization method to produce L-System rules that create a given
shape. Their work is the first to enable inverse modeling; how-
ever, the computational cost of their technique is particularly high,

Figure 2: Description of the tree modeling and reconstruction pro-
cess: the lobe-based representation is computed from the input
(point set or CG model). Additionally a classification subsystem
is trained and later used to determine the species. A species library
was built separately, including procedural elements and parameters
for the different species. The tree is reconstructed by rebuilding the
branching geometry from the skeletal graph and texturing the lobes
using predefined elements from the species library. Level-of-detail,
facilitated by lobe-based representation, is applied for interactive
rendering.

suggesting that general inverse modeling is an extremely complex
problem. Benes et al. [2011] use a connected set of guides to con-
trol local procedural environments in their behavior.

Reconstruction of a particular tree in the real world can be based
on a collection of photographs. Reche-Martinez et al. [2004] use
registered photos to generate a volumetric representation of the tree
canopy and its branches and twigs, Neubert et al. [2007] use only
loosely arranged input images. Other approaches [Shlyakhter et al.
2001; Tan et al. 2007] extract visual hulls from the input images
and use L-Systems to synthesize branches within these hulls. Some
methods [Runions et al. 2007; Tan et al. 2008] create an approxi-
mate but simple branching structure within envelope surfaces cre-
ated from a single image or user sketch by applying some heuristics
about the tree form.

With scanning technology becoming available, approaches for tree
reconstruction from point sets were developed. Verroust and
Lazarus [1999] as well as Xu et al. [2007] cluster edges in a span-
ning graph to reconstruct the tree skeleton, leaves are randomly
added to the fine branches. Later approaches [Cheng et al. 2007;
Zhu et al. 2008] focus on reconstructing tree properties such as
main branches and crown shapes to overcome the insufficient sam-
pling density for finer details of the tree. Bucksch et al. [2008;
2009] use space partitioning to cluster points and form a skeleton
by connecting adjacent clusters. Côté et al. [2009] synthesize minor
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tree and leaf geometry on the reconstructed branches based on light
scattering properties obtained from different intensities of points.
Livny et al. [2010] use global optimizations for automatically re-
constructing the branching structure of multiple overlapping trees.

As we can see, the above tree modeling methods are moving in
a direction that favors higher level abstraction and control of the
intended geometry. Trees are complex natural phenomena due to
their structural nuances and random nature. Skeletal structures are
highly abstracted properties of trees, but using them alone or aug-
menting them with random leaves is insufficient in conveying full
visual realism. Here we introduce sets of lobes and their texturing to
augment skeletal structures and to encapsulate structural nuances.
Such a representation strikes a balance between high level control,
and low level botanical commitment.

4 Lobe-based Tree Representation

Let us assume for now that the tree data is given in form of a point
set. If a complete virtual tree model is given, its connectivity infor-
mation will better facilitate the generation of lobe-based representa-
tion, as we will comment on in the following description. Also, we
assume a species library containing structural parameters is given.

4.1 Skeletal Structure

First we create a representation for the skeletal structure. There
are several existing methods that extract such structures. The main
branches of a tree are described using a graph with spline func-
tions, which are associated with allometric values for their diame-
ters along the axes. A typical skeletal graph consists of a few dozens
of edges.

For the completeness of the description, also to facilitate discus-
sions of lobe-geometry generation, we briefly describe the process
of reconstructing skeletal structures. Similarly to Livny et al. [2010]
we first connect neighboring points and construct a shortest-path
tree. Each edge (u, v) is assigned an edge weight ‖u− v‖β which
determines how likely its points belong to the same branch. The
parameter β allows for leveraging the edge lengths within Dijk-
stra’s algorithm, which is applied in the next step to get the main
tree structure. If β is close to one, the weights reflect the Euclid-
ian distances of the corresponding points. Higher values will assign
larger weights on longer edges and thus create a more compact tree
structure.

Table 1: Typical parameter values of β, γ, and fs.

Tree Species β γ fs
Mahogany 1.7 1.3 0.975
Bischofia polycarpa 1.8 1.5 0.986
Delonix 1.7 1.5 0.982
Lagerstroemia 1.6 1.5 0.976
Ailanthus altissima 1.5 1.9 0.980
Palm 1.8 1.3 0.800
Terminalia 1.5 1.5 0.970
Pine 1.3 1.2 0.980
Willow 1.5 1.9 0.980
Ficus Virens 2.0 1.6 0.975

While Livny et al. [2010] tried to obtain this parameter automat-
ically, which does not work well for leafy trees, we determine it
manually for every species and store it along with other parameters
in the species library (Table 1). However, if no species information
is given, we use a default value. In our application work (Section
6) we use a classifier to determine the species.

A second parameter is important for computing the lobe-based rep-
resentation: given the diameter of the trunk at the tree base (droot),
we obtain a formula for tree allometry describing the decrease of
branch diameters with their distance to the tree base. The gen-
eral mechanism was already described by Da Vinci who stated that
the diameter of a branch is the sum of all diameters of branching
branches (see [Jaccard 1913]). Based on this observation we can
compute the diameter d(u) for a node u in the spanning tree:

d(u) = droot

(
l(u)

l(root)

)γ
(1)

where l(u) is the sum of length of all edges in the subtree and with
root node u, l(root) being the sum of the length of all the edges in
the complete spanning tree.

Studies support this relation with γ ≈ 1.5 for many cases [Xu et al.
2007]; however, in practice it also depends on the species and on
environmental factors such as snow mass, wind strength and eleva-
tion of the tree stand. Based on 8–10 scans for each tree species we
manually determined typical values for γ (see Table 1) and stored
them in our library.

4.2 Lobe Geometry

The tree-graph and associated parameter γ enables us to select all
edges for which the average distance of their assigned points is
higher than the diameter of the branches. There is only a low prob-
ability for these points to be directly connected in the original tree
structure, and therefore we have low confidence in the generated
edges.

We follow the edges in the tree-graph from the root to the leaves
until we reach such a low-confidence edge (at a point pi) and mark
the so far traversed edges as the main branching structure. The
points that belong to the remaining edges are all connected to one
of the pi and thus are collected to form a cluster Ci, which is now
represented as a lobe.

In practice, however, in order to determine the lobes, the branch
diameter and respective maximal edge-length has to be modified
since it is much harder to scan the interior of leafy trees, due to
occlusion of the foliage, in comparison to sparse models. Therefore
we add the parameter fs into Eq. (1):

d′(u) = fs · d(u) (2)

This parameter virtually reduces the diameter of the branch at a
certain distance and thus enables us to modify the amount and size
of lobes. Small values of fs create large lobes, and for a tree without
leaves, a value of fs ≈ 1.0 is used to generate many small lobes
and reconstruct branches from the majority of the points (see Figure
3 and Figure 11).

Figure 3: Lobes for different values of fs.

We use the α-Shape approach [Edelsbrunner and Mücke 1994; Zhu
et al. 2008] for computing the lobe-geometry from the points of
each cluster Ci. α-Shapes are extensions of convex hulls and allow
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non-convex envelopes to be created. The points are combined to
hexagons, with α determining the radius of a virtual ball, which is
used to delete all those hexagons that not fit into the ball.

An appropriate value of α plays an important role for balancing be-
tween capturing the accuracy of a lobe on the one hand and the size
of the resulting geometry on the other. A large value of α will cre-
ate the convex hull, a small value a surface with many holes. Since
a good value for α dependents on the point density, we compute
αmin as the value for which the points are represented by a sin-
gle surface without holes and define our alpha as a multiple of this
value. Our experiments show that independently from the species a
value of α = 5.0 · αmin results in sufficiently accurate and simple
hulls.

Figure 4: Subset of predefined branch patches (small geometric
elements) and a composed structure for Lagerstroemia. The dots
denote predefined docking positions for adjacent patches.

5 Model Reconstruction

Given the lobe-based representation and the species-dependent pa-
rameters from our library we are able to reconstruct the tree geom-
etry. The main branching structure is produced by creating a gen-
eralized cylinder [Bloomenthal 1985] for each edge of the skeletal
graph using the width information we obtain from the tree allome-
try. Branching is realized by computing smooth curves that connect
the branches and by tessellating them later using the width informa-
tion. Additionally, the lobes are represented by the triangulated sur-
faces produced from the α-Shapes, furthermore, we store the seed
points on the skeletal graph for procedural texturing.

To synthesize a species we generate a set of branchlets and store
them in a species library (see Figure 4). We use L-systems to form
a collection of 20–30 complete branchlets for each species vary-
ing in thickness, shape, and orientation. Each of the branchlets
is then partitioned in order to form smaller incomplete branchlets
(patches). Docking points are inserted on branchlets where smaller
twigs can be placed and each docking point has an assigned orien-
tation and thickness.

Figure 5: Selection of patches for lobe texturing: patches are se-
lected by branch diameter and vertical angle (blue dots with ar-
rows) and have to match the lobe shape.

The texturing of a lobe from seeds is performed by iterating two
steps: patch selection and patch fitting. For patch selection we en-
force thickness and orientation constraints to a seed point s. A sub-
set Ss of patches is selected from the pre-defined patches by taking
those with similar initial thickness and orientation to s.

The fitting of a patch to a docking position is computed by

d =
max(thicknr, thicknd)

min(thicknr, thicknd)
× (vr · vd)

where r is the root point of the patch, and d is the docking point,
vr, vd are the orientation vectors of patch and docking position. For
patch fitting we select the patch that additionally corresponds best
to the local geometry of the lobe. We measure the distance of the
patch geometry and the points of the lobe geometry. The selected
patch is added to the lobe texture, while its docking positions, if
there are any, are used for the next texturing iterations (see Figure
5). The smallest patches do not have docking positions and termi-
nate the texturing process.

Patch fitting is very similar to patch-based texture synthesis [Efros
and Freeman 2001] in which a patch (in this case part of an input
image) is also selected in order to fit to a given local environment
(the borders of a so far constructed texture). In texture synthesis,
patches are selected and combined such that the texture is similar
to the input image but has a larger size. In our case the “input
image” is the pre-defined branching structure of the species and the
“texture” is the reconstructed branching structure in the lobe.

Figure 6: Texturing lobes: while the lobe geometry serves as a
constraint it is only approximated by the branching structure due to
limited lobe-patches provided by the library.

Figure 6 shows two examples for the texturing of lobes. Starting
from an initial branch patch, new ones are selected and added until
the lobe geometry is filled, i.e., all docking positions are combined
with patches.

6 Application in Acquisition and Modeling

To demonstrate the applicability of our tree representation we ap-
plied it to the modeling of massive amounts of trees acquired by
a laser scanning device. The key to a high-quality representation
with our lobe-based representation is the classification of the indi-
vidual tree models. It helps us to retrieve appropriate parameters
(e.g., allometric values) for generating the skeletal structure and for
assigning the lobe-patches to lobe-geometry.

6.1 Tree classification

We have developed a supervised classification method that allows
us to classify scans of trees taken from real urban environments.
Note that tree classification remains a very complex and challeng-
ing problem, for which a general and robust algorithm is still hard
to find.

We classify the scanned point sets by computing a number of fea-
tures from the points and an approximate first reconstruction due
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to Livny et al. [2010]. However, botanists consider also leaf shape
and texture when identifying a tree species [Agarwal et al. 2006].
Bark texture and multispectral images of the tree canopy also pro-
vide additional clues [Key et al. 2001]. Thus our method cannot
be generally applied to all kinds of trees and all kinds of contexts.
Nevertheless, it works effectively considering the fact that only a
limited number of species exist in a local area and there is a certain
spatial coherence of trees.

Figure 7: Recognition rate for the Joint Boost Classification with
12 species and 12–53 scans for each (training set size and total set
size under the tree names). Each row describes the classification
results for point sets of one species.

For each tree we compute over 200 features, which are useful to
distinguishing different tree shapes. The values are combined to a
parameter vector p and a Joint Boost classifier [Torralba et al. 2007]
is trained with tree models that are typically found in urban environ-
ments. Joint Boost results in a vector h of probabilities describing
the likelihood for a point set to belong to one of the species.

To evaluate the effectiveness of our classification method we used
12–53 scanned and manually classified individuals for twelve given
species. Half of them were used as training set, the other half for
testing. The average recognition rate was determined by 100 exper-
iments where the models for the training sets and those for the test
set were selected at random.

The average classification result is shown in Figure 7. Most species
are correctly classified with an average recognition rate of 95.5%,
which is high in comparison to usual rates in classification.

By analyzing the classification results we find the most effective
features are related to the following geometric properties (as also
illustrated in Figure 8):

• trunk width, trunk height, crown width, height, ratio between
tree width and height

• distribution of normal directions (computed in a neighbor-
hood of each point)

• density distribution of the point set in vertical direction (sec-
ond/third/fourth central moment)

• inhomogeneity of point set, number of main stems

Furthermore, trees in urban areas are not planted at random but typ-
ically in arrangements of the same species. So we amended the
Joint Boost classification by a simple spatial voting mechanism in
order to improve the results.

Figure 8: Effective features used for classification: tree shape pa-
rameters, distribution of normals (trees with different shape struc-
ture vary in the normal distribution) and point set distribution.

Confidence in a classification of Joint Boost is defined as when
h1 > 1.5 · h2 with h1 being the highest probability value in the
probability vector and h2 the second highest. If we do not have
confidence we collect all classification results for the neighboring
trees within a radius of 25 meters (2–3 times the diameter of a typ-
ical tree) about which we can be confident and subsequently create
a set of possible species. The candidate species with the highest
probability is selected.

The method works very well for trees in an urban landscape, here
in most cases we reach an average recognition rate of 98.8%. How-
ever, for mixed scenes with random species the results produce
lower recognition rates, from an average of 95.5% to 89%.

6.2 Level-of-Detail Representation and Rendering

For the interactive rendering of dense scenes with many trees an ef-
ficient level-of-detail (LOD) mechanism is needed [Deussen et al.
2002]. The lobe texturing (see Figure 6) lends itself to a progres-
sive LOD mechanism – patches are added or removed based on the
distance of the lobe to the camera. To avoid popping with changing
LOD, we apply stochastic pruning [Deussen and Lintermann 2005;
Cook et al. 2007], which has proven to be an efficient LOD method
for rendering trees, grass and other nature objects that consist of
many small elements (leaves or grass blades). The method deletes
part of the elements and enlarges the rest in a way that enables the
overall appearance to be maintained.

In its original form the method requires that the complete geometry
is produced before LOD can be applied. In our case, when a dense
scene with many trees has to be displayed, this is not possible.

In this event, we use interactive geometry production on the GPU
combined with a dynamic variant of stochastic pruning to avoid
this problem. We benefit from the fact that our scene is assembled
from a huge number of instances taken from a relatively small set
of species and corresponding branch patches (20–30 per species).
Each branching patch has a fixed number of leaves, which are stored
in random order in a Vertex Buffer Object (VBO). During stochastic
pruning, we render only a prefix of the VBO for each instance of the
patch. The leaves are faded in and out to avoid popping artifacts.

Patch optimization. The overall number of patch instances af-
fects the run-time performance on the GPU, where the patches have
to be stored and accessed. For interactivity, it is desirable to mini-
mize the number of instances. We do so by forming larger patches
from a set of smaller ones belonging to the same lobe. These newly
generated patches are used for the respective lobes to reduce the to-
tal number of GPU calls, thus improving the performance at the cost
of memory. We strike a balance between performance and memory
adapting to the available memory.
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Figure 9: Advantage of using lobe-based representation for laser scanned tree data (left to right: photo, point set, conventional skeletal
structure reconstruction (e.g., Livny et al. [2010]), lobe-based representation, skeletal geometry from lobe-based representation, full tree
geometry after lobe texturing. Results from lobe-based representation better captures the characteristics of the input tree.

Skeletal Graph. The segments of the tree skeleton (the edges of
the explicit graph) are sorted by their thickness and also stored in
a buffer. We render a prefix of these edges based on their distance
from the camera. On the GPU, furthermore the screen space length
of an edge is used to control the amount of the generated geometry
by the tessellation shader.

7 Results

We have tested our approach on point data obtained from laser scan-
ning; the results are illustrated in Figure 9. An advantage of lobes
in reconstruction from point sets is its proper synthesis of details
that are not sufficiently captured in the original data, a common sit-
uation for scans. As long as points exist to define a lobe geometry,
the internal structure of the tree can be synthesized by lobe textur-
ing; oftentimes, the synthesized structures better capture the char-
acteristics of the species. Reconstruction methods, such as global
optimization [Livny et al. 2010], applied to the mere input of point
sets may exhibit structures that appear foreign or even erroneous,
due to noisy and insufficient data.

A faithful reconstruction corresponds to the proper selection of
number and size of lobes. The number of lobes is mainly deter-
mined by the 3D arrangement of the main branches of the tree. As
mentioned above, the number of lobes is achieved by using a clus-
tering parameter for each species in our species library.

Figure 11 shows a tree with different amount of lobes generated by
changing the parameter value. When the rightful number of lobes
(in this case 20) is used, the overall tree structure is reconstructed
faithfully. In this case, the split between the skeletal structure and
lobe geometry matches what can be faithfully extracted from the
point set and what has to be synthesized by lobe texturing. When
only one lobe is used, the tree structure is over-synthesized – the
texturing mechanism fails to fill in the whole lobe and the synthe-
sis inevitably mismatches some prominent skeletal structure in the
original data. When a very large number of small lobes is used, the
tree structure is under-synthesized, resulting in missing structural
details in the crown area. Figure 14 shows that for different species
with different geometry structure, a different number of lobes is
selected.

We have also applied our lobe-based representation to computer-
generated plant models from the Xfrog library. We perform this ex-
periment by simply converting the Xfrog model into a point cloud
similar to laser scans, then apply the aforementioned method. Fig-
ure 12 shows the results that quite faithfully resemble the original
models.

Our representation method allows us to reconstruct a variety of tree
species ranging from leafy trees to special forms such as Weeping
Willows, Palms, or Pine trees (see Figures 10, 14). In the para-

graphs below, we present some numerical results obtained in our
experiments.

Encoding. The description of a species in the library is about 200
kB and quite independent of the tree type. Less than one percent of
the size is taken for the parameters of the system, the rest is needed
for textures. As mentioned, the memory footprint of the lobe-based
representation is quite small. For all species it is below 40 kB (see
Table 2), allowing us to transmit many models per second over the
internet.

Table 2: Memory footprint and reconstruction time for different
species. For similar size trees, each species has a typical number
of lobes that represent each model.

Species # of Model Time Time
Lobes Size Reconst. LOD

Mahogany 29 15 kB 7 ms 1 ms
Bischofia polycarpa 31 30 kB 9 ms 2 ms
Delonix 39 39 kB 3 ms 0.5 ms
Lagerstroemia 24 22 kB 9 ms 1.5 ms
Ailanthus altissima 24 30 kB 12 ms 2 ms
Palm 1 3 kB 4 ms 0.5 ms
Terminalia 80 19 kB 11 ms 2.5 ms
Pine 86 20 kB 18 ms 4 ms
Ficus Virens 72 23 kB 16 ms 3 ms
Willow 9 5 kB 8 ms 0.5 ms

Decoding. The reconstruction of the geometry from the model is
also very efficient. Column 4 of Table 2 shows the time for a full re-
construction, which is between 500K triangles for the Delonix tree
and 3M triangles for the Terminalia. However, it has to be noted
that during an interactive session due to the LOD only a small por-
tion of the triangles are shown for each frame. Even if the viewer is
directly in front of a tree model, its distant parts are reduced by the
LOD rendering. This is why we show the times for reconstructing a
full model (3 –18 ms) and the model with LOD enabled (1 – 4 ms).
A consumer PC with GeForce GTX 480 graphics board was used
for scene reconstruction.

Furthermore, in our implementation the tree models are not recon-
structed for every frame but just updated, enabling the system to
produce frame rates of about 20 – 30 fps with 40 different tree mod-
els and 10 – 15 fps with 250 trees in an urban scene as shown in the
accompanying video. Figure 13 shows a screen shot of a scene to
demonstrate the visual quality of the reconstructed LOD models.

Limitations. Our approach can reconstruct large sets of trees
comprising a high variation of species and canopy shape. The pre-
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Figure 10: Several results of reconstructed trees: Bischofia polycarpa, Willow, Delonix, Ficus Virens.
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(a) (b) (c) (d) (e) (f)

Figure 11: Representation of a tree with a different number of lobes. If only one lobe is used (a)+(d), the representation of the tree canopy
becomes unspecific and texturing fails to fill the large lobe completely,. It is designed for creating small random twigs and cannot build up
large structures. With an appropriate number of lobes (b)+(e) details are represented and the overall shape is textured. If many are used, the
occupied volume of the lobes becomes insignificant such that the detailed structure in the crown area is insufficiently synthesized (c)+(f).

(a) (b) (c) (d)

Figure 12: Re-representation of two Xfrog plant models. For the two image pairs, the right image is a re-representation of the left one,
achieving high fidelity, while significantly reducing representation size (60 kB instead of 56 MB for the tree, and 45 kB instead of 47 MB for
the shrub).

Figure 13: A large scene shown in our interactive system. Thirty trees with the intermediate lobe-based representation (250kB) are synthe-
sized on-the-fly with a total geometry of over 40M triangles, achieving 25 fps on a standard PC using NVidia GeForce GTX 480 graphics
board.
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sented lobe-based representation enables trees to be stored, trans-
mitted and rendered very efficiently, while maintaining a high de-
gree of visual complexity. The lobe-based representation has how-
ever, some limitations caused by relying on the quality of a scanned
point set. Some trees have dense foliage (e.g. Pine trees) and thus
can only be scanned from a single side. In such a case, the point
set lacks sufficient quality for the back parts, which results in an
unbalanced canopy shape of the point cloud. The lobe-based rep-
resentation reconstructs the canopy shape even in such a situation
but discards the inner structure of tiny branches. The difference be-
comes most obvious when the canopy consists of long and sparse
twigs (see Willow in Figure 10).

Figure 14: Reconstruction of three tree models with special forms,
the lobe-based representation adapts automatically to these situa-
tions.

8 Conclusions

We presented a modeling paradigm for trees, which represents a
given model by two types of entities: an explicit representation of
the main branching structure in form of a graph with allometric
parameters and an implicit representation of the finer branching de-
tails in biomass clusters by a set of lobes that are textured with pre-
defined patches at rendering time. Using species information, the
models can be produced automatically, and even more faithfully,
from given point sets. This enables us to deal with scans of large
areas and create models automatically for interactive visualization.
We demonstrated this with our urban acquisition application.

The key to the success of our method is the classification of trees
and the pre-generation of species information. In the future we
want to extend our approach to a much larger number of trees al-
lowing us to process most of the trees found in urban areas. Sub-
sequently, classification would have to be adapted. An important
extension would be animated models that are also able to display
growth. Since the lobes in our model describe biomass clusters we
are certain that there is a more compact implicit representation of
the lobes, in comparison to using α-Shapes, which would be able
to produce geometry fast. This would enable us to reduce our rep-
resentation even further.

Another aspect that we have not realized yet is editing. The lobe-
based representation allows the user to easily modify a tree model
by simply redefining the lobes. The explicit graph can be changed,
lobes either be merged or split and additionally, textures can be
modified.
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A Used L-systems for Patches

Different species have different structural properties such as
branching patterns and leaf arrangements. We used a relatively sim-
ple parameterized L-system with some rules to model the patches
for each species. For a seed s with given thickness t and orientation
v the system operate as follows (parameters see below):

Seed(t,v) -> Segment(t,v)*
Segment(t,v)
-> Edge(t,#Allometric)NewLeaf(v’’)

Transf(v,#Phototropism,#Gravitropism)
NewSeed(t’,v’)

NewSeed(t,v)
-> if PlaceSeed(#InitThickness ,#NumTwigs)

Seed(t,v)
NewLeaf(v)
-> if (PlaceLeaf(#NumLeaves)) Leaf(v)

The first rule creates a 3D chain of edges (number=#ChainPts)
where each segment is transformed with respect to the preceding
segment by a transformation that takes into account the orienta-
tion and the tropisms. The parameter “#Allometric” specifies how
strong the branch reduces in diameter along the axis. “PlaceSeed”
determines if a new seed point (docking position) will be added
based on the branching characteristics and current thickness. The
new orientation and thickness are computed from the parameters
“#BranchingAngle”, “#SprialAngle”.

“PlaceSeed” determines if a new leaf will be added based on the
plant characteristics (#NumLeaves). The leaf orientation is com-
puted from the parameters “#LeafAngle”, “#SpiralAngle’ and ori-
entation. “Leaf” produces a new leaf.

Our system uses species profiles that parameterize various botan-
ical behaviors of complete branchlets such as allometric values,
tropisms, branching angles, and leaf arrangement. The profiles
(Lagerstroemia is given below) are stored in the species library.

- Branch modeling
#ChainPts - 15
#Phototropism - 0.2
#Grapitropism - 0.3
#Allometric - 1.2

- Leaf modeling
#Phototropism - 0.2
#Grapitropism - 0.7
#FaceUp - 0.9

- Branching control
#BranchDistr - 1 : 1
#NumTwigs - 1
#BranchingAngle - 30
#SpiralAngle - 180
#InitThickness - 1.0

- Leaf control
#LeafDistr - 1 : 2
#NumLeaves - 2
#LeafAngle - 40
#SpiralAngle - 120
#OrientUp - 0.8
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