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Abstract Arterial Spin Labeling (ASL) is an emerging magnetic resonance imaging tech-
nique attracting increasing attention in dementia diagnosis only beginning from recent
years. ASL is capable to provide direct and quantitative measurement of cerebral blood flow
(CBF) of scanned patients, so that brain atrophy of demented patients could be revealed
by measured low CBF within certain brain regions through ASL. However, partial volume
effects (PVE) mainly caused by signal cross-contamination due to pixel heterogeneity and
limited spatial resolution of ASL, often prevents CBF from being precisely measured. Inac-
curate CBF is prone to mislead and even deteriorate dementia disease diagnosis results,
thereafter. In this paper, a novel dementia disease diagnosis strategy based on ASL is pro-
posed for the first time. The diagnosis strategy is composed of two steps: 1) to conduct
pixel-wise PVE correction on original ASL images and 2) to predict dementia disease sever-
ities based on corrected ASL images via ranking. Extensive experiments and comprehensive
statistical analysis are carried out to demonstrate the superiority of the new strategy with
comparison to several existing ones. Promising results are reported from the statistical point
of view.
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1 Introduction

Alzheimer’s Disease (AD), the most common form of dementia, is often diagnosed in
patients over 60 years old and generally regarded as one of the five most severe non-
communicable diseases worldwide reported by the World Health Organization (i.e. others
include cardiovascular disease, cancer, diabetes and chronic lung disease) [33]. According
to a recent population study conducted by the United Nations, there are already over 26.6
million AD patients diagnosed globally [30], and 1 in 85 people of the whole world is pre-
dicted to be suffering from AD by the year 2050 [3]. It is also widely acknowledged that,
accurate diagnosis and timely treatment is essential to delay the onset and progression of
AD [3].

In order to accurately diagnose the progression of dementia diseases, a variety of methods
have been proposed and utilized to date. Popular diagnosis methods include pathography
analysis, cognitive examination, and brain scanning. Pathography [21] is helpful to pre-
dict curable symptoms of demented patients, who may usually suffer from other forms
of diseases (e.g., stroke, heart disease, renal failure, etc) simultaneously. Cognitive exam-
ination evaluates the progression of demented patients through a series of cognition tests
based on diverse cognitive capabilities of patients, including short-memory, long-memory,
logic analysis, etc. Popular cognitive examinations include Mini-Mental State Examina-
tion (MMSE) [8] and Addenbrooke’s Cognitive Examination (ACE) [23]. Although these
cognitive exams are easy to be carried out by clinicians, their outcomes could be highly
biased by patients specialities. For instance, highly educated patients with dementia dis-
ease are likely to outperform non-educated ordinary patients without dementia in those
cognitive exams. For brain scanning, it is widely accepted as an effective and affordable
way in dementia diagnosis nowadays, and Magnetic Resonance Imaging (MRI) is generally
regarded as a powerful scanning tool and receives vast popularity because it is free of ioniz-
ing radiation exposure, compared with other scanning tools such as Computed Tomography
(CT) and Positron Emission Tomography (PET), for patients safety consideration. Differ-
ent MRI scanning techniques, including both structural MRI (sMRI) and functional MRI
(fMRI), have already been widely incorporated in clinical dementia diagnosis at present
[1, 4–6, 20, 22, 24, 25, 27, 31, 32, 35].

Arterial Spin Labeling (ASL) is an emerging perfusion fMRI technique attracting
increasing attention in dementia studies only beginning from recent years [22, 25]. Com-
pared with other popular perfusion MRI techniques such as Dynamic Contrast Enhanced
MRI (DCE-MRI) or Dynamic Susceptibility Contrast MRI (DSC-MRI), ASL requires no
injection of external contrast enhancement agent (e.g., gadolinium) into patients while being
scanned. Thus, anaphylactoid reactions [24] unexpectedly caused by those agents on certain
patients could be totally avoided for ASL. Technically, an ASL-MRI image is produced by
two types of images: a label image and a control image. Their acquisition steps are illus-
trated in Fig. 1. The yellow region 2 in Fig. 1a and the green region 4 in Fig. 1b describe
the same Region-of-Interest (ROI), in which ASL-MRI images are acquired. The purple
region 1 in Fig. 1a represents an area where arterial blood water is magnetically labeled via
a 180 degree Radio-Frequency (RF) inversion pulse. In this way, water molecules within
the arterial blood are magnetically labeled and utilized as the “tracer”, instead of the con-
ventional injected contrast enhancement agent. Label images are taken when labeled blood
water flows into the ROI, and example label images from the transverse view acquired from
one patient in this study are displayed in Fig. 1a. For control images, the blood water is not
magnetically labeled, and control images are taken at the same ROI directly. Example con-
trol images of the same patient are displayed in Fig. 1b. Although label and control images
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Fig. 1 An illustration of ASL-MRI acquisition with example images displayed from the transverse view (the
plotting scale unit is [mL/(100g*min)])

look similar towards each other, difference exists between them and ASL-MRI are produced
as the difference (i.e., using a control image minus a corresponding label image), and exam-
ple ASL-MRI of the same patient is illustrated in Fig. 1c. Generally speaking, the Cerebral
Blood Flow (CBF) on each pixel of ASL-MRI is proportional towards its ASL signal, and
brain atrophy within certain brain regions of demented patients can be revealed by low CBF
within those regions, compared with ones of ordinary people, reflected in ASL-MRI.

Although ASL is a promising bio-marker for disease diagnosis and progression analy-
sis in dementia, the problem of Partial Volume Effect (PVE) should be carefully tackled.
PVE is generally defined as the loss of apparent activity in small objects because of the lim-
ited resolution of an imaging system [27]. In ASL, since its spatial resolution is not high
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(i.e., it can be perceived by example images in Fig. 1), pixels in ASL-MRI images contain-
ing various tissues of Gray Matter (GM), White Matter (WM) and Cerebro-Spinal Fluid
(CSF) are likely to be assigned with under-estimated ASL signal and low CBF quantities,
which reflects the loss of apparent activity in ASL-MRI because of PVE. In order to correct
PVE, there are already several studies conducted in recent years [1, 5, 6], and the regression-
based method receives much popularity among them [1]. However, its shortcoming is also
obvious. Neighboring pixels are usually indispensable for PVE correction on each single
pixel of ASL-MRI, making blurring and loss of brain details inevitable in correction results
of this method [1]. A case in point is illustrated in the 1st row of Fig. 2. Therefore, in order
to enable ASL a reliable indicator for the following dementia diagnosis, the problem of PVE
needs to be properly handled first.

After PVE correction on ASL-MRI is conducted, the next critical step in dementia diag-
nosis is to predict the dementia disease severity based on corrected ASL-MRI of each
patient. Dementia studies incorporating ASL-MRI only begin to emerge in recent years
[4, 22, 25, 31], and most of them concentrate on verifying ASL-MRI as a new indica-
tor in identifying dementia disease, with comparison to other previously well-established
imaging modalities (e.g. PET [25] and FDG-PET, which is short for Fludeoxyglucose-PET
[4, 31]). For the majority of contemporary dementia disease diagnosis studies, they mainly
rely on conventional pattern recognition tools [20, 32, 35]. For instance, cortical thickness
maps are generated from sMRI and Support Vector Machine (SVM) is employed to differ-
entiateMild Cognitive Impairment (MCI) from AD in [32]. In [20], the curse-of-dimension
problem commonly seen in pattern recognition studies is investigated in dementia diagnosis,
and ensemble classifiers are constructed via sparse encodings for dementia disease predic-
tion. In [35], local volumetric measurements obtained from sMRI are fed into hierarchical
networks to discern MCI patients from AD patients. It can be summarized from existing

Fig. 2 An Example of PVE correction results via the compared regression-based method (1st row) and the
pixel-wise correction method (2nd) on the same patient (the plotting scale unit is [mL/(100g*min)])
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studies that, dementia disease prediction is often considered as either a classification or a
regression problem.

In this study, a novel dementia diagnosis strategy based on ASL-MRI is introduced for
the first time. The strategy is composed of two steps. The first step is to introduce a novel
pixel-wise PVE correction method, which only incorporates information extracted from one
single pixel for its own PVE correction, rather than information from both a pixel itself
and its neighboring pixels commonly adopted in contemporary PVE correction methods
[1, 5, 6]. Existing problems such as blurring and brain details loss commonly seen in cor-
rection results of those contemporary PVE correction methods can be properly tackled, and
under-estimated CBF in ASL-MRI can be well improved. The second step is to present a
novel dementia disease prediction method based on corrected ASL-MRI from a new per-
spective of ranking, instead of the conventional classification and regression viewpoints in
contemporary studies [20, 32, 35]. The reason to conduct dementia disease prediction via
ranking is also introduced later.

The organization of this paper is as follows. In Section 2, the pixel-wise PVE correction
method is elaborated. Then, the dementia disease prediction method via ranking is intro-
duced to fulfill the dementia diagnosis task based on corrected ASL-MRI in Section 3.
In Section 4, extensive experiments are conducted to evaluate the performance of the new
strategy, with its two critical steps compared with several conventional PVE correction and
disease prediction methods. Experimental results of all methods are evaluated from the
statistical point of view, and the conclusion of this study is drawn in Section 5. Main contri-
butions of this study can be summarized as: 1) A novel pixel-wise PVE correction method
on ASL-MRI, which is capable to tackle problems of blurring and brain details loss in cor-
rection results commonly seen in conventional PVE correction methods, is proposed in this
paper; 2) The first attempt to diagnose dementia disease based on corrected ASL-MRI from
a new ranking perspective is also introduced.

2 A novel pixel-wise PVE correction method on ASL-MRI

The PVE correction problem in ASL-MRI is described as follows. Provided a single
pixel i in an ASL-MRI image, its control magnetization MC and label magnetization ML

can be directly measured from the acquired control and label images, and they can be
mathematically represented as:

MC = PGM · MC
GM + PWM · MC

WM + PCSF · MC
CSF (1)

ML = PGM · ML
GM + PWM · ML

WM + PCSF · ML
CSF (2)

where, PGM , PWM , PCSF indicate the fractional GM, WM, CSF tissue volume on pixel
i respectively, and they can be obtained from pre-requisite brain segmentation using the
SPM toolbox [29] (i.e., in other words, they are known parameters); MC

� and ML
� (i.e., �

represents one of the GM, WM and CSF tissues) denote the control and label magnetization
caused by tissue � on pixel i; they are unknown parameters to be solved in PVE correction.
After PVE correction, ASL signal of tissue � on the single pixel i can be calculated using
MC

� −ML
�

MC
�

. Thus, CBF of tissue � on the single pixel i is proportional towards its ASL signal

and can be obtained by existing compartment models therein [13].
In order to solve unknowns in (1) & (2), regression techniques have been utilized in

[1, 5, 6]. Equation (1) & (2) together construct indefinite equations (i.e., 2 equations, 5
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unknowns, given the basic assumption that MC
CSF = ML

CSF as the control and label mag-
netization of CSF are often equivalent and the number of unknowns in (1) & (2) can be
reduced by 1 [10, 17]). Neighbors of pixel i are necessary to be incorporated for adding up
extra information for solving the 5 unknowns in regressions. Given an adopted neighbor of
size n × n, a regression matrix P of the size n2 × 3 can be formulated using PGM , PWM ,
and PCSF , which include fractional GM, WM, and CSF tissue volume of all n2 neighbor
pixels respectively as P ’s three columns. Unknowns MC

� and ML
� on one single pixel can

be obtained using MC
� = (P T P )−1P T M̂C and ML

� = (P T P )−1P T M̂L, where M̂C (M̂L)
depicts a matrix with control (label) magnetization of all n2 neighbor pixels as its elements;
T and −1 represent the transpose and the inverse of a matrix, respectively.

Although the regression process is easy to understand and simple to implement, its short-
comings are obvious. Since pixel neighbors are incorporated in PVE correction, problems
of blurring and brain details loss become inevitable in its correction results. A case in point
is illustrated in Fig. 2. The 1st row demonstrates solvedMC

GM andMC
WM from the transverse

view via the regression-based method [1] with a neighbor of size 5 × 5. When conducting
PVE correction on a single pixel i, its all 25 neighboring pixels are incorporated, and most
of them will be utilized again when conducting PVE correction on pixels nearby the single
pixel i. Thus, PVE correction results on a single pixel itself together with its neighboring
pixels will demonstrate a high degree of similarity, making blurring and brain details loss
commonly seen in those correction results. Therefore, imprecisely calculated CBF based
on those corrected ASL-MRI cannot help in brain atrophy identification, which is likely to
mislead or even deteriorate the following critical dementia disease diagnosis.

In order to tackle the above problem, a novel PVE correction method only incorporating
information obtained from one single pixel when correcting its own PVE is presented at this
section. Given the basic assumption MC

CSF = ML
CSF , (1) & (2) can be firstly re-written as

follows:

�M

MC

= MC − ML

MC

= PGM · �MGM + PWM · �MWM

PGM · MC
GM + PWM · MC

WM + PCSF · MC
CSF

(3)

where, �M represents the difference between the control and label magnetization.
Equation (3) is then evaluated using the two following constrained optimization problems:

min
N∑

i=1

‖MC,i − PGM · MC
GM − PWM · MC

WM − PCSF · MC
CSF ‖2

s.t. MC
CSF ≥ MC

GM ≥ MC
WM (4)

min
N∑

i=1

‖�Mi − PGM · �MGM − PWM · �MWM‖2

s.t.
�MGM

MC
GM

≥ �MWM

MC
WM

(5)

where, i denotes the ith ASL-MRI image obtained within a repeated ASL scanning process,
which is realized in the clinical scanning protocol of this study to improve the Signal-to-
Noise Radio (SNR) of ASL; constraints in (4) & (5) are based on clinical understandings
of brain tissues in ASL [17, 26]. (4) & (5) can be further constructed using Karush-Kuhn-
Tucker (KKT) multipliers, and solved following the split-Bregman method [12]. Details of
them are elaborated in Table 1.
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Table 1 Steps of the Pixel-wise PVE Correction Method

Inputs PGM PWM PCSF MC,i �Mi (i = 1, ..., N )

Initialization M
C,0
GM M

C,0
WM M

C,0
CSF �M0

GM �M0
WM

Steps

repeat (at iteration k)

Step 1 M
C,k
GM = minMC

GM

∑N
i=1 ‖MC,i − PGM · MC

GM − PWM · M
C,k−1
WM − PCSF · M

C,k−1
CSF ‖2

+λ1‖MC,k−1
CSF − MC

GM‖ + λ3‖MC
GM − M

C,k−1
WM ‖

Step 2 M
C,k
WM = minMC

WM

∑N
i=1 ‖MC,i − PGM · M

C,k−1
GM − PWM · MC

WM − PCSF · M
C,k−1
CSF ‖2

+λ2‖MC,k−1
CSF − MC

WM‖ + λ3‖MC,k−1
GM − MC

WM‖
Step 3 M

C,k
CSF = minMC

CSF

∑N
i=1 ‖MC,i − PGM · M

C,k−1
GM − PWM · M

C,k−1
WM − PCSF · MC

CSF ‖2
+λ1‖MC

CSF − M
C,k−1
GM ‖ + λ2‖MC

CSF − M
C,k−1
WM ‖

until max(‖MC,k+1
GM − M

C,k
GM‖∞, ‖MC,k+1

WM − M
C,k
WM‖∞, ‖MC,k+1

CSF − M
C,k
CSF ‖∞) ≤ tol1

Outputs 1 MC
GM MC

WM MC
CSF

repeat (at iteration l)

Step 4 �Ml
GM = min�MGM

∑N
i=1 ‖�Mi − PGM · �MGM − PWM · �Ml−1

WM‖2 + λ4‖ �MGM

MC
GM

− �Ml−1
WM

MC
WM

‖
Step 5 �Ml

WM = min�MWM

∑N
i=1 ‖�Mi − PGM · �Ml−1

GM − PWM · �MWM‖2 + λ4‖ �Ml−1
GM

MC
GM

− �MWM

MC
WM

‖
until max(‖�Ml+1

GM − �Ml
GM‖∞, ‖�Ml+1

WM − �Ml
WM‖∞) ≤ tol2

Outputs 2 �MGM �MWM

Table 1 is composed of detailed steps to correct PVE on one single pixel via this new
pixel-wise PVE correction method. In Table 1, Inputs include the fractional GM, WM,
CSF tissue volume (i.e. PGM , PWM , and PCSF ) on the single pixel to be corrected, the
control magnetization of that single pixel residing in the same coordinate of the whole
N ASL-MRI images within a repeated scanning process (i.e. MC,i , i = 1, ..., N ) and
the corresponding difference between the control and the label magnetization (i.e. �Mi ,
i = 1, ..., N ). For those inputs, the fractional tissues (i.e. PGM , PWM , and PCSF ) are
obtained from pre-requisite brain segmentation using SPM as mentioned before, and all
magnetization measures are obtained directly within the repeated scanning process. Essen-
tial steps in Table 1 follows the split-Bregman method, and initialization of unknowns (i.e.,
MC

GM , MC
WM , MC

CSF , �MGM , and �MWM ) are obtained from correction results of the con-
ventional regression-based method [1] to alleviate unstable influence brought by different
settings of initializations in optimizations within the split-Bregman method.

The split-Bregman method in Table 1 is composed of two folds. The first one is to solve
for control magnetization of different tissues (i.e., Outputs 1: MC

GM , MC
WM and MC

CSF )
via Steps 1 to 3. In each step, one unknown (e.g. MC

GM in Step 1) is separated from the
rest via the split-Bregman method, and KKT multiples λ(·) are incorporated to form a
typical Quadratic Programming (QP) problem. In order to solve the QP problem in each
step, an interior point method [34] is incorporated. Iterations from Steps 1 to 3 will termi-
nate when the following stopping criterion meets: max(‖MC,k+1

GM − M
C,k
GM‖∞, ‖MC,k+1

WM −
M

C,k
WM‖∞, ‖MC,k+1

CSF − M
C,k
CSF ‖∞) ≤ tol1, in which tol1 denotes an enough small change

between two obtained results within two consecutive iterations k and k+1; ‖·‖∞ represents
the spectral norm. After obtaining Outputs 1, similar steps (i.e., Steps 4 to 5) are performed
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to calculate�MGM and�MWM for Outputs 2, following the split-Bregman method as well.
After fulfilling all these steps, outcomes obtained from both Outputs 1 and 2 comprise PVE
correction results obtained by the new pixel-wise PVE correction method. The 2nd row of
Fig. 2 demonstrates corresponding correction results obtained by the new method on the
same patient. It can be observed that, problems of blurring and brain details loss which exist
in the 1st row obtained by the conventional regression-based method can be tackled well.

Although the new method is more sophisticated than the conventional regression-based
method and requires more computational time, parallel computing techniques can be incor-
porated to improve its efficiency. The merit of the new method in practical implementation
is that, PVE correction on each individual pixel only incorporates information obtained
from itself, thus PVE corrections on different pixels are totally independent (which is not
like the compared conventional method with neighboring pixels incorporated). Therefore,
parallel computing can be carried out with the aid of multi-core & multi-thread processors
for efficiency boosting in the implementation of the new method. In this study, the average
computation time of PVE correction on one patient using the newmethod with parallel com-
puting techniques is less than 2 mins using an Intel Core i7-3770 CPU (with 4 cores and 8
threads). Thus, the new PVE correction method can effectively handle existing problems of
blurring and brain details loss commonly seen in conventional PVE correction methods, as
well as efficiently accomplish the PVE correction task within an acceptable response time.

3 A novel dementia disease prediction method on corrected ASL-MRI via ranking

After PVE correction on ASL-MRI is conducted, the next critical step is to predict the
dementia disease severity of patients based on their ASL-MRI after PVE correction. Con-
ventional dementia studies often aim to differentiate patients of various dementia disease
progressions, including AD, MCI and Non Cognitive Impairment (NCI) [4, 20, 31, 32, 35].
Hence, dementia disease prediction in those conventional studies is often considered as
either a classification or a regression problem, and popular pattern recognition tools such
as SVM and linear/non-linear regressions are often employed [20, 32, 35]. In this section, a
novel dementia disease prediction method from a new ranking perspective is presented.

Generally speaking, ranking aims to sort a list of objects according to a system of rat-
ing or a record of performance. The intuition to formulate dementia disease prediction via
ranking in this study is elaborated as follows. From the conventional classification perspec-
tive, such a disease prediction task can be realized by classifying ungraded ASL-MRI into
various dementia progression stages (i.e., classes), and their disease severity can be sug-
gested therein [20, 32, 35]. From the conventional regression perspective, such a disease
prediction task can be realized within a regression procedure, and disease severities of undi-
agnosed patients can be revealed by outcomes of the regression process (i.e., often in terms
of real numbers). For both classification and regression methods, ASL-MRI images with
clinicians’ diagnosis results are often utilized in their training processes for tuning unknown
parameters in either classifiers or regressors, but none of these images will be explicitly
employed in the subsequent yet important phase, the disease prediction process. Therefore,
a typical classification or regression procedure does not comply well with conventional
clinical decision support techniques (e.g., case-based reasoning), in which new cases are
to be diagnosed with reference to other previously diagnosed cases. It is known that, such
a case-based reasoning strategy is often relied in real-life clinical diagnosis, and clinicians
can improve their decisions or even gain confidence when referring to previously diagnosed
cases. Hence, it inspires us to propose a new dementia disease severity prediction method,
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which can explicitly incorporate those previously diagnosed cases in the interpolation of
new undiagnosed cases, following the introduced conventional clinical decision-making
process.

In this study, the disease severity prediction problem is originally considered as a ranking
process following the above intuition, and ranking can provide a better fit to the prediction
task compared with conventional classification or regression manners. The flowchart of the
new “prediction via ranking” method is illustrated in Fig. 3. The main idea is to sort ASL-
MRI into a ranked images list, according to the dementia disease severity depicted in all
listed ASL-MRI images. The disease severity of a new undiagnosed ASL-MRI can then be
interpolated using its neighboring diagnosed ASL-MRI in the ranked list (i.e., Fig. 3). In
order to achieve such a ranked images list, a ranking function needs to be determined, so
that ASL-MRI images can be sorted into a ranked list based on the ranking function. In this
section, a novel learning method inspired by a conventional position-based ranking evalua-
tion measure, the Normalized Discounted Cumulative Gain (NDCG) [15], is introduced to
fulfill the ranking function learning task.

The explicit form of NDCG is generally described as below:

NDCG = N−1
M × DCG = N−1

M

∑

x∈χ

2r(x) − 1

log2(1 + π(x))
(6)

where, x is an ASL-MRI image and χ denotes the set of ASL-MRI images to be ranked;
r(x) and π(x) are the annotated dementia disease severity by clinicians (i.e. often in the
form of integer grades) and the position of image x within the ranked image list, respec-
tively; NM is a normalization term denoting the maximum of DCG, which can be obtained
when all images are sorted in a perfect order of decreasing severity of dementia dis-
ease. Therefore, the range of NDCG is within [0, 1], where the lower bound and upper
bound denote a perfect increasing severity order and a perfect decreasing severity order,
respectively.

In order to learn a ranking function based on (6), an optimization process needs to be con-
ducted. Unfortunately, optimization cannot be directly applied on (6) for learning ranking

Fig. 3 Flowchart of the “prediction via ranking” method
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functions, as NDCG itself is neither continuous nor differentiable in terms of the discrete
position term π(x). Thus, position π(x) needs to be revised and is first approximated as
follows:

π(x) � 1 +
∑

y 	=x,y∈χ

sign(sy − sx) = 1 +
∑

y 	=x,y∈χ

sign
(
f (ŷ) − f (x̂)

)
(7)

where, x̂ represents a d-dimensional feature vector extracted from the ASL-MRI image x;
sx is the score of image x calculated from the ranking function f (x̂), which is of a linear
form in this study (i.e. f (x̂) =< θ, x̂ >, where <, > denotes an inner product between θ

and x̂. Hence, θ is also a d-dimensional vector and there are d unknown parameters in it to
be learned). sign(sy − sx) is an signum function, whose value is positive when sy ≥ sx and
negative otherwise. The reason to revise position π(x) as (7) is as follows. When the score
of image x is smaller than that of image y (i.e. sx < sy), sign(sy − sx) becomes positive and
π(x) becomes larger due to (7), which matches the fact that images reflecting lighter disease
severity (i.e., indicated by smaller score sx) should be ranked in the rear of a ranked image
list (i.e. indicated by a larger value of position π(x)), in a demanded descending order of
disease severity.

Moreover, step transition characteristics of the signum function in (7) makes direction
optimization on (6) still infeasible to be implemented for learning the ranking function f (x̂).
Thus, the signum function in (7) can be further approximated using sign(ζ ) � ζ√

ζ 2+α2
,

where ζ denotes the variable of the signum function, and α controls the sharpness of the
approximated function towards sign(ζ ). It is shown in Fig. 4 that, the less α becomes,

−10 −5 0 5 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

signum function

α = 0.1

α = 0.5

α = 1

Fig. 4 An illustration of approximating signum function with different α



Multimed Tools Appl (2016) 75:2067–2090 2077

the more similar it turns towards the signum function. In this way, a new continuous
approximated position π ′(x) can be described as:

π ′(x) � 1 +
∑

y 	=x,y∈χ

sign(sy − sx) = 1 +
∑

y 	=x,y∈χ

sign(syx) = 1

+
∑

y 	=x,y∈χ

syx√
s2yx + α2

, syx = sy − sx (8)

In this way, a new continuous and differentiable approximation towards NDCG
(i.e., denoted as “C-NDCG” in this study) can be explicitly depicted as:

C-NDCG(x) = N−1
M

∑

x∈χ

2r(x) − 1

log2
(
2 + ∑

y 	=x,y∈χ
syx√

s2yx+α2

) (9)

A corresponding algorithm to directly optimize C-NDCG via a gradient method for rank-
ing functions learning is listed in Table 2. The critical step here is to calculate the gradient

of C-NDCG with respect to the learned parameter θ
(
i.e., ∂C-NDCG(x)

∂θ

)
in Steps T4&T5 of

Table 2 Steps of ranking functions learning on C-NDCG

Inputs 1. ASL-MRI images for training: {x ∈ χ}
2. ASL-MRI images for validation: {xv ∈ χv}
3. Number of Iterations: T

4. Learning rate: η

Training
T1. Initialize parameter θ of the ranking function f (x̂) as θ0

T2. For t = 1 to T

T3. Set θ = θt−1

T4. Feed {x ∈ χ} to (10) to calculate the gradient
T5. Update θ via gradient ascent: θ = θ + η · ∂C-NDCG(x)

∂θ

T6. Set θt = θ

T7. End for T2

Training Validation T learned ranking functions f (x̂) with T corresponding learned parameters θ

V1. For j = 1 to T

V2. Feed j th learned ranking function fj (x̂) to {xv ∈ χv} to rank validation images

V3. Calculate its corresponding NDCG value using (6)

V4. End for V1

V5. Determine fopt (x̂) as the one with the highest NDCG value

Outputs Optimal learned ranking function: fopt (x̂)
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Table 2. Detailed derivation is elaborated in the Appendix of the paper. The gradient can be
computed as:

∂C-NDCG(x)

∂θ
= N−1

M

∑

x∈χ

(
− 2r(x) − 1

log22(1 + π ′(x))
· 1

(1 + π ′(x)) ln 2

)

×

⎛

⎜⎜⎝
∑

y 	=x,y∈χ

α2

(
s2yx + α2

) 3
2

·
(

∂f (ŷ)

∂θ
− ∂f (x̂)

∂θ

)
⎞

⎟⎟⎠ (10)

Since the local optimizer of a gradient method cannot always guarantee the global opti-
mal solution, we run T iterations of ranking functions learning θt initialized by previously
learned θ(t−1), where t denotes the t-th iteration. Hence, after conducting the training phase
in Table 2, there are T ranking functions learned with their corresponding learned θ . Then,
a validation phase is incorporated afterwards to select an optimal ranking function fopt (x̂)

from those T candidates, as the one with the highest NDCG value after applying all T

learned ranking functions obtained from the training phase to rank the validation set of
images (i.e., calculated using (6)).

In the testing phase, an undiagnosed ASL-MRI image x is then sorted together with
other diagnosed images with clinicians’ annotated grades indicating their disease severi-
ties into a ranked image list using fopt (x̂). Hence, graded information (of those diagnosed
cases) is explicitly utilized, which mimics the conventional case-based reasoning procedure.
Grade gxi

of the ASL-MRI image x located at position i of the ranked images list can then
be interpolated using both calculated scores from itself (sxi

) and its neighboring images
(sxi−1 , sxi+1 ) as well as their annotated grades (gxi−1 and gxi+1 ), which are known diagno-
sis results to clinicians. The grade gxi

of an undiagnosed ASL-MRI image x can then be
explicitly described using the following piecewise function:

gxi
=

⎧
⎪⎪⎨

⎪⎪⎩

gxi+1 if gxi+1 = gxi−1

gxi+1 + sxi
−sxi+1

sxi−1−sxi+1
× (gxi−1 − gxi+1) if gxi−1 > gxi+1

gxi−1 + sxi−1−sxi

sxi−1−sxi+1
× (gxi+1 − gxi−1) if gxi−1 < gxi+1

(11)

where, sxi
= fopt (x̂i ), sxi−1 = fopt ( ˆxi−1), and sxi+1 = fopt ( ˆxi+1). It can be easily perceived

that, when two neighboring ranked images are of the same disease severity (i.e., gxi+1 =
gxi−1 ), the undiagnosed image should share the same severity as them in the ranked images
list; when two neighboring ranked images are of different disease severities, the severity of
the undiagnosed image is to be determined by both results of the learned ranking function
(i.e., scores) and previously annotated information (i.e., grades), which complies well with
the conventional case-based reasoning procedure.

4 Experiments and analysis

4.1 Data description and pre-processings

In order to demonstrate the superiority of the newly proposed dementia diagnosis strategy,
clinical data obtained from 350 real patients, including 110 AD patients, 120 MCI patients
and 120 NCI patients (as normal controls) acquired in the affiliated hospital of Nanchang
University, is utilized. Informed consent is obtained from all patients for research pur-
pose. The averaged age of these patients is 70.56 ± 7.20 years old. In ASL-MRI images
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acquisition, A SIEMENS 3T TIM Trio MR scanner is utilized and 23 ASL-MRI images
are acquired consecutively for each patient to improve the SNR of ASL within a repeated
scanning process (i.e., N =23 in (4) & (5) and relevant Eqs in Table 1). Other acquisition
parameters include: labeling duration = 1500 ms, post-labeling delay = 1500ms, TR/TE =
4000/9.1ms, ASL voxel size = 3 × 3 × 5mm3. In PVE correction, pre-defined parameters
include:λ1 = λ2 = λ3 = 0.1, λ4 = 0.01, tol1 = 10, tol2 = 0.5, the adopted neighbor size
is 9× 9 when implementing the regression-based PVE correction method for initializations
in Table 1. High-resolution MPRAGE (i.e., which is short for Magnetization Prepared Rapid
Acquisition Gradient Echo) T1-weighted MRI images [2] are also acquired for all patients
simultaneously in their scannings. After MPRAGE and ASL-MRI images acquisition, brain
extraction and motion correction are applied on acquired MPRAGE and ASL-MRI images.
The MPRAGE image of every patient is then segmented into GM/WM/CSF components
with their probability maps PGM , PWM , and PCSF generated for inputs in Table 1, using
the SPM toolbox [29]. The above obtained maps are then co-registered towards their corre-
sponding ASL-MRI images after motion correction for every patient using the FSL toolbox
[7].

Experiments in this study are divided into two aspects. The first is to incorporate all
patients’ ASL-MRI images to demonstrate the superiority of the new pixel-wise PVE cor-
rection method (i.e., Step 1 of the newly introduced strategy), in comparison with other
conventional PVE correction methods (Section 4.2). The second is to apply the new “predic-
tion via ranking” method on ASL-MRI after PVE correction to diagnose dementia disease
(i.e., Step 2 of the newly introduced strategy), in comparison with several popular pat-
tern recognition tools to reveal the superiority of the new ranking method (Section 4.3).
Comprehensive statistical analysis is performed in all experiments.

4.2 Experiments and analysis on PVE correction

As introduced in Section 1, ASL-MRI images suffering from PVE will often result in
under-estimated CBF, and superior PVE correction methods will often improve CBF after
PVE correction better. The newly proposed pixel-wise PVE correction method (denoted
as “New”) is compared with the conventional regression-based PVE correction method
(denoted as “RB”), regarding calculated CBF from their corrected ASL-MRI results. For
compared RBmethods, different sizes of neighbors are implemented in experiments, includ-
ing sizes of 9 × 9 (i.e., to illustrate a small size of neighborhood), and 15 × 15 (i.e.,
to illustrate a large size of neighborhood). They are denoted as “RB-9” and “RB-15”,
respectively.

Figure 5 displays PVE correction results of an AD patient obtained by all compared PVE
correction methods. In this figure, each row represents correction results obtained by one
method. For columns of Fig. 5, the first column depicts the solved control magnetization
in GM

(
i.e. MC

GM

)
, the second column displays the solved control magnetization in WM(

i.e. MC
WM

)
, the third column demonstrates the solved control magnetization in CSF (i.e.

MC
CSF ), and the forth column illustrates histograms of subject-wise averaged ASL sig-

nal �MGM

MC
GM

(red) and �MWM

MC
WM

(blue), as well as the calculated voxel-wise ratio of GM flow

towards WM flow annotated on tops of histograms. It can be easily observed that, blurring
and brain details loss in correction results of “New” can be greatly improved. Also, the ratio
of GM flow to WM flow obtained by “New” is 2.0314, which complies well with clinical
literatures [17, 26] compared with other methods (e.g., ratio results of “RB-9” and “RB-15”
are 1.6853, and 1.7601, respectively in Fig. 5, which are significantly smaller and do not
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Fig. 5 PVE correction results on an AD patient obtained by different methods (1st row: New; 2nd row:
RB-9; 3rd row: RB-15)

comply well with clinical literatures). Similar results can be observed in all 350 patients as
well. After calculating CBF of all patients based on correction results obtained from all PVE
correction methods, a box-and-whisker plot summarizing CBF of all patients is illustrated
in Fig. 6. In each box, a horizontal line is drawn across the box at the median of CBF, while
the upper- and lower-quartiles of CBF are depicted as lines above and below the median. A
vertical dashed line is drawn up from the upper-quartile and down from the lower-quartile
to their most extreme data points, which are within a distance of 1.5 Inter-Quartile Range
(IQR) [28]. Each data point beyond ends of the vertical line is marked via a plus sign. It can

40
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New                                RB−9                               RB−15
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Fig. 6 Box plot of CBF obtained by all compared PVE correction methods
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be observed that, the box of “New” is significantly higher than those of others, which indi-
cates that the under-estimated CBF in original ASL-MRI images can be improved better by
the new pixel-wise correction method.

In order to reveal the superiority of “New” in PVE correction from the statistical point
of view, a statistical test made up of one-way Analysis Of Variance (ANOVA) followed by
post-hoc multiple comparison tests [28] is further utilized for statistical analysis on all CBF
results obtained by all compared PVE correction methods on all patients data. ANOVA is
a popular correction of models analyzing the difference between diverse group means and
their associated variations in statistics [28]. In one-way ANOVA, CBF results obtained from
all methods are compared to test a hypothesis (H0) that “CBF means of various methods
are equivalent”, against the general alternative that these means cannot be all the same. P-
value is used here as an indicator to reveal whether H0 holds or not. In this study, p-values
calculated from all CBF results are nearly 0, which is a strong indication that all these
methods cannot share the same CBF means. Therefore, the next step is to conduct more
detailed paired comparisons. The reason to do so is because that, the alternative against H0
is too general. Information about which method is superior from the statistical perspective
cannot be perceived by one-way ANOVA alone. There are two kinds of evaluation after
applying multiple comparison tests on calculated CBF of all methods, and quantitative eval-
uation results are shown in Table 3. For the two kinds of evaluation, one is estimated CBF
mean difference, which is a single-value estimator of CBF mean difference. Another is a
95 % Confidence Interval (CI). In statistics, a CI is a special form of interval estimator for
a parameter (i.e. CBF mean difference in this experiment). Generally speaking, instead of
estimating the parameter by a single value, CI is capable to provide an interval estimation
which is likely to include the estimated parameter within a specified interval. To be spe-
cific, “New” is 4.3904 higher than “RB-9”. The CBF mean difference (i.e., using “New”
minus “RB-9”) is likely to fall within a 95 % CI [2.2873, 6.4935]. Since the upper and lower
bounds of the CI are both positive, it gives a strong indication (> 95 %) that the CBF mean
difference should be positive. Thus, “New” is superior to “RB-9” in terms of CBF from sta-
tistical point of view. For comparisons between “New” and “RB-15”, a similar conclusion
can be drawn from Table 3. To sum up, based on the above statistical analysis, the pixel-wise
PVE correction method in the newly introduced dementia diagnosis strategy outperforms
compared conventional regression-based methods, from the statistical perspective.

4.3 Experiments and analysis of disease severity prediction

After PVE correction has been fulfilled, the next critical step is to conduct dementia dis-
ease severity prediction. In this section, the “prediction via ranking” method (denoted as
“Ranking”) is evaluated for its capability of dementia disease prediction, based on ASL-
MRI after PVE correction. Its pre-defined parameters are set as T = 200 and η = 0.01 in

Table 3 Multiple comparison test of obtained CBF based on Corrected ASL-MRI from all PVE correction
methods

Method I Method II CBF Mean Difference (I-II) a 95 % Confidence Interval

New RB-9 4.3904 [2.2873, 6.4935]

New RB-15 2.5758 [0.4727, 4.6789]

RB-9 RB-15 −1.8146 [-3.9177, 0.2885]
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Table 2 through trial-and-error for optimal performance; α in (8) controlling the sharpness
of the approximated function towards the signum function is set as 0.1. Mean ASL signal
calculated from the segmented left & right hippocampus, the left & right parahippocampal
gyrus, the left & right putamen, and the left & right thalamus (i.e. the above tissue segmen-
tation is realized via IBA-SPM [14]) is utilized to construct a 8-dimensional feature vector
x̂ in (7) for each patient. Popular pattern recognition tools widely utilized in conventional
dementia diagnosis studies, including support vector machine (denoted as “SVM” as a clas-
sification tool), support vector regression (denoted as “SVR” as a non-linear regression
tool) and linear regression (denoted as “LR”), are implemented in this experiment based on
ASL-MRI images of all patients after PVE correction, for dementia diagnosis. Since learn-
ing is incorporated in “Ranking”, parameters of other methods are also learned for the sake
of fairness. For “SVM” and “SVR”, Gaussian Radial Basis Function (RBF) are adopted as
kernels; Gaussian widths are learned via the popular radius/margin bound algorithm [18],
and SVM-light toolbox [16] is utilized for their implementations. For “LR” and “Ranking”,
disease severities of AD, MCI and NCI are labeled as 1, 2 and 3 respectively. Regression
coefficients in “LR” are determined via labels and regressors (i.e., the 8-dimensional feature
vector) of the training data.

The whole dataset of 350 patients is equally divided into 5 subsets to conduct a 5-fold
cross validation for statistical evaluation. In each subset, patients with different dementia
disease severities are roughly equivalent (i.e., 22 AD/ 24 MCI/ 24 NCI in each subset).
Since there are training, validation and testing phases in the “Ranking” method and the
number of subsets utilized in them are 3, 1 and 1 individually in each trial of the 5-fold cross
validation, the total number of trials in the whole 5-fold cross validation isC3

5 ·C1
2 ·C1

1 = 20,

where C
(�)
(∗) denotes the number of combinations of � objects from a set of ∗ objects. For

other compared methods without the validation phase (i.e., “SVM”, “SVR” and “LR”), all
non-testing subsets (i.e., training+validation subsets) are utilized for parameters learning
in each trial. In order to perceive comprehensive understandings of the newly proposed
dementia diagnosis strategy, all compared disease severity prediction methods are tested on
all corrected ASL-MRI obtained by all compared PVE correction methods in Sections 4.2,
and the combination of PVE correction and disease prediction methods producing the best
performance in dementia diagnosis can be suggested therein.

Statistical results of dementia disease prediction obtained by all combinations of PVE
correction methods and disease severity prediction methods are elaborated in Table 4. Each
entry in Table 4 contains the mean±standard deviation of the difference between predicted
disease severity (i.e., grade) and its ground truth annotated by our senior clinicians deter-
mined by consensus, as well as the prediction accuracy (i.e., in percentage) in which one
predicted case is considered to be accurate if the difference between its prediction and
ground truth is less than 0.3 (i.e., suggested by our senior clinicians based on clinical evi-
dence). The least prediction error and the highest prediction accuracy in each trial are
highlighted. It can be observed from Table 4 that, the combination of the pixel-wise PVE
correction method (“New”) and the “prediction via ranking” method (“Ranking”) achieves
the highest prediction accuracy and the least prediction error in most trials (i.e. 17 out of
20 trials with the highest prediction accuracy, and 15 out of 20 trials with the least predic-
tion error). We investigated trials that the newly proposed ranking method cannot perform
the best, and found that characteristics between different patients vary more in those tri-
als. Since ranking is more generative than conventional classification, it is more convenient
for classification models to tackle those more discriminant cases. However, based on all
statistics, the generative ranking method still achieves the most satisfactory outcomes. To
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be specific, the average prediction accuracy of the newly introduced dementia disease diag-
nosis strategy in this study (i.e., “New”+“Rank”) is 96.29 %, and 0.0747 ± 0.0474 as its
mean and standard deviation of prediction errors. The above outcomes are superior to ones
of other combinations based on all patients data.

Another interesting thing to notice is that, for one specific prediction method (e.g. “Rank-
ing”), corrected ASL-MRI obtained by the pixel-wise correction method (e.g., “New”) can
help to provide better dementia disease prediction performance than ones obtained by com-
pared conventional regression-based methods (i.e., “RB-9” and “RB-15”). For instance, the
averaged prediction accuracy is 96.29 % for “New”+“Ranking”, compared with 91.64 %
for “RB-9”+“Ranking” and 88.79 % for “RB-15”+“Ranking”. Similar conclusions can also
be drawn in each of other disease severity prediction methods (e.g., “SVM”, “SVR” and
“LR”) when comparing prediction results based on different PVE correction methods. All
these observations demonstrate the effectiveness of the pixel-wise PVE correction method
in differentiating patients with various dementia disease severities in both conventional
prediction methods and the newly introduced “prediction via ranking” method. Also, for
corrected ASL-MRI obtained by one specific PVE correction method, the newly introduced
“prediction via ranking” method outperforms other conventional prediction methods. For
instance, based on corrected ASL-MRI obtained by “New”, the dementia diagnosis predic-
tion accuracy of “New”+“Ranking”, “New”+“SVM”, “New”+“SVR” and “New”+“LR” are
96.29 %, 70.07 %, 73.79 % and 36.57 %, respectively. Thus, the effectiveness of the newly
introduced “prediction via ranking” method can also be verified.

In Fig. 7, a histogram depicting the distribution of prediction errors obtained by the newly
presented dementia disease diagnosis strategy in this study (i.e., “New”+“Rank”) is illus-
trated based on all diagnosis results obtained from the 5-fold cross validation on all patients
data. The number of testing data in Fig. 7 is 1400 (which equals to 350 × 4, as each testing
subset will be utilized C3

4 × C1
1 = 4 times brought by different combinations of training
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Fig. 7 Histogram of prediction errors obtained by the newly proposed dementia disease diagnosis strategy



2086 Multimed Tools Appl (2016) 75:2067–2090

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8
Dimensions of the extracted feature vector from corrected ASL−MRI

Le
ar

ne
d 

w
ei

gh
ts

 o
n 

di
ffe

re
nt

 d
im

en
si

on
s

Fig. 8 Summary of learned weights on different dimensions of the extracted feature according to outcomes
in “New”+“Rank”

and validation subsets in the 5-fold cross validation). It can be observed that, the prediction
error of most cases is within the range [-0.5, 0.5]. In Fig. 8, the distribution of all 8 elements
of the learned θ in the utilized linear ranking function f (x̂) =< θ, x̂ > of this study is sum-
marized based on all learned θ results from the 5-fold cross validation on “New”+“Rank”,
where indices 1-8 in Fig. 8 denotes the left & right hippocampus, the left & right parahip-
pocampal gyrus, the left & right putamen, and the left & right thalamus sequentially. It can
be observed from Fig. 8 that, all of them have dominant influence on dementia disease diag-
nosis (i.e., all medians are within [0.05, 0.15] without much difference), which complies
well with clinical literatures in dementia studies [9, 11, 19].

5 Conclusion

In this study, a new dementia disease diagnosis strategy based on ASL-MRI is proposed
for the first time. There are two steps composed of the whole strategy, including pixel-wise
PVE correction and dementia disease severity prediction via ranking. Extensive experimen-
tal results and comprehensive statistical analysis demonstrate the superiority of the new
disease diagnosis strategy. Main contributions of this study can be summarized as: 1) A new
pixel-wise PVE correction method on ASL-MRI, which is capable to tackle problems of
blurring and brain details loss in correction results commonly seen in conventional PVE cor-
rection methods as well as better improve CBF; 2) The first attempt to diagnose dementia
disease based on corrected ASL-MRI from a new ranking perspective. Experimental analy-
sis demonstrates the superiority of the newly proposed dementia disease diagnosis strategy
over several compared existing methods. Future studies will be continued with more sophis-
ticated ranking models investigated for severity prediction of diverse diseases reflected by
different modalities of medical images.
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Appendix: Derivation of Equation (10)

After applying the chain rule, the gradient of C-NDCG(x) with respect to θ becomes:

∂C-NDCG(x)

∂θ
= ∂C-NDCG(x)

∂π ′(x)
· ∂π ′(x)

∂θ
= N−1

M

∑

x∈χ

∂ 2r(x)−1

log2
(
1+π ′(x)

)

∂π ′(x)
· ∂π ′(x)

∂θ
(12)

where, the first term of (12) is derived as follows:

∂ 2r(x)−1

log2
(
1+π ′(x)

)

∂π ′(x)
= − 2r(x) − 1

log22
(
1 + π ′(x)

) · 1(
1 + π ′(x)

)
ln 2

(13)

Furthermore, π ′(x) in (13) can be re-written as follows:

π ′(x) � 1 +
∑

y 	=x,y∈χ

syx√
s2yx + α2

, syx = sy − sx (14)

Apply the chain rule to the second term of (12) after incorporating results in (14):

∂π ′(x)

∂θ
= ∂π ′(x)

∂syx

· ∂syx

∂θ

=
∑

y 	=x,y∈χ

√
s2yx + α2 − syx · 1

2 · 1√
s2yx+α2

· 2syx

s2yx + α2
· ∂syx

∂θ

=
∑

y 	=x,y∈χ

s2yx + α2 − syx · syx

(
s2yx + α2

) 3
2

· ∂syx

∂θ

=
∑

y 	=x,y∈χ

α2

(
s2yx + α2

) 3
2

·
(

∂f (ŷ)

∂θ
− ∂f (x̂)

∂θ

)
(15)

Hence, after substituting derivation results of (13) & (15) into (12), it becomes:

∂C-NDCG(x)

∂θ
= N−1

M

∑

x∈χ

(
− 2r(x) − 1

log22(1 + π ′(x))
· 1

(1 + π ′(x)) ln 2

)

×

⎛

⎜⎜⎝
∑

y 	=x,y∈χ

α2

(
s2yx + α2

) 3
2

·
(

∂f (ŷ)

∂θ
− ∂f (x̂)

∂θ

)
⎞

⎟⎟⎠ (16)

which is the same as (10).
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