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Revealing the evolved mechanisms that give rise to collective behavior is a4

central objective in the study of cellular and organismal systems. Addition-5

ally, understanding the algorithmic basis of social interactions in a causal and6

quantitative way offers an important foundation for subsequently quantifying7

social deficits. Here, with Virtual Reality (VR) technology, we employ vir-8

tual robot fish to reverse-engineer the sensory-motor control of social response9

during schooling in a vertebrate model: juvenile zebrafish (Danio rerio). In10

addition to providing a highly-controlled means to understand how zebrafish11

translate visual input to movement decisions, networking our systems allows12

real fish to swim and interact together in the same virtual world. Together, this13

allows us to directly test models of social interactions in situ. A key feature of14

social response is shown to be single- and multi-target-oriented pursuit. This15

is based on an egocentric representation of the positional information of con-16

specifics, and is highly robust to incomplete sensory input. We demonstrate,17

including with a Turing test and a scalability test for pursuit behavior, that18

all key features of this behavior are accounted for by individuals following a19

simple experimentally-derived proportional derivative control law, which we20

term ‘BioPD’. Since target pursuit is key to effective control of autonomous21

vehicles, we evaluate—as a proof of principle—the potential utility of this sim-22

ple evolved control law for human-engineered systems. In doing so, we find23

close-to-optimal pursuit performance in autonomous vehicle (terrestrial, air-24

borne, and watercraft) pursuit, while requiring limited system-specific tuning25

or optimization.26
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Summary27

Reverse engineering the control law employed by schooling fish provides an effective and robust28

algorithm for robotic pursuit29

Reverse engineering evolved control laws30

INTRODUCTION31

Collective behavior arises from positive and/or negative local feedback loops, which enable re-32

peated local interactions to scale up into highly robust coordinated activities without the need33

for regulation by global supervision or via a pre-established template (1, 2). Due to their ubiq-34

uity and importance across scales of biological organization, the mechanisms that give rise to35

coordinated motion among cells (3) and organisms such as swarming insects (4, 5), schooling36

fish (6–8), flocking birds (9,10), and humans in crowds (11,12), have been of particular interest37

across multiple disciplines. In addition to providing new insights into biology, an understand-38

ing of the evolved strategies animals employ to coordinate collective behavior can offer new39

opportunities for the development of engineered solutions (13), such as for the coordination of40

autonomous vehicles (14, 15).41

To date, however, it has been extremely difficult to infer the nature and causal structure of42

biological interactions that give rise to collective behavior using conventional experimental ap-43

proaches (16–18). Consequently, the sensory-motor feedback mechanisms that have evolved44

to regulate collective behavior are often poorly understood (19), with our inability to identify,45

or test among, alternative hypotheses being a major bottleneck. Recent advances in immersive46

volumetric virtual reality (VR) technology (20–22) provide a new means to control, and thus in-47

terrogate, the causal structure of social relationships among individuals. In addition, they allow48

the direct testing of experimentally-derived hypothetical models of social interactions in situ, by49
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allowing reciprocal coupling between real organisms and virtual robot fish as counterparts (23).50

Thus, analogous to how the ‘dynamic patch clamp’ method has revolutionized neuroscience,51

creating a realtime interface between living cells and experimentally-derived models (24), vir-52

tual reality opens up a ‘dynamic social clamp’ approach (23) to the study of animal behaviour.53

In this study, we applied a virtual reality platform (20) to control virtual conspecifics which54

can interact with real fish, enabling us to reverse-engineer the fundamental sensory-motor con-55

trol mechanisms governing leader-follower dynamics under various conditions (Fig. 1A, fig.56

S1, and Movie 1). We discovered that a simple, yet powerful, proportional derivative-like con-57

troller, which we term “BioPD", effectively captures the social pursuit behavior of fish (Fig.58

1B-D). To validate the model, we explored its assumptions, assessed its predictive capabilities,59

and conducted a Turing test with real fish—all of which confirmed the model’s effectiveness60

(Fig. 1D-F). Finally, we appiled BioPD to different robotic systems, tested the scalability of the61

model in large-scale fish schools across different species, and integrated it into various robotic62

platforms for diverse group sizes and pursuit tasks (Fig. 1G-I). Our findings highlight the po-63

tential of robotic platforms, such as virtual reality, as valuable tools for understanding collective64

behavior while simultaneously, in return, inspiring advancements in robotic control design.65

RESULTS66

Development and validation of the immersive virtual reality system67

We applied an immersive virtual reality for fish (20) to investigate the sensory-motor control68

employed in regulating schooling behaviour in a model vertebrate, the juvenile zebrafish (Danio69

rerio) (1±0.1 cm in length, 24-26 days post fertilisation, Fig. 1 and Movie 2). At this age70

zebrafish predominantly employ vision to coordinate response to conspecifics when schooling71

(the lateral line being dominated by self-generated motion due to viscous adhesion forming a72

boundary layer around such small fish (25)).73
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Since leading others is known to be driven by different internal processes, such as indiffer-74

ence to others (26) and motion towards external goals (27), as a valuable starting point—and75

due to its general importance—we focus here only on socially-mediated interactions. In ad-76

dition to uncovering a key algorithm employed in regulating schooling behavior (Fig. 1B-F,77

H, Supplementary Methods, fig. S1, and Table S1), we demonstrated its application to motion78

control in engineered systems (Fig. 1G, I).79

Since our immersive virtual reality, for freely swimming animals, relies on correct volu-80

metric rendering from the perspective of a single individual (via the anamorphic illusion), it81

is not possible to put more than one individual in each VR arena. We can, however, connect82

systems (28) such that individuals can see, and thus interact with, a realtime ‘holographic’ pro-83

jection of the other (Fig. 1C shows this principle for a pair of individuals), which we term “the84

Matrix" (Movie 2). We found that, as in the real world (figs. S2A-D, S3A-D, and S4A-C),85

individuals in “the Matrix" (figs. S2E-H, S3E-H, and S4B-D) interact only when they occupy86

the same x− y plane, with even small movements out of that plane (in the z dimension), either87

towards the surface, or to deeper water, being associated with rapid decoupling of social inter-88

actions (fig. S5). The structure, and strength, of the interactions within this plane (as quantified89

by decomposing motion to lateral speed vx, which is perpendicular to the leader’s head direc-90

tion, and forward speed vy, which is along the leader’s head direction (Fig. 2A)), is found to be91

near-identical when they interact within the physical world (fig. S4A-C) as when they interact92

in the same holographic world (fig. S4B, D and fig. S6, Kolmogorov–Smirnov test, p=0.26 for93

vx, p=0.9 for vy). This suggests our VR system is ideal for dissecting sensory-motor feedback94

control.95
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Reverse engineering the sensory-motor feedback control96

To do so, we first conducted open-loop experiments, which allow us to control the causal flow of97

information from a leading (virtual) fish to a following (real) fish (Fig. 2B). Our platform also98

enables us to isolate and analyze how social responses are influenced by both spatial factors and99

average swim speed. Here we evaluated average swim speed across its natural range, while also100

accounting for its inherently bursty nature—characterized by rapid tail undulations followed by101

a friction-dominated glide (Fig. 2C and fig. S7).102

Fish tend to follow/pursue the virtual leader at a relatively stable distance, with this distance103

increasing approximately linearly as a function of the leader’s speed (Fig. 2D-J and fig. S8),104

but with different “times to collision” (with respect to the current position of the leader, if105

the leader were to suddenly stop; fig. S9). The decomposed lateral (vx) and forward (vy)106

components of the follower’s speed, as a function of the spatial position of the follower relative107

to a leader positioned at x= 0, y= 0, are shown in Fig. 2E, F, respectively. As shown in108

Fig. 2G, the average lateral speed increases as a function of lateral distance (x-axis) up to a109

specific distance, rx = 0.07m (determined by finding the maximum lateral speeds following a110

bootstrapping procedure; see Supplementary Methods for details), indicated by the dotted line,111

after which it starts to decrease. Lateral speed is minimally influenced by swim speed (as seen112

by the similarity of panels in Fig. 2E and the average plots in Fig. 2G). The magnitude of113

the forward speed component as a function of the front-back distance, shown in Fig. 2H, also114

increases up to a similar distance, ry = 0.07m (see Supplementary Methods for details), but,115

unlike lateral speed, it increases in absolute magnitude as a function of average swim speed of116

the leader.117

According to the above properties (speed control being proportional to the distance lag

and to the average swimming speed of the leader, plus a lateral point of speed reduction at a

specific distance), and following reverse engineering methods in biological studies (29–35), we
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proposed a parsimonious bio-inspired Proportional-Derivative (PD) controller, ‘BioPD’:
xe = xF − xL

vx = −(Kpxe +Kdẋe)e
− x2e

2r2x

ye = yF − yL

vy = −(Kpye +Kdẏe)e
− y2e

2r2y

(1)

where xF , yF (and respectively, xL, yL) are the positions of the follower (leader) in a global118

coordinate system resolved in the x- and y- axes according to the leader (Fig. 2A). rx and ry,119

describe the critical distances at which the strength of social interactions is largest (Supplemen-120

tary Methods). Kd and Kp are the derivative gain and proportional gain parameters, respectively,121

which are the two main parameters in the model. We first determined the derivative parameter,122

based on the relationship between the average forward swimming speed of real and virtual fish123

(see Supplementary Methods for details), finding Kd =0.58 (Fig. 2I). The proportional param-124

eter Kp is estimated based on the stable distance lag under different average swimming speeds125

of the leader, which for our zebrafish is found to be a constant with value Kp =2.3 (Fig. 2J).126

Despite its simplicity, we found that the BioPD model can account for all of the main fea-127

tures observed in our experiments, including the stable swim speed of the follower, which is128

matched to that of the leader (fig. S10A, B), a similar spatial probability density with respect129

to the leader and similar lateral and forward swimming speeds as a function of xe and ye (fig.130

S10C-F). This indicates that a simple PD-like controller, with identical parameters, can effec-131

tively regulate schooling fish, irrespective of the average swim speed of the leader.132

Validation of the assumptions of the BioPD model133

Speed input in a PD controller can be either the instantaneous speed or the average speed over134

some period of time, as perceived directly through the fish’s vision. Therefore, we further used135

our virtual robotic conspecifics to evaluate, directly, which features of the speed of conspecifics136

are employed in regulating social response. Previously, it has been suggested that the motion137
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characteristics associated with burst-and-glide locomotion of juvenile zebrafish may provide an138

important social cue (36). However, using virtual fish swimming with burst-and-glide as the139

control (Fig. 3A(ii)) and constant-speed swimming at the same average speed as the treatment140

(Fig. 3A(ii) and Movie 2), we observed that the following distance lag (Fig. 3A(iii) vs (iv)),141

lateral speed (Fig. 3A(v) vs (vi)), and forward speed (Fig. 3A(vii) vs (viii)) are same. This142

indicates that zebrafish respond similarly to continuous motion as they do to biological (bursty)143

motion (see fig. S11 for a detailed comparison).144

This suggests that fine-scale instantaneous speed is not employed in the regulation of school-145

ing. To evaluate this further, we investigated how the temporal resolution of visual input influ-146

ences social response. By systematically changing the temporal update frequency, such that the147

virtual fish is always visible, but that its position is only updated at a certain rate (for instance, if148

the frequency is 10 Hz, the position of the virtual fish will be updated 10 times per second, the149

frames between which it does not change position, fig. S12 and Movie 2), we found that only150

if the update rate falls below ∼5Hz does the distance lag increase (Fig. 3B(iii)-(iv)), indicating151

a diminishing of the effectiveness of the social response below this frequency. (Fig. 3B). This152

indicates that zebrafish integrate information over approximately 0.2s, a timescale close to the153

typical period of their burst-and-glide gait (fig. S7), which may imply the use of spatial working154

memory (37) and is captured in the model by averaging speed with a similar time window.155

To establish how robust the schooling response is in the face of incomplete information,156

we decoupled speed and position by manipulating the visibility of the virtual fish. As may be157

expected of animals that need to deal with regular occlusions of others, such as by vegetation,158

or in patches of high turbidity, they do not respond to the sudden disappearance, or appearance,159

of a conspecific (Fig. 3C, D, figs. S13, S14, and Movie 2). By adjusting both the duration of160

the windows of time during which information is available (figs. S12, S13), as well as whether161

the perceived speed in these windows is (Fig. 3C(ii)), or is not (Fig. 3D(ii)), congruent with the162
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displacement (such as the average speed) between these windows (fig. S14), we observed no163

difference in distance lag, lateral speed, or forward speed when the perceived speed matches the164

invisible case (Fig. 3C(iii)-(viii)). However, there is a substantial difference in the non-matching165

case (Fig. 3(iii)-(viii)). This suggests that the algorithm employed by zebrafish employs posi-166

tional information as the input for speed control, and not estimates of instantaneous speed (Fig.167

3C, D and figs. S13, S14).168

Predictive power of BioPD169

With the core assumptions of BioPD validated, we then asked whether it can account for fur-170

ther dynamical features of natural schooling. In order to establish the above control law, we171

employed virtual robot fish as conspecifics that move in a constant direction and at a constant172

average swim speed. In reality, however, fish dynamically modulate both properties. By pre-173

senting exactly the same trajectories, obtained from real fish leaders, both to real fish and to174

agents employing BioPD (Fig. 4A, B), we compared directly the response of real followers175

with agents employing BioPD. We found that BioPD provides robust and effective response176

to the dynamic changes in speed and direction exhibited in the natural system, and results in177

highly-comparable pursuit behavior to that exhibited by real fish (Fig. 4E, F).178

Our VR systems allow us to take an even further step in establishing sensory-motor control;179

we could also ask whether leaders react differently to real followers versus followers employing180

BioPD. This can be thought of as a Turing test for the leader: is an agent employing BioPD181

sufficiently convincing to allow natural bi-directional interactions? To do so, we now allow two182

real fish, A and B, to interact in “the Matrix", but each time fish A becomes a leader (such as183

when it occupies a frontal position), we can immediately replace the natural control of B with184

our BioPD control, and vice versa (Fig. 4C, D, fig. S15, and Movie 2). Thus we compared185

what we predict fish will do to what they actually do, for every pursuit event. We found that186
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despite its simplicity, BioPD facilitates the maintenance of qualitatively similar, and effective,187

reciprocal social relationships among hybrid simulated-real individuals (Fig. 4G, H).188

Having established the response to a single conspecific, we then asked whether BioPD can189

also predict the response of real fish to two virtual conspecifics (38). To do so, we considered its190

response to two leaders swimming side-by-side at a range of inter-individual lateral distances191

and swim speeds (Fig. 4I, J and Movie 2). We simply applied the BioPD controller for an agent192

receiving sensory input from the two leaders, but taking into account the linear perspective in193

the fish eye (see Supplementary Methods for details). We found that BioPD accounts, quan-194

titatively, for a key experimental finding, as the blue points predicted by the model match the195

high-density regions of real fish behavior data in Fig. 4K and L; that real fish will both change196

their distance lag (Fig. 4K) and will suddenly switch from adopting a position in-between the197

targets (here, the leaders) to deciding among them (swimming predominantly with one of the198

virtual fish) as a function of increasing the lateral distance, l, between the virtual leaders (Fig.199

4L and fig. S16). Furthermore, it also accounts for the observed increase in the critical distance200

(lc) at which this transition occurs as a function of increasing swim speed (Fig. 4L and figs.201

S17-S19).202

Scalability of BioPD203

To investigate the scalability and generalizability of our BioPD and its potential in elucidating204

collective behavior in large groups, we analyzed the social response of followers in schools of205

juvenile zebrafish (Danio rerio, N=20) tracked with custom code (39), juvenile golden shiners206

(Notemigonus crysoleucas, N=10, 30, 70, 150, data from previous publication (40)), and ju-207

venile sunbleak (Leucaspius delineatus, N=512, 1024) tracked with custom code (39). Across208

all three species, we observed pervasive leader-following behavior, even in larger group sizes.209

Analogous to the two-fish system, the distance lag correlates with the leading fish’s average210
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swimming velocity. The follower’s turning and forward speeds align with characteristics previ-211

ously observed in our virtual reality system (Fig. 5A-C, fig. S20). Such findings suggest that212

the BioPD derived from smaller groups can be extrapolated to larger collectives.213

Robotic applications of BioPD214

Reverse engineering natural control laws—which have been subject to evolution by natural215

selection for millennia—could, in principle, provide simpler and/or more robust solutions for216

human-engineered problems (13). The effective pursuit of mobile targets, along with the main-217

tenance of appropriate spacing with respect to a target (which can include interception, or pur-218

suit while also avoiding collisions, for example), is a central challenge in the effective control219

of autonomous vehicles, such as self-driving cars and guided aircraft and spacecraft. Human-220

made controllers, such as the widely-employed model predictive controller (MPC) (41), have221

been shown to be optimal for certain tasks, but typically are computationally expensive due to222

the fact MPCs are solving an optimization problem over a predicted horizon (predicting future223

system behavior over a defined time frame) at each control step. Moreover, MPCs need to be224

individually optimized—a very time-consuming process—for each specific application (since225

they depend on an accurate underlying model of the dynamical systems in which they are to226

be embedded). Natural systems, by contrast, are under the section to evolve highly robust and227

cheap strategies that approximate optimal solutions under a wide range of conditions. Seldom,228

however, are such evolved solutions evaluated in situ in real physical systems.229

To gain insight into such potential application domains, we implemented, and compared the230

pursuit performance of a state-of-the-art optimal MPC controller (see Supplementary Methods231

for details) and BioPD in three very different robotic platforms; terrestrial vehicles, airborne232

drones (42), and watercraft (Fig. 1H), the task being to follow a virtual leader on a predefined233

sine-shaped trajectory (Fig. 4M, Movie 3). Furthermore, unlike the MPC controller, which234
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required a complex and time-consuming optimisation procedure for each robotic system, we235

employed BioPD with exactly the same parameters as estimated from zebrafish in all scenar-236

ios. We found that with suboptimal control parameters extracted from biological system (Figs.237

S21, S22), and despite its simplicity, BioPD exhibits highly robust and effective performance,238

providing very close to optimal control energy (43) in the vehicle, drone, and roboboat control239

tasks (Fig. 4N and figs. S23-S25). To further assess the scalability of BioPD (Movie 3), we240

used the BioPD to direct 14 robots in a sequential circular motion (Fig. 5D), three robots in241

tracing an intricate path of the letters associated with our research center, “CASCB" (Fig. 5E),242

and 14 robots in emulating real fish trajectories (18x larger scale) at both constant (Fig. 5F)243

and varying speeds (Fig. 5G). The corresponding deviation of each robot’s trajectory to the244

desired path, distance lag between successive pairs of robots in the sequence, moving speeds,245

and control energy are illustrated in Fig. 5H-K and figs. S26-S29.246

DISCUSSION247

In this study, we constructed a virtual robotic ‘conspecific’ for juvenile zebrafish and utilized it248

to reverse engineer the algorithm employed to regulate social response. After confirming that249

real fish accept the virtual robotic fish as a ‘conspecific’ at the behavioral level, we demonstrated250

that a simple PD-like controller (‘BioPD’) can account for the social response exhibited towards251

it by real fish (Fig. 2). Taking advantage of the virtual robot platform, we systematically252

checked the assumptions of the model (Fig. 3), verified the effectiveness of the model (Fig. 4A-253

H), tested its power of prediction (Fig. 4I-L), explored its potential applications (Fig. 4M-N),254

and demonstrated its scalability (Fig. 5). These tests illustrate that the platform is a powerful255

tool for quantitatively and causally exploring hidden internal controls, offering capabilities that256

have been largely inaccessible in previous systems.257

By controlling the visibility of the virtual robot to decouple position and speed perception258
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(something not possible in traditional biological experiments or even with those physical repli-259

cas (28)), we found that fish primarily rely on position perception rather than instantaneous260

speed perception (Fig. 3). Additionally, the input for derivative control on long-term aver-261

age speed is derived from positional information (fig. S13). This mechanism is similar to a262

low-pass filter and could facilitate noise reduction in the velocity control. However, it remains263

unclear how fish obtain neighbor’s positional information from their visual scene, and this will264

be the focus of our future studies. Despite being derived from the response to a single leader265

we found that BioPD can also account for the fish behavior when presented with two leaders;266

notably an abrupt transition (bifurcation) from averaging to deciding to follow one, or the other,267

of the potential leaders as a function of the distance between them (Fig. 4I-L). This finding is268

consistent with our previous work on geometric principles that emerge from individual decision-269

making (38), where the linear distortion of perspective provides a comparable ‘non-Euclidean’270

distortion of space (38, 44).271

Our study suggests that fish may have evolved a sensorimotor control like BioPD as it pro-272

vides a cognitively-minimal, yet highly-effective means to regulate schooling. Compared to273

traditional PD-like controllers in engineering systems (45, 46), our controller differs in two key274

ways: First, it introduces a biologically meaningful cut-off in the interaction, embedded through275

a non-linear first-order Gaussian function (Fig. 2G, H), and second, it has been validated in bi-276

ological systems through assumption verification (Fig. 3A-D), predictive power testing (Fig.277

4I-L), and even an embodied Turing test (Fig. 4A-H). This uniquely bridges engineering and278

biological systems. Unlike traditional PD controllers in biological systems that either explore279

PD functions within the system (33, 47) or aim to find the best controllers to fit biological280

data (30,48,49), our approach focuses on reverse-engineering the complete dynamics of pursuit281

behavior. We offer a detailed controller along with measured parameters, rather than merely282

fitting the data.283
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The reason BioPD generalizes well to the three robotic platforms may be the same reason284

it has evolved; because the control is based on a kinematic model, without involving specific285

dynamics, it is highly generalised. Therefore, there is room for optimization for each robot286

based on the dynamic models of their respective systems (Fig. 4N and figs. S21, S22), which287

will be our future focus. In the future, we will also explore in further detail the limitations and288

potential applications of this controller. In our preliminary analysis of scalability, we found289

that fish adopt the same interaction rule in the pursuit behavior as when in large groups (Fig.290

5). Overall, our work suggests that reverse-engineering the control law in schooling fish using291

virtual ‘conspecifics’ offers a complementary approach to traditional methods in both biology292

and engineering. It is valuable not only for systematically exploring potential internal sensory-293

motor controls in biological systems but also for designing controllers that are efficient and294

robust, requiring minimal sensing and computational resources.295

MATERIALS AND METHODS296

Methodological overview297

We developed and utilized a virtual reality platform to reverse engineer the sensory-motor con-298

trol algorithm for schooling behavior (fig. S1). To confirm its effectiveness, we compared the299

speed control of a real fish to another real fish in a traditional platform with that to a virtual fish300

in our system. Subsequently, we conducted open-loop experiments in the virtual environment301

with a single virtual fish, where we controlled the leader’s swimming properties, such as average302

speed, patterns, and visibility. By doing so, we developed a biologically inspired proportional303

derivative control model for the following behavior and verified its assumptions. Furthermore,304

we estimated the model through various methods, including simulations, experiments in the305

virtual reality system, experiments with two virtual leaders, and tests with three types of robots306

(terrestrial, airborne, and watercraft).307
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The virtual reality platform308

The test arena is bowl-shaped, holding 4.5 liters of water, with a depth in the centre of 9.1309

cm and a diameter of 33.8 cm. The bowl is made from a material that is opaque to visible310

light but transparent to infrared light, allowing us to illuminate it from below with infrared light311

(wavelength 850 nm) for tracking purposes. Positioned above the bowl are four Basler acA640312

cameras, capturing images at 100 fps in real time. The 3D position of the real fish is recon-313

structed from its detected position in each view using blob detection. With these reconstructed314

3D positions, we track the fish’s movements based on an Extended Kalman Filter and the near-315

est neighbor standard filter for data association. An LED (light-emitting diode) DLP (digital316

light processing) projector (Optoma ML500) illuminates the entire surface of the bowl to allow317

us to present the virtual scene in the visible light spectrum. To ensure accurate projection, the318

projected image is mapped onto the 3D curvature of the bowl using a calibration model of the319

display geometry. A grid is rendered during calibration, mapping each pixel to its corresponding320

geometric coordinates. The anamorphic illusion is applied to render the image as 3D scene from321

the correct perspective of the real fish. A virtual fish, modeled in Blender (Blender Foundation)322

based on juvenile zebrafish (26 dpf, 1cm), is rendered within the system to interact with freely323

swimming real fish (24-27 dpf, 1±0.1 cm) in 3D (20,50). In “the Matrix setup”, similar to (28),324

the real fish’s position and orientation are tracked on one machine and transferred in real time325

to another machine via a socket connection, allowing for seamless bidirectional communication326

between the two systems. For further details, please refer to our previous work (20, 50).327

Virtual reality experiments328

We conducted experiments with zebrafish (Danio rerio) of age 24 to 26 days postfertilization329

raised in a room at 28 degrees on a 16-h light, 8-h dark cycle. The variation in age was to330

allow us to always use fish of a similar body length (1±0.1 cm). 498 zebrafish were used (See331
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table S1). Experiments were conducted in a fish virtual reality setup procured from Loopbio332

GmbH (refer to ref. (20) for details). After a fish was introduced into the arena (a bowl-shaped333

container with a diameter of 34 cm and a depth of 9 cm at the water level), we allowed the fish334

to acclimate to the environment for 20 minutes. This was followed by a 10-min control, during335

which the fish was presented with a single virtual conspecific (1 cm in body length) swimming336

in a circle with a diameter of 16 cm. After this, the real fish was exposed to the virtual fish, ini-337

tialized with various swimming conditions (Supplementary Methods). Each experiment lasted338

90 minutes. We analyzed the data using custom Python 3.7 code. All experiments were con-339

ducted in accordance with the animal ethics permit approved by Regierungspräsidium Freiburg,340

G-16/116, G-17/88, and G-17/170.341

Simulations342

We utilized the BioPD algorithm to simulate the behavior of following a virtual leader in the343

VR experiment, as well as a real leader in a pair of fish performing leader-follower behavior344

extracted from real fish data. For following the virtual leader, we set the follower’s initial posi-345

tion to a range of -0.05 to 0.05 m on the x-axis and -0.05 to 0 m on the y-axis. We introduced346

variability by adding white noise to the follower’s speed control, with a standard variance of347

0.016 for the x-axis and 0.45 times the average speed of the follower for the y-axis. The max-348

imum swimming speed was limited to 0.1 m/s. In contrast, for following a real fish leader,349

we initialized the geometry position and swimming probabilities of the follower to match the350

starting point of leader-follower behavior in the pair of real fish swimming in the same arena.351

The only difference in this model from the previous one is that the leader is extracted from real352

fish leader data, which dynamically changes both average swimming speeds and directions. No353

noise was added in the second simulation.354
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Parameter estimation for the model355

The BioPD model has four primary parameters (rx, ry, Kp, Kd), which we determined by mea-356

suring real fish data collected in the virtual reality experiments. In the following behavior, when357

the distance between the leader and follower is larger than the threshold distance rx (ry), the fol-358

lower reduces its speed to follow the leader. Therefore, we modeled the turning point of speed359

as a first-order Gaussian derivative function, with the threshold distance corresponding to the360

peak of the function. We determined the threshold distance by bootstrapping (Supplementary361

Methods). Since the follower must be within the distance threshold to catch up with the leader,362

we simplified the model to a traditional PD controller. By analyzing the PD controller, we found363

that the average swimming speed of the leader and follower is determined by a first-order linear364

function, where the slope is determined by Kd only, and the intercept is determined by both Kp365

and Kd. We obtained these two parameters through a similar bootstrap analysis, and detailed366

derivations are given in Supplementary Methods.367

Robotic experiments368

We tested both BioPD and an optimal controller on three different types of robots: the Crazyflie369

drone (42), the SunFounders Robot PiCar-X, Osoyoo Robot Pi Car and a robot boat. To create370

a virtual leader for the robots to follow, we programmed it to move in a sinusoidal curve. We371

applied BioPD with the same mathematical model and parameters, which were scaled by the372

body size of the robots. Additionally, we considered a MPC based on our previous study (41).373

To achieve the best performance with MPC, parameters are optimized for each type of robot.374

Further details can be found in Supplementary Methods.375
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Statistical analysis376

We applied bootstrap resampling to estimate the variability in the relationships between lateral377

speed (vx) and position in x, as well as forward speed (vy) and position in y. Specifically, we378

resampled the collected data 100 times and plotted the average trends along with their vari-379

ability, as shown in Fig. 2G and H. To evaluate the similarity between real fish interactions380

in the physical world and those in “the Matrix”, we computed the root-mean-square deviation381

(RMSD) of lateral speed (vx) and forward speed (vy) as functions of the neighbor’s position.382

Data from 22 real interaction pairs in the physical world were pooled to serve as a reference.383

We then compared this reference to the RMSD of the remaining 24 real pairs and 24 virtual384

(“the Matrix”) pairs. Kolmogorov–Smirnov tests revealed no significant differences between385

the real and virtual conditions (lateral speed: p = 0.26; forward speed: p = 0.9). To further386

check the similarity among the simulations, the BioPD model, and the Turing test, we applied387

the Jensen–Shannon Divergence (JSD). The results showed minimal divergence: JSD = 0.03388

for forward swimming between simulations and the model (Fig. 4E), JSD = 0.0 for turning389

speed between simulations and the model (Fig. 4F), JSD = 0.08 for forward swimming be-390

tween real fish and the model in the Turing test (Fig. 4G), and JSD = 0.0 for turning speed391

between real fish and the model in the Turing test (Fig. 4H). A standard boxplot—featuring the392

median, interquartile range (IQR), and potential outliers—was used to illustrate the deviation393

between the robots’ trajectories and the desired path, as shown in Fig. 5H-K.394

Data and materials availability395

All data necessary to understand and evaluate the conclusions are available in the main text or396

the Supplementary Materials. Source data and code are available via Dryad (DOI: 10.5061/dryad.np5hqc02k).397
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Fig. 1. Schematic of the study of sensory-motor control of schooling behavior. (A), The560

flow diagram of the sensory-motor control of the social response to neighbors. We reverse561

engineer the sensory-motor control (SMC) of following behavior to a model, which we term562

as ‘BioPD’. (B), A traditional experiment in which two real fish swim together in one bowl-563

shaped arena. Note that the lines trailing each fish indicate their movement trajectories, which564

are shown at a 1:1 scale relative to the dimensions of the bowl. The fish themselves are en-565

larged by a factor of 3× to ensure better visibility. (C), “The Matrix" system, where each arena566

contains a single individual, each of which can interact with a realtime volumetric projection of567

the other. (D), Open-loop experiments with one virtual fish as a leader swimming back-forth568

at a recorded swimming speed (0.04 m/s in average). (E), Experiments with two virtual fish569

swimming side-by-side as two leaders to verify the sensory-motor control. (F), Experiments570

with two real fish interacting within “the Matrix" to verify the sensory-motor control of the571

following behavior. A virtual fish becomes a follower controlled by the BioPD when the real572

fish becomes a leader (when the real fish swims in front). Otherwise, the virtual fish copies the573

position and direction of the real fish in the other arena. (G), Evaluating the performance of574

the BioPD model by comparing it to a model predictive controller (MPC) in three robotic sys-575

tems (terrestrial, airborne, and watercraft). (H, I), Evaluating BioPD’s scalability across three576

species in groups up to 1024 individuals and with up to 14 robots.577
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Fig. 2. Reverse engineering sensory-motor control of fish to a bioinspired proportional-578

derivative controller, ‘BioPD’. (A), The local coordinate system is based on the position and579

direction of the leader. The real fish’s swimming speed is resolved into lateral speed vx and580

forward speed vy. (B), Schematic to show the experimental setup, where a real fish (RF) fol-581

lows one virtual fish (VF) which is swimming back-and-forth in a straight line. (C), The virtual582

fish exhibits a realistic burst-and-glide swimming pattern for five different average swimming583

speeds v̄V F (0.04 to 0.08 m/s with an interval of 0.01 m/s). (D), The higher the average swim-584

ming speed of the leader, the greater is the distance maintained by the follower to the leader.585

(E-F), Lateral (E) and forward (F) speed control as a function of the position of the follower586

in the local coordinate of the leader with different average swimming speeds. (G-H), Average587

lateral (G) and forward (H) speeds as a function of the follower’s position in the x (G) and y588

(H)-axis in the local coordinate of the leader. The shaded areas denote the standard deviation589

after 100 bootstraps. In general, the lateral swimming speed, vx, is less sensitive to the leader’s590

average swimming speed, as there is no difference in both the density (E) and average plots (G).591

However, the forward speed, vy, shows sensitivity in both the density (F) and average plots (H).592

(I), The distribution of the derivative parameter Kd is based on the maximum forward swim-593

ming speed at each average swimming speed of the leader. (J), The comparison between the594

experiments and simulations shows that the model describes the experimental data.595
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Fig. 3. Evaluating the perceptual information utilized in the regulation of social response596

to a leader. (A), Virtual fish swims with the same average but different instantaneous speeds:597

burst-and-glide as the control (i) or constant speed as the treatment (ii). (B), Virtual fish swims598

with different update frequencies at 100 Hz as the control (i) or at 5 Hz as the selected treatment599

(ii) while keeping a fixed location between updates. (C), Virtual fish swims with different600

visibilities (always visible as the control (i), or periodically become invisible (time being visible601

and invisible are both set to 0.2s) as the treatment (ii)) to decouple the presented position and602

speed information. (D), is the same as C, except the virtual fish jumps to a location further603

away by increasing its speed during the period of invisibility by a factor of 2 as compared to604

speed during being visible. Selected swimming performances, including relative position (iii-605

iv), lateral speed (v-vi), and forward speed (vii-viii), are presented.606
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Fig. 4. Evaluating the BioPD: simulations, experiments in “the Matrix" system and in607

two virtual leader scenarios, and using robotics. (A-B), Positions of real fish (RF, A) as608

followers and simulated followers controlled by the BioPD (VF, B) relative to a real leading609

fish (positioned at the origin). (C–D), Real (C) / virtual (D) follower’s positions relative to the610

virtual (C) / real (D) leader’s position in two arenas in “the Matrix" system. The virtual fish in611

panel D represents an avatar of the real fish from panel C, unless the real fish in D is swimming612

in front. In that case, the virtual fish in panel D is controlled by BioPD. The virtual fish in panel613

C is always controlled by the real fish from panel D. The real fish in panel C follows the virtual614

fish (VF, C), which represents the real fish shown in panel D. (E-H), Distributions of relative615

distance in the y- (E, G) and x- (F, G) axis of the simulations (E, F) and experiments (G, H).616

Jensen Shannon Divergence, JSD= 0.03, 0.0, 0.08, 0.0 for (E-H) respectively. (I), The setup617

for two virtual fish leaders swimming side-by-side at different left-right distances and average618

swimming speeds. (J), The definition of the coordinate system. Origin is the center of the two619

virtual fish. Positive y points to the head direction of the virtual fish. (K), The model predicts620

the relative distance between the real fish and the virtual fish swimming at different average621

swimming speeds. (L), The model also predicts the bifurcations in the following behavior of622

the real fish when they follow two virtual leaders. (M), Three robots are controlled by BioPD623

and model predictive controller (MPC) to follow a leader moving in a sinusoidal wave. (N), A624

comparison of the control energy of BioPD and MPC.625
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Fig. 5: Assessing the scalability of BioPD across three fish species (up to 1024 individu-626

als) and robots (up to 14). (A), Distance lag plotted against the leader’s average swimming627

speed. (B, C), Normalised turning speed, ux/ūL, and forward speed, uy/ūL, mapped to left-628

right distance, x (BL), and front-back distance, y (BL), respectively. Data spans three species:629

zebrafish (Danio rerio, N=20), Golden Shiner (Notemigonus crysoleucas, N=10, 30, 70, 150),630

and Sunbleak (Leucaspius delineatus, N=512, 1024). (D), A group of 14 robots exhibiting631

sequential circular motion. (E), three robots tracing the intricate “CASCB" logo in sequence.632

(F), 14 robots sequentially emulating a constant-speed fish trajectory. (G), 14 robots mimick-633

ing a burst-and-coast fish trajectory, similar to natural fish movement patterns. Scale bar: 1634

meter (applies to D–G). (H-K), Boxplots featuring the median, interquartile range (IQR), and635

potential outliers are applied to illustrate the deviations (∆) of each robot’s trajectory from the636

desired path for conditions D–G.637
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Movie 1: Summary video. A video abstract of the study.638
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Movie 2: An overview of the experiments with virtual fish interacting with real fish. A va-639

riety of experiments using our virtual reality platform for freely swimming zebrafish, including:640

platform validation in “the Matrix”; one virtual fish with varying average speeds, movement641

patterns, update rates, and visibilities; a Turing test in “the Matrix”, and two virtual fish with642

different average speeds.643
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Movie 3: An overview of the experiments with robots controlled by BioPD for different644

pursuit behaviors. A series of experiments demonstrating the application of BioPD to robotic645

pursuit behaviors, including drone, terrestrial, and watercraft pursuits of a leader moving along646

a sinusoidal path; 14 robots engaged in sequential circular pursuit; 3 robots sequentially navi-647

gating complex letter-shaped trajectories; and 14 robots simulating real fish movements at both648

constant and varying speeds.649
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5 MTA-ELTE “Lendület” Collective Behaviour Research Group

Hungarian Academy of Sciences, 1117 Budapest, Hungary

6 Department of Biological Physics
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Supplementary Methods

Experiments with two real fish in the same arena and in the
Matrix.

We also conducted ‘traditional’ experiments (such as those in which real fish swim to-

gether) in the same virtual reality arena with the same background projection, but without

any virtual fish. This allowed us to analyze data from two real fish swimming in the 3D

environment. We calculated and compared the lateral and forward swimming speeds of

the following fish to those obtained in the virtual reality system. We next analyzed the

lateral and forward speeds of the follower whenever there were leader-follower patterns

(see filter and parameters below). Lateral and forward speeds were defined in relation to

a coordinate system centered on the leader, with the positive direction pointing towards

the leader’s head (estimated as swimming direction, Fig. 2A). We averaged the speed

over 1 second to obtain the average swimming speed. We divided the speed data into a

heatmap with 30 grid cells in the left-right distance and 15 grid cells in the front-back

distance. We colored each bin based on the average swimming speed within it.

In our analyses of the leader’s swimming properties, we applied an algorithm to identify

bursts of high swimming speeds and extract burst-glide swimming periods. Maximum

swimming speeds over the extracted burst-glide periods are defined as vmax, and the time

to reach the maximum swimming speeds is defined as tvmax (fig. S7I-K).

Experiments with one virtual fish swimming at different average
speeds.

In these experiments, we controlled the virtual fish to swim back-and-forth in the arena

at a depth of 0.03 m and along a straight line of length of 0.24 m (Fig. 2B). The average

speed of the virtual fish ranges from 0.04 to 0.08 m/s with an interval of 0.01 m/s under
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burst-and-glide motion extracted from a random real fish’s swimming pattern (average

swimming speed is 0.04 m/s and the length of the segment is 8 seconds, Fig. 2C). Faster

speeds of the virtual fish are achieved by multiplying the base speed by a factor of (1.25,

1.5, 1.75, and 2). The stable distance lags between the leader, and follower are determined

based on the relative position of the follower at a coordinate determined based on the

leader (Fig. 2A). The lateral and forward speeds of the follower are calculated as we did

for the two real fish case (Fig. 2E, F). Average lateral/forward speed is calculated based

on the heatmap along the front-back/left-right direction. The critical turning point of the

speed rx(ry) is determined based on peak detection. Bootstraps are applied to obtain the

statistics of the lateral/forward swimming speeds and the turning points. The parameter

Kd is determined by the ratio of the line, which describes the forward swimming speed of

the real fish at the critical turning point rx as a function of the average swimming speed

of the leader (see detailed mathematical derivation below). To determine Kp, we simulate

(without noise) the follower following a leader swimming at the corresponding average

swimming speed. We simulate Kp ranges from 1.2 to 8 with an interval of 0.1. The Kp is

optimized to minimize the accumulated differences between the leader-follower distance

lags in simulations and experiments.

One virtual fish swimming with different swimming patterns.

In these experiments, we control the virtual fish swimming with different patterns— burst-

and-glide and constant speed (Fig. 3A and fig. S11) —but with the same average values

(0.04, 0.05, 0.06, 0.07, and 0.08 m/s). The other experimental setting and analyses are

the same as described above.
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One virtual fish swimming with different refresh frequencies.

In this experiment, we varied the refresh frequency of the virtual fish. The swimming

speed was set at 0.04 m/s and the fish was programmed to swim with a burst-and-glide

pattern. We set the refresh frequency at 100, 50, 20, 10, 5, or 1 Hz. The refresh frequency

determines how frequently we update the virtual fish, which does not affect the average

swimming speed. We analyzed the distance lags and lateral/forward swimming speeds in

the same way as described above.

One virtual fish with different visibilities

We varied the visibility of the virtual fish by showing it for short periods of time (0.2 s).

As a control, we set the virtual fish to be invisible for short periods of time (0.2 s or 0.4

s) and move at the same or double the original speed only when in this invisible state.

We set the appearance time to 0.2 seconds to avoid flashing virtual fish. The rest of the

experiments and data analyses were the same as described above.

Two real fish in the matrix with BioPD

In these experiments, we controlled the virtual fish in one arena (arena A) based on the

behavior of the real fish in the other arena (arena B). While in arena B, we controlled the

virtual fish according to the real fish in arena A only when the real fish was swimming

behind the virtual fish. Otherwise, the virtual fish was controlled by the BioPD algorithm.

We analyzed data from both arenas, as in one arena the real fish followed the virtual fish,

and in the other arena, the virtual fish followed the real fish.
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Two virtual fish swimming side by side at different average speeds

In these experiments, we controlled two virtual fish swimming side by side and back and

forth within the bowl. We varied the left-right distances and average swimming speeds to

establish how the real fish controlled its following behavior. The left-right distance was

set to 0.01 to 0.12 m in intervals of 0.005 m. The average swimming speed varied from

0.04 to 0.08 m/s in intervals of 0.01 m/s. We analyzed the distance lag of the following

real fish in the local coordinate system of the two virtual fish, where the center of the two

virtual fish is the origin and the positive y axis is along the virtual fish’s heading direction

(Fig. 4J). We averaged the distance lag along the left-right distance and plotted it in a

heatmap. Similarly, we also averaged the heatmap of the following behavior along the

front-back distance to show the decision-making in the x-axis (fig. S17).

Twenty zebrafish experiments

Experiments involved 20 zebrafish that were 24 days post-fertilization, with body lengths

ranging from 0.09 to 0.11 m. Videos were captured using a Basler camera at a frame rate

of 90 fps. The room temperature was maintained at approximately 26°C. Fish tracking

was performed using Trex, which also identified individual fish. We refined the tracking

of following behavior based on the following criteria:

First, from the perspective of the leader, the follower must track the leader for a minimum

of 1 second. Second, from the perspective of the follower, the leader must be in a leading

position for at least 1 second. Third, the angular difference between the two fish should

fall within a range of -45 to 45 degrees.

Golden shiner experiments

All data were sourced from the paper and conducted with same filter for zebrafish.
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Sunbleak experiments

Experiments were carried out using sunbleak in a large 3 x 3-meter arena. Four Basler

cameras recorded synchronously. After video stitching, tracking was conducted using

Trex. Outputs from Trex were further refined using the Kalman filter and the Hungarian

algorithm. The criteria for filtering following behavior remained consistent with those

used for the zebrafish.

Parameter estimation for the model

Our model modifies the traditional PD controller by adding a nonlinear relationship (de-

scribed by a first-order Gaussian derivative function) between speed and relative position.

This function accounts for the phenomenon that when the distance is larger than a thresh-

old distance rx (ry), the speed reduces and the follower will reduce its speed to follow the

leader. The threshold distance rx (ry) corresponds to the peak of the first-order Gaussian

derivative function. In other words, the follower should be within the distance threshold

to catch up with the leader, and if it is, the performance is similar to the traditional

controller. We first theoretically analyze the final stable distance by following derivatives:

assume a follower is following a leader on the y-axis; the relative position in the y-axis is

∆y. The controller of the follower with a traditional PD controller is:

vRF = Kp ·∆y +Kd ·∆ẏ (1)

Then the variation of the distance lag is:

∆ẏ = ẏV F − ẏRF = vV F − vRF (2)

Substituting Eq. 1 into Eq. 2 yields:

∆ẏ = vV F − vRF = vV F −Kp ·∆y −Kd ·∆ẏ (3)
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Solving this equation, we get:

∆y =
vV F

Kp

+
e

Kp(C1−t)

Kd+1

Kp

(4)

Where C1 is a constant value depending on the initial condition. The final stable distance

(t → ∞) will be:

∆yt→∞ =
vV F

Kp

(5)

In another way, since vRF = Kp ·∆y +Kd ·∆ẏ and ẏ = ẏRF − ẏV F = vRF − vV F , we

can rewrite the virtual fish speed as:

vRF = Kp∆y +Kd(vRF − vV F ) (6)

Therefore, we get the description of real fish swim speed as:

vRF =
Kd

Kd − 1
vV F +

Kp

1−Kd

∆y (7)

Therefore, we obtained the relationship (first order) between the real fish’s swimming

speed and the virtual fish’s swimming speed. Using bootstrapping, we resampled lateral

and forward swimming speeds to get the heatmaps (see Fig. 2E, F in the main text).

According to Eq. 7, if ∆y is fixed, the relationship between real and virtual fish speeds

will be linearly correlated. The ratio is a function of Kd. We then fit the swimming

speed of the real fish at the critical distance (rx = ry = 0.07 m) as a function of the

average speed of the virtual fish to obtain the ratio k. Based on the ratio k and Eq. 7,

we calculated Kd =
k

k−1
.
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The model for two virtual fish as leaders

xe1 = xF − xL1

xe2 = xF − xL2

vx = −
[
(Kpxe1 +Kdẋe1)e

−x2e1
2r2x + (Kpxe2 +Kdẋe2)e

−x2e2
2r2x

]
ye = yF − yL

vy = −(Kpye +Kdẏe)e
− y2e

2r2y

rx = a · ye + b

(8)

where xL1 and xL2 are the distance differences between the left and right virtual fish and

the real fish in a coordinate system determined based on the two virtual fish (Fig. 4J). yL

is the distance difference in the y-axis in the local coordinate system. Because yL1 = yL2,

we set one distance lag yL for both individuals. Due to the linear perspective, fish perceive

the distance in the x-axis to decrease as the distance in the y-axis increases. Parameters

a and b are determined based on the fitted critical point in the bifurcation (fig. S17). We

fit the bifurcation according to the following steps:

We extract the peaks of the data on the x-axis and then fold the values according to

x = 0. We then fit a piecewise function to determine the critical point lc:

xl =

{
0 l ≤ lc
α|l − lc|β l > lc

(9)

where α, β, lc are fitting parameters, xl is the detected peak value in the x-axis.

To fit the parameters in the linear perspective model, we first determine the distance

lags (d) at different average swimming speeds based on the distributions (fig. S13).

We then fit a piecewise function to determine the critical bifurcation points (lc). We

use these points, along with the distance lag, d, to determine the parameters (a, b) in the

linear perspective model.

lc = 0.28d+ 0.05 (10)

Because the distance lag, d, is linearly correlated to the average swimming speeds of
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the leader, v, the relationship between lc and v is also linear and can be described as:

lc = 0.27v + 0.04 (11)

We maintained the value of Kd from the 1 virtual fish case and fit Kp based on the

observed distance lag in the experiments, resulting in a value of Kp = 1.9.

Apply BioPD in multiple robotic platforms (terrestrial, airborne,
and watercraft)

In these experiments, we used BioPD and an optimal controller to control three different

types of robots: the Crazyflie drone, the SunFounders Robot PiCar-X, and a robot boat

from MIT. We created a virtual leader that moved in a sinusoidal curve for the robots

to follow, and we implemented BioPD and a model predictive controller (MPC) based

on our previous research. We implemented both BioPD and model predictive controller

(MPC) based on our previous study.

In order to implement the BioPD controller for the drone, we provided velocity in the

x-and y-axes. We used the same values for the proportional (Kp =2.3) and derivative

(Kd =0.563) controls. Since the size of the robot is larger than the size of the real fish

(1 cm), we scaled the average swimming speed of the leader by a factor of 2 to increase

the safety distance. The turning point of the speed control rx and ry was also scaled by

a factor of 2. The position of the robot was tracked using a Qualisys motion capture

system. With MPC, we designed the state as q = [x, y]T , and considered a simple

kinematic model:

q̇ = u,

where u = [vx, vy]
T . We apply the controller every sampling instant by solving the fol-

lowing open-loop optimal controller with a finite horizon: min
u(τ)

= J(q(τ), u(τ)) subject to
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q̇(τ) = u(τ),q(0) = q0, where uτ ∈ U,∀τ ∈ [t, t+T]. T is the horizon in the controller,

and J(q(τ), u(τ)) denotes the objective function and is described as:

J(q(τ), u(τ)) =

∫ t+T

t

F (u(τ)) + E(q(t+T)), (12)

where F is the cost function regarding the desired performance objective, and E is the

terminal cost.

Since the robot car cannot move sideways, we cannot directly apply BioPD to control

vx and vy. Instead, we convert these two speeds into speed v =
√
v2x + v2y and angular

speed ω = θ̇, where θ = arctan(vy/vx). The state in the MPC here is q = [x,y, θ]T.

Control energy is estimated by
∫ t

0
u(τ)Tu(τ).

Implementing BioPD for sequentially following of robotic cars,
with up to N=14, across different scenarios

We initially tested with 14 robots executing sequential circular tracking (Fig. 5D, H, fig.

S27A, and fig. S28A). The 14 robots were initialized in a circular formation and activated

using the BioPD algorithm. The leader robot follows a desired circular path with a con-

stant speed of 0.14 m/s, while the subsequent robots track the closest robot ahead, all

under the guidance of BioPD. Initially, BioPD results in an overshoot due to the robots’

starting positions and velocities. However, after 25 seconds, the followers’ distance lag

and average following speeds stabilize.

We also applied sequential tracking along a complex path modeled after the “CASCB”

logo using three robots (mainly limited by the cross path for a larger number) at a con-

sistent speed of 0.16 m/s (Fig. 5E, I, fig. S27B, and fig. S28B). Despite the path’s

complexity leading to some deviations in the tracking behavior, the robots effectively

maintained their following pattern.

Finally, BioPD also successfully directs 14 robots to sequentially track complex trajecto-
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ries derived from real fish experiments, both at a constant speed of 0.14 m/s (Fig. 5F, J,

fig. S27C, and fig. S28C) and varying speeds as performed in real fish systems (Fig. 5G,

K, fig. S27D, and fig. S28D).

As robots approach the end of the chain, their angular oscillation increases (see fig. S29),

leading to greater deviations (Fig. 5H-K). All experiments took place at the Imaging

Hangar of the University of Konstanz. The robots’ positions were monitored using the

Qualisys motion capture system. BioPD was integrated into the ROS2 (Robot Operating

System 2) system for the robots.

The filter for the two real fish swimming in the same arena and
the Matrix system.

We apply the following filters to the data analysis in both cases: First, the two fish must

swim within a distance of 0.005 to 0.2 meters. Second, their difference in depth (along the

z-axis) must be within 0.03 meters. Third, these spatial relationships must be maintained

for at least 1 second. Supplementary Fig. S3 shows an example of two fish swimming in

a leader–follower configuration.

The filter for the data with one virtual fish swimming in the
arena.

In order to analyze the distance lag, lateral speed, and forward speed, we applied filters

to the data. The filters used for the distance lag analysis and the speed along the x-

and y-axes are slightly different because we are primarily interested in the relative stable

following distance lag. We added a swimming direction difference filter to the distance

lag analysis and shortened the continuous frames to 30 frames (0.3 seconds), which is a

typical burst-gliding swimming period for our fish (fig. S7).

We selected data segments in which two fish swam within 0.2 meters in the x- and y-
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axes, and within 0.015 meters in the z-axis. The real fish was positioned behind the virtual

fish, which acted as the leader swimming in front. The difference in swimming direction

between the leader and the follower was within 30 degrees. The virtual fish remained at

the center of the bowl (radius 0.1 meters), and the spatial relationships described above

were maintained for at least 0.3 seconds.
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Fig. S 1. Outline of this study. We justify and apply a virtual reality platform to
reverse engineer a simple biological-inspired proportional derivate control, which describes
sensory-motor control of zebrafish following behavior. With the VR platform, we further
checked the model assumption and verified the control. Finally, we applied the BioPD
control to three different types of robots.
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A

E

B C D

F G H

2 real fish in the same arena 

2 real fish in the Matrix (different arenas connected by virtual fish)  

Fig. S 2. Leader-follower swimming trajectories extracted from the experi-
ments in the same arena or “the Matrix” system. Trajectories (A, E) swimming
speed (B, F) orientation (C, G) and correlation (D, H) of two fish swimming in the same
arena (A-D) and “the Matrix” system (E-H).
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Fig. S 3. Probability density distributions (PDF) of swimming properties of
two fish swimming in the same arena or “the Matrix”. A, E, PDF of the leader’s
position around the focal individual. B, F, Comparison of leader’s swimming speed. C,
G, Comparison of the standard error of the leader’s average swimming speed. D, H, The
length of the segments of the pairs.
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consider how the focal fish (the follower) reacts to the neighbor who is swimming in front
(the leader).
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Fig. S 5. Social interaction in the same depth shows similar lateral and
forward speeds relative to the leader. A, Distributions of two real fish in z axis.
B-C, Position density of the follower at different ranges of depth. Lateral speed vx (D,
E), and forward speed vy (F, G), as a function of the follower’s position relative to the
leader at different ranges of depth.
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Fig. S 6. Root-mean-square-deviation (RMSD) of the lateral (A) and forward
(B) speeds between pairs (real and “the Matrix”) and pooled real interaction
data. We pooled 22 pairs of real interaction data as a reference and compared the
remaining 24 pairs of real interaction data and 24 pairs of virtual (or “Matrix”) data to
the reference. We found that there was substantial difference between the real and virtual
data, as determined by Kolmogorov–Smirnov tests (p=0.26 for lateral speed, p=0.9 for
forward speed).
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Fig. S 7. Swimming properties of the leader. A, Distribution of average swimming
speed of the leader over one burst-and-glide period. The typical swimming speed of a
leader is around 0.05 m/s. B, Distributions of the periods of the burst-and-glide swim-
ming. The typical period is around 0.35 seconds. C-H, 500 randomly selected examples
of burst-and-glide swimming patterns with varying average speeds. The visual blurriness
results from overlapping trajectories, not from a shaded region or error band. I, Distri-
butions of the maximum swimming speed under different average swimming speeds. J,
Distributions of the time when the leader reaches maximum swimming speed. K, Distri-
bution of the periods when the leader swims with different average swimming speeds.
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Fig. S 10. Relative position, lateral speed, and forward speed of the follower
in experiments (Exp, A, C, E) and simulations (Sim, B, D, F). We initialized the
follower’s position over a range from -0.05 to 0.05 m on the x-axis and -0.05 to 0 m on the
y-axis. White noise was added to the follower’s speed control, with a standard variance
of 0.016 for the x-axis and 0.45 times the average speed of the follower for the y-axis. The
maximum swimming speed was limited to 0.1 m/s. The position density, lateral speed,
and forward speed of the follower were then analyzed using the same methods as in the
experiments.

22



-0.1 0 0.1
-0.06

0
0.06

-0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1

-0.1 0
0.03

0.08

-0.1 0 -0.1 0 -0.1 0 -0.1 0

BG
CS

(m)

(m)

La
te

ra
l

sp
ee

d
(m

/s
)

Fo
rw

ar
d

sp
ee

d
(m

/s
)

L

M

-0.1

0

-0.1 0 0.1
-0.1

0

-0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1
-0.04
0
0.04

(m
)

(m)

Burst-glide swimming (BG)

Constant-speed swimming (CS)

H

I

La
te

ra
l s

pe
ed

(m
/s

)

-0.1

0

-0.1 0 0.1
-0.1

0

-0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1
0

0.08

Burst-glide swimming (BG)

Constant-speed swimming (CS)

J

K
Fo

rw
ar

d 
sp

ee
d

(m
/s

)

-0.1

0

SVF =4 cm/s SVF =5 cm/s SVF =6 cm/s SVF =7 cm/s SVF =8 cm/s

-0.1 0 0.1
-0.1

0

-0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1
0

1

=0.04 m/s =0.05 m/s =0.06 m/s =0.07 m/s =0.08 m/s

0 0.1
0

25

0 0.1 0 0.1 0 0.1 0 0.1

-0.05 0 0.05
0

50

-0.05 0 0.05 -0.05 0 0.05 -0.05 0 0.05 -0.05 0 0.05

BG
CS

N
or

m
al

is
ed

de
ns

ity

(m
)

(m)

(m)

(m)

PD
F

PD
F

Constant-speed swimming (CS)

Burst-glide swimming (BG)D

E

F

G

0 2 4 6 8
Time, (s)

0

0.2

S
pe

ed
,(

m
/s

)

0

0 2 4 6 8
Time, (s)

0

0.2

S
pe

ed
,(

m
/s

)Burst-glide swimming (BG) Constant-speed swimming (CS)
A B C

Fig. S 11. Behaviors of the real fish following a leader swimming with burst-
and-glide patterns and constant speed patterns. A, the coordinate system. B,
Example of the burst-and-glide (BG) swimming pattern at an average swimming speed
of 0.04 m/s. C Constant swimming (CS) pattern with an average swimming speed of
0.04 m/s. D-G, Positions of the follower relative to the leader swimming with BG (D,
F) or CS (E, G) patterns. H-M, Lateral and forward swimming speed as a function of
the neighbor’s position with the leader swimming with BG (H, J, L) and CS (I, K, M)
patterns.
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Fig. S 12. Behaviors of the real fish following a leader with different refresh
frequencies. A, Illustration of the frequency of updating virtual fish swimming as a
leader at speed 0.04 m/s and corresponding virtual fish position. B Positions of the
follower relative to the leader. C-D, Lateral (C) and forward (D) swimming speed of the
follower as a function of the leader’s position. E-F, Distribution of the distance lag (E)
and difference in z-plane (F) between the leader and the follower. G, “Time to collision”
for the follower. H, Lateral and (I) forward swimming speed of the follower as a function
of the neighbor’s position.
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Fig. S 13. Behaviors of the real fish following a leader with varying visibility.
A-C, Illustration of the visibility control of the virtual fish swimming as a leader at a
speed of 0.04 m/s. D-G, Positions of the follower relative to the leader. Lateral (H-K)
and forward (L-O) swimming speed of the follower as a function of the leader’s position.
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Fig. S 14. Behaviors of the real fish following a leader with varying visibility
and speeds of the virtual fish. A-C, Illustration of the visibility and speed of the
virtual fish swimming as a leader at a speed of 0.04 m/s. D-G, Positions of the follower
relative to the leader. Lateral (H-K) and forward (L-O) swimming speed of the follower
as a function of the leader’s position.
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Fig. S 15. Position of the leader relative to the follower in the embodied
Turing test. (A) The density of the real fish’s position (represented by the virtual fish
as the avatar) as the leader, relative to the real fish follower at the origin. (B) The density
of the real fish leader’s position relative to the bioPD-controlled virtual fish follower at
the origin. (C, D) A comparison of the front-back and left-right distances between the
real follower and the BioPD follower.
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Fig. S 16. Relative position differences between two virtual leaders and one
following real fish in y- and z- axis. Distance difference between two virtual fish and
real fish in the y-axis (A) in the local coordinate based on two virtual fish (origin is the
average position of 2 virtual fish and points along the virtual fish head direction) and
z-axis (B).
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Fig. S 17. Overview of experiments and data analyses with two virtual fish.
A, Two virtual fish are swimming back and forth in an arena, with an average swimming
speed of 0.04 m/s. They are positioned beside each other at a lateral distance of 0.08 m.
B, The data were organized around a coordinate system with the origin at the centroid
of the virtual fish’s positions, and decisions were analyzed along the axis perpendicular
to their direction of motion. C, An example of the real fish’s position density in relation
to the virtual fish. We calculated the normalized marginal probability distribution of the
real fish’s position (perpendicular to the virtual fish’s movement direction) and stacked
these distributions for various lateral distances between the virtual fish. D, We are able to
maintain the direction of the virtual fish’s movement without losing information because
the real fish typically maintains a relatively stable front-to-back distance with its virtual
conspecifics (E).

29



Left-right distance, 
0.05 0.10

Left-right distance l

0.00

0.05

x
P

os
iti

on
 in

   
 a

xi
s

0.05 0.10
0.00

0.05

0.10

Left-right distance, 

P
os

iti
on

 in
   

 a
xi

s

0.05 0.10

−0.10

−0.05

0.00

0.05

0.10

Left-right distance, 

P
os

iti
on

 in
   

 a
xi

s

Flip along 

A B C

(    )

(    ) (    )

Fig. S 18. Schematic to show how the critical distance lc is determined based
on the heatmap and piecewise function. A, Peaks are determined at each left-right
distance, l. B, We flip the peak values along x = 0. C, We fit lc according to the piecewise
function.
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Fig. S 19. The critical bifurcation point as a function of the average swimming
speed of the leader.
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Fig. S 20. Evaluating the scalability of BioPD across three different species
up to N=1024. A-C, Normalised position density (A), normalised lateral speed (ux/ūL,
B), and forward speed (uy/ūL, C) of followers in relation to the focal leader positioned
at the origin.
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Fig. S 21. Exploration of control parameters with Crazyflie in the Webots
simulation environment. A, The simulation environment with Crazyflie, controlled by
BioPD, with KP ranging from 1 to 3 in intervals of 0.04, and KD ranging from 0.1 to 0.75
in intervals of 0.02. B, Example of sinusoidal following. C, The deviation of the drone
under BioPD control from the desired trajectory. D, Maximum deviation as a function of
proportional and derivative control parameters. E, Average control energy as a function
of proportional and derivative control parameters. The parameters from the biological
system are marked with a red circle, and the triangle marks the optimal parameters for
minimal deviation and minimal control energy. As shown, the BioPD parameters strike
a balance between deviation and control energy.
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Fig. S 22. Statistical distribution of the maximum deviation (left) and average
control energy (right). The red dashed line indicates the biological parameters in
BioPD.
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Fig. S 23. Comparison of the performance and control energy of the BioPD
and MPC controllers for the Crazyflie drone. A, The trajectories of the drone
controlled by each method. B-C, The control energy of the speed in the x (B)- and y
(C)-axes, respectively.
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Fig. S 24. Comparison of the performance and control energy of the BioPD
and MPC controllers for the PiCar Robot. A, The trajectories of the car controlled
by each method. B-C, the control energy of the speed (B) and angular speed (C).
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Fig. S 25. Comparison of the performance and control energy of BioPD and
MPC controllers for the robot boat. A, The trajectories of the boat controlled by
each method. B-E, The control energy of the four engines within the boat. F, Total
control energy of the four engines.
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Fig. S 26. The distance lag between successive pairs of robots in the sequence
under BioPD control in groups of up to N=14 robots across four scenarios:
A, 14 robots sequentially following each other in a circle. B, 3 robots tracing a complex
path modeled after the “CASCB” logo. C, 14 robots tracking an actual fish trajectory at
a constant speed. D, 14 robots mimicking a real fish trajectory, adjusting speeds as the
fish did.
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Fig. S 27. Average speeds of followers under BioPD control in groups of up to
N=14 robots across four scenarios: A, 14 robots sequentially following each other
in a circle. B, 3 robots tracing a complex path modeled after the “CASCB” logo. C, 14
robots tracking an actual fish trajectory at a constant speed. D, 14 robots mimicking a
real fish trajectory, adjusting speeds as the fish did.
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Fig. S 28. Control energy of speeds and angular speeds of followers under
BioPD control in groups of up to N=14 robots across four scenarios: A, 14
robots sequentially following each other in a circle. B, 3 robots tracing a complex path
modeled after the “CASCB” logo. C, 14 robots tracking an actual fish trajectory at a
constant speed. D, 14 robots mimicking a real fish trajectory, adjusting speeds as the fish
did.
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Fig. S 29. Noise induces angular oscillations in BioPD-controlled terrestrial
robots. A-C, Trajectory, orientation θ, and angular speed θ̇ of the BioPD when ter-
restrial robots move in a circular path without noise. D-F, The same parameters are
presented for movement in a circular path with noise.
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Trail description Number of fish Length of each trail
2 real fish 114 (57 pairs) 40 mins
2 real fish in the Matrix 48 (24 pairs) 60 mins
1 virtual fish at different speeds 39 90 mins
1 virtual fish bout vs constant speeds 22 90 mins
1 virtual fish at different display frequency 25 90 mins
1 virtual fish visibility control 32 90 mins
1 virtual fish in the Matrix to verify model 20 (10 pairs) 90 mins
2 virtual fish at different lateral distances and speeds 198 90 mins

Table S 1. Number of zebrafish for each experiment.
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