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Fig. 1. Data uncertainty can have a significant influence on the outcome of dimensionality reduction techniques. We propose a
generalization of principal component analysis (PCA) that takes into account the uncertainty in the input. The top row shows the
dataset with varying degrees of uncertainty and the corresponding principal components, whereas the bottom row shows the projection
of the dataset, using our method, onto the first principal component. In Figures (a) and (b), with relatively low uncertainty, the blue and
the orange distributions are comprised by the red and the green distributions. In Figures (c) and (d), with a larger amount of uncertainty,
the projection changes drastically: now the orange and blue distributions encompass the red and the green distributions.

Abstract—We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a
generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear
methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain
intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each
of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and
performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with
regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the
influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets.
As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss
extensions and limitations of our approach.

Index Terms—Uncertainty, dimensionality reduction, principal component analysis, linear projection, machine learning

1 INTRODUCTION

Dimensionality reduction techniques can be applied to visualize data
with more than two or three dimensions, projecting the data to a lower-
dimensional subspace. These projections should be meaningful so
that the important properties of the data in the high-dimensional space
can still be reconstructed in the low-dimensional representation. In
general, dimensionality reduction techniques can either be linear or
non-linear [21]. Linear dimensionality reduction has the advantage
that properties and invariants of the input data are still reflected in
the resulting projections. Another advantage of linear over non-linear
methods is that they are easier to reason about because the subspace
for the projection is always a linear combination of the original axes.
Also, linear methods are usually efficient to implement [4].
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Arguably the most frequently used linear method is principal compo-
nent analysis (PCA). It is most effective if the dimensions of the input
data are correlated, which is common. PCA uses this property and
finds the directions of the data that contain the largest variance. This is
achieved by performing eigenvalue decomposition of the sample covari-
ance matrix that is estimated from the input. The input to conventional
PCA is a set of points. However, we often encounter data afflicted
with uncertainty or variances. According to Skeels et. [31], there are
several sources for this uncertainty. Measurement errors might arise
from imperfect observations. In many cases, we rely on data that is the
output of predictive models or simulations that provide probabilistic
estimations. And lastly, uncertainty is inevitable when aggregating data,
as some of the original information has to be discarded. The natural
way to model these instances of uncertain data is by using probability
distributions over possible realizations of the data.

In this paper, we derive a generalization of PCA that directly works
on probability distributions. Like regular PCA, our new method
of uncertainty-aware PCA solely requires that the expected value
and the covariance between dimensions of these distributions can be
determined—no higher-order statistics are taken into account. This
uncertainty of the input data can have a strong impact on the resulting
projection, because it directly influences the magnitude of the eigenval-
ues of the sample covariance matrix.

In addition to extending PCA, we introduce factor traces as a vi-



sualization that shows how the projections of the original axes onto
the subspace change with a varying degree of uncertainty. This en-
ables to perform a sensitivity analysis of the dimensionality reduction
with respect to uncertainty and gives an interpretable representation
of the linear projection that is performed. Our paper has four main
contributions:

• a closed-form generalization of PCA for uncertain data,

• sensitivity analysis of PCA with regards to uncertainty in the data,

• factor traces as a new visualization technique for the sensitivity
of linear projections, and

• establishing a distance metric between principal components.

In Figure 1, we compare our method to regular PCA and illustrate
why it is important to consider the uncertainty in the data when deter-
mining the projection: it shows a projection of four bivariate probability
distributions, each with varying levels of uncertainty, that are projected
onto a single dimension. For input with low uncertainty, the red and
green data points define the extent of the projected data. With increas-
ing uncertainty and due to the shape of the underlying distributions, the
projection looks quite different: now the orange and blue data points
mark the extent of the projected data. This change in the projection
shows that it is important to incorporate the uncertainty information
adequately into our dimensionality reduction algorithms. Although all
distributions in this example are Gaussian, our method works on any
probability distribution for which the expected value and the covariance
can be determined.

2 RELATED WORK

The survey by Nonato and Aupetit [21] offers a broad overview of
dimensionality reduction from a visualization perspective. Principal
component analysis [23] is one of the oldest and most popular tech-
niques. It is often applied to reduce data complexity, which is a com-
mon task in visualization. By construction, PCA yields the linear
projection that retains the most variance of the input data in the lower-
dimensional subspace. Probabilistic PCA [36] extends traditional PCA
by adding a probabilistic distribution model. In contrast to our method,
an unknown isometric measurement error is assumed. Likewise, many
extensions have been introduced to PCA [3, 16]. For example, Kernel
PCA [28] enables non-linear projections by first transforming objects
into a higher-dimensional space in which a good linear projection can
be found. Techniques such as Bayesian PCA [2,20,22], and the method
introduced by Sanguinetti et al. [26] focus on estimating the dimension-
ality of the lower-dimensional space. Robust PCA methods [1, 39, 40]
target datasets with outliers. Different extensions to PCA have also
been developed in the context of fuzzy systems. The technique de-
scribed by Denoeux and Masson [5] applies PCA to fuzzy numbers
by training an artificial neural network that incorporates the different
possible realizations for each fuzzy number. Giordani and Kiers [10]
provide an overview of methods that can be used to apply PCA to inter-
val data. In contrast, we extend traditional PCA to an uncertainty-aware
linear technique for exploratory visualization that works on general
probability distributions.

Next to PCA, Factor Analysis (FA) [32] is a well known linear
method. Its goal is to identify (not necessarily orthogonal) latent vari-
ables underlying a higher-dimensional space of measurements. Factor
Analysis models measurement errors, yet constraining the errors to be
uncorrelated is common. One reason for this is that modeling corre-
lated errors can be problematic if the actual errors are unknown [11].
In our description, we assume that all errors are known, or can at least
be estimated. Many other linear techniques such as Classical Multi-
Dimensional Scaling [38] and Independent Component Analysis [13]
are covered by Cunningham and Ghahramani [4]. To the best of our
knowledge, none of them can deal with data that has explicitly encoded
(measurement) errors.

Liu et al. [19] provide an overview of the visualization and explo-
ration of high-dimensional data. The Star Coordinates [15] visual-
ization technique, for example, provides interactive linear projections
of high-dimensional data. Recently measure-driven approaches for

exploration have gained interest, e.g., by Liu et al. [18] as well as by
Lehmann and Theisel [17]. Visualizing the projection matrix of linear
dimensionality reduction techniques (instead of projections of the data)
can be done with factor maps or Hinton diagrams [2, 12].

Advances in visualizing uncertainty and errors often originate from
the need to represent prediction results [33]. More generally, visual-
izing Gaussian distributions by a set of isolines is a common practice.
In this paper, we aim at bringing uncertainty-aware dimensionality
reduction and visualization together. For example, our technique can
be used to extend Wang et al.’s [42] approach to visualizing large
datasets by allowing a fast approximate visualization of clusters. Fur-
thermore, correlated probability distributions are often the result of
Bayesian inference, which is widely used in prediction tasks, where
the result is always a probability distribution. In this domain, Gaussian
processes [24] are a prime example of correlated uncertainty.

Lately, there has been a push in the visualization community to
gain a better understanding of the intrinsic properties of projection
methods. However, the focus mainly has been on exploring non-linear
approaches. For instance, Schulz et al. [27] propose a projection for
uncertainty networks based on sampling different realizations of the
data and investigate potential effects of uncertainty. With DimReader,
Faust et al. [8] address the problem of explaining non-linear projections.
Their technique uses automatic differentiation to derive a scalar field
that encodes the sensitivity of the projected points against perturbations.
Wattenberg et al. [43] examine how the choice of parameters affects
the projection results of t-SNE. Similarly, Streeb et al. [35] compare a
sample of (non-)linear techniques and influences of their parameters on
projections.

3 STATISTICAL BACKGROUND

The typical way to model uncertainty is by using probability distribu-
tions over the data domain. This approach is well established in other
fields, such as measurement theory and Bayesian statistics. Before
getting to the gist of our method, we want to give a quick overview of
the statistical background we need for our technique. More details can
be found in the textbook by Wickens [44].

3.1 Random Variables and Random Vectors

A random variable is used to describe the values of possible outcomes
x of a random phenomenon. It is usually defined as a real-valued scalar
x∈R. Probability distributions are used to assign a probability (density)
to each outcome of the random variable—both concepts are closely tied
together. To extend this one-dimensional case to multi-dimensional
phenomena, we can group several random variables into a multivariate
random variable, which is also called a random vector. Throughout this
article, we denote random vectors by x = (x1, . . . ,xd)

T, with x ∈ Rd .
Analogously, the corresponding multivariate probability distributions
span the same d-dimensional domain. An interesting property arises
from the fact that x can be viewed as a position vector: it can be
manipulated using affine transformations. These transformations can,
for example, be used to scale, translate, or rotate x. Generally, an
affine transformation has the form y = Ax+~b. It consists of a linear
transformation A and a translation vector~b that together transform an
input x to obtain a new random vector y, which can be described using
a modified distribution.

3.2 Summary Statistics

For many applications, it is helpful to summarize the probability distri-
butions into simpler, yet characteristic quantities. Ideally, these simple
terms still allow us to make statements about the shape and properties
of the original distribution. Such descriptions are called summary statis-
tics. The most well-known statistics are the first and second moments,
which, in the real-valued case, are also called mean and variance. They
are used to describe the center of gravity and the spread of a distribution.
For multi-dimensional data, the mean is a d-dimensional vector, and
the variance is replaced by the covariance that also reflects correlations
between each of the d components. Because the covariance describes



these relationships, it has the form of a symmetric d×d matrix. Ev-
ery covariance matrix is always positive semi-definite—we provide a
detailed discussion in the appendix.

For some distributions, these two summary statistics are explicitly
defined. The multivariate normal (MVN) distribution, which is widely
used in many domains, has an interesting property—it is completely
determined by its first and second moments. Therefore, if x follows an
MVN distribution, with mean µ and covariance matrix Ψ, we write:

x∼ N(µ,Ψ).

Sometimes our random vector x is given by a set of samples
{~xn}, n ∈ {1, . . . ,N} from an arbitrary distribution. Given this set,
we can estimate the first and second moments of x using the sample
mean µx, which is defined in terms of the expected value E [·]:

µx = E [x] =
1
N

N

∑
n=1

~xn

and the sample covariance matrix Cov(x,x):

Cov(x,x) = E
[
(x−E [x])(x−E [x])T

]
= E

[
xxT

]
−µxµx

T (1)

The term E
[
xxT

]
is the expected outer product xxT and can be approx-

imated as follows:

E
[
xxT

]
=

1
N

N

∑
n=1

~xn~xTn

In the previous section, we explained how to transform a random
vector x using affine transformations. Transforming x in this way also
influences the summary statistics. For the mean, it holds that:

E
[
Ax+~b

]
= AE [x]+~b

In a similar fashion, we can transform the covariance matrix:

Cov(Ax+~b,Ax+~b) = ACov(x,x)AT (2)

Both equations follow from the linearity of the expected value operator
E [·]. Intuitively, only the mean of x is influenced by the translation
~b. The covariance matrix, in contrast, is invariant to translation. The
reason for this is that the covariance only captures the relative variance
of each component because it is always centered around the sampling
mean by the term µxµx

T. In the following section, we will use these
above definitions to formulate our method.

4 METHOD

We have motivated the different causes of uncertainty in the input data in
the introduction. In this part, we describe the necessary adaptions to the
framework of PCA that are required to handle uncertainty, as modeled
in the previous section. We will first show how to adapt the computation
of the covariance matrix to work on probability distributions, which is a
fundamental part of our technique. Then, we will describe how this fits
into the context of regular PCA. Afterward, we will demonstrate how
our method allows us to perform PCA analytically on uncertain data,
using multivariate normal distributions as an example. Finally, we will
show that our approach is a generalization of regular PCA. This allows
us to combine certain and uncertain data within the same mathematical
framework and provides us with the foundation for sensitivity analysis,
as described in Section 5.

4.1 Model
PCA is used to find the directions of the data with the largest variance by
looking at the covariance of the input. We adopt this concept to arbitrary
distributions to handle uncertain data. For our method, we only require
that the expected value and the covariance can be determined for each of

the distributions. It is important to note that this does not imply that the
input distributions necessarily have to follow a Gaussian distribution.
We want to illustrate this for a small example: let us consider an input
distribution made up of two clusters spread about its mean. Then,
the covariance of the distribution still captures the spread of the data,
namely along the direction of the location of the two clusters. So even
though the distribution might not be sufficiently described only by mean
and covariance, its overall extent is still represented adequately using
these first- and second-order statistics. In Section 6.3, we will show an
example of a dataset that exhibits this property. And in Section 8.3, we
will discuss its implications on the resulting projection.

It is important that there is an established relationship between the
units of the original axes for PCA to yield a meaningful result. The
usual approach to achieve this is to normalize the input data accord-
ingly. The same preprocessing step needs to be performed for our
method. For probability distributions, this can be performed using
affine transformations, as outlined above.

4.2 Uncertain Covariance Matrices
As we have mentioned before, the goal of our method is to perform
PCA on a set of N probability distributions that are used to model the
uncertainty, as described in Section 3. Formally, we represent this
collection of distributions as random vectors T = {t1, . . . , tN}. For each
of these random vectors, we require that we can determine its expected
value E [ti] and its pairwise covariance Cov(ti, ti). It is important to
note that T can conceptually be interpreted as a random vector of
second order, as its components tn are random vectors themselves.

Our approach adapts the computation of the covariance matrix to
account for uncertainty in the data. Regular PCA works on a set of
points. Therefore, the covariance matrix can be understood as the
computation of the expected products of deviations of these points from
the sample mean. In contrast, our approach works on a set of random
vectors, which changes the problem in the following way: Because of
the uncertainty in the data, we do not know the actual deviation of each
random vector from the overall sample mean. But we can determine
the deviation that is to be expected for each of the distributions. We
do this conceptually by integrating over the deviation of all possible
realizations of each probability distribution. In the framework of PCA,
where only the first- and second-order moments are taken into account,
it turns out we do not even have to evaluate this integral: we can derive
the covariance matrix directly from the summary statistics.

From Equation 1, we can derive a property of the covariance matrix
that we will need later on: it gives us a way to compute the expected
outer product E

[
xxT

]
of a particular random vector with itself. We

achieve this by solving Equation 1 for E
[
xxT

]
:

E
[
xxT

]
= E [x]E [x]T+Cov(x,x) (3)

For distributions, we use the following equation, which is akin to
computing the expected products of expected deviations. To avoid
confusion with the expected value of each random vector E [·], we
denote the expectation operator that stems from the covariance method
with Ê [·]:

Cov(T,T) = Ê
[
E
[
TTT

]
−µTµT

T
]

We can expand this further by making use of Equation 3:

Cov(T,T) = Ê
[
E [T]E [T]T+Cov(T,T)−µTµT

T
]

Cov(T,T) = Ê
[
E [T]E [T]T

]
+ Ê [Cov(T,T)]−µTµT

T (4)

The different terms in Equation 4 have particular interpretations.
First, we recognize that the term Ê

[
E [T]E [T]T

]
is the same as per-

forming regular PCA on the means of each of the distributions. The



second term Ê [Cov(T,T)] computes the average covariance matrix
over all random vectors:

Ê [Cov(T,T)] =
1
N

N

∑
i=1

Cov(ti, ti) (5)

It reflects the uncertainty that each random vector has and how these
uncertainties influence the overall covariance in the dataset—it is also
the major difference between our method and regular PCA, which
cannot handle probability distributions. The last term is called centering
matrix and also part of regular PCA. It consists of the outer product
of the empirical mean µT of our dataset. The empirical mean of our
dataset can be computed as follows:

µT =
1
N

N

∑
i=1

E [ti]

Algorithm 1 provides the corresponding pseudocode for Equation 4.
The proof that Equation 4 yields a symmetric, positive semi-definite
matrix and therefore is an actual covariance matrix can be found in the
Appendix of this document.

4.3 PCA Framework and Diagonalization
Now that we have constructed the covariance matrix while respecting
the uncertainty, we can continue with the remaining steps of the PCA
algorithm. After setting up the covariance matrix, we retrieve its eigen-
values λd and corresponding eigenvectors~vd . This can be done using
eigenvalue decomposition:

Cov(T,T)~v = λ~v

Let q be the desired target number of dimension for our dimensionality
reduction. We then choose the q largest ~vd by their corresponding
eigenvalue λd , yielding q principal components W = {w1, . . . ,wq}.
We can then project each distribution onto the subspace 〈W〉 that is
spanned by these principal components Φ(tn) ∈ 〈W〉, where Φ(·) is a
linear projection that can be described using a linear transformation.

It is important to note that eigenvalues and eigenvectors have certain
characteristics that complicate their analysis. The orientation of~vd is
not completely defined, therefore~vd=̂−~vd . In practice, the computa-
tion of (λd ,~vd) is performed numerically, which can lead to instabilities
and rounding errors. We will discuss the impact of this on the analysis
of linear projections in Section 5.

4.4 Linear Transformation of MVN Distributions
Now that we have defined the projection Φ(·), we need to transform
each distribution into the subspace 〈W〉. In the following, we will
describe how this can be carried out for multivariate normal distribu-
tions, as they are often used to model errors or uncertainty in the data.
As mentioned in Section 2, several existing techniques already model

Algorithm 1: Covariance matrix of random vectors
Input : List of d-variate distributions T, scaling factor s = 1
Output : Covariance matrix KTT

1 µt← d-dimensional vector initialized to 0
2 foreach t ∈ T do
3 µt += t.mean()
4 end
5 µt /= T.length()
6 KTT← d×d matrix initialized to 0
7 foreach t ∈ T do
8 ~m← t.mean()
9 KTT += ~m~mT+ s2 · t.cov()−µtµt

T

10 end
11 KTT /= T.length()
12 return KTT

0
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Fig. 2. Different types of input data: (a) Regular PCA without uncertainty.
(b) Isometric error model as used by previous work where PCA has been
described as an optimization problem; the directions of the principal
components are the same, but the lengths differ. (c) Our method: it
works on arbitrary distributions and can result in drastically different
principal components.
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Fig. 3. A linear projection Φ(·) of a normal distribution t∼ N(µ,Ψ) results
in a modified multivariate normal distribution Φ(t) in the lower dimen-
sional subspace 〈W〉. Because of this, we can propagate the uncertainty
directly through linear dimensionality reduction techniques.

uncertainty using MVN distributions. In these works, the distributions
are usually described using an error model, which means that a mea-
surement~x is disturbed by an error term ε . This is commonly written
as:

tn =~xn + εn, εn ∼ N(~0,Ψn)

To retrace the closed-form derivation of the covariance matrix that we
described in Section 4.2, it is easier to think of this error in terms of a
single random vector tn that can be equivalently defined as follows:

tn ∼ N(~xn,Ψn).

Figure 2 shows examples of different error models that can be created
depending on the shape of Ψn. We also visualize the corresponding
principal components of the dataset, determined by using our method.

The dimensionality of Φ(t) is dim(〈W〉). To perform the actual
projection, we assume that wq are unit vectors, and write them in a
column matrix A:

A =
[
w1 . . . wq

]
It is important to note that a projection Φ is an affine transformation, as
defined in Section 3. Accordingly, we can project a normal distribution
as follows:

Φ(tn) = N(AT
µn, AT

ΨnA)

The resulting distribution remains multivariate normally distributed.

4.5 Reduction to Regular PCA
In this section, we will show that our method is a mathematical gener-
alization of conventional PCA. The main difference between the two
algorithms lies in the setup of the covariance matrix, as described by
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Fig. 4. Different levels of uncertainty can be achieved by scaling the
covariances of each distribution with a factor s. By letting s → 0 we
can emulate traditional principal component analysis, as the distributions
converge toward single points.

Equation 4. Our method includes an additional term that reflects the
uncertainty of each input (Equation 5). To reduce our formulation to
regular PCA, we will scale the covariance of each of the distributions by
a constant factor s. This decreases the spread of the covariance matrix,
and because of this, implicitly reduces the amount of uncertainty within
each distribution.

To scale the covariance matrices, we will again make use of the prop-
erties of affine transformations for covariance matrices, as discussed in
Section 3. Let S be a scale matrix that has the form S = diag(s). We
can now use Equation 2 to scale KTT = Ê [Cov(T,T)]:

S (KTT)ST

In practice, we can make use of the fact that a scale matrix S is always a
diagonal matrix. In our case, each diagonal entry is equal to s, therefore
S= diag(s). This allows us to simplify the equation above even further:

S (KTT)ST = s2 ·KTT (6)

Figure 4 shows a set of multivariate normal distributions, all scaled
with different weights. Another property of this description is that we
can use s to interpolate between the certain and uncertain representation
of our data. Algorithm 1 shows how to incorporate the scaling factor
into the computation of the covariance matrix. In the next section, we
will use this fact to investigate how much the uncertainty influences the
resulting projection.

5 SENSITIVITY ANALYSIS

We have shown in previous sections that uncertainty in the input can
have a strong influence on the resulting set of principal components.
Therefore, to better understand this relationship, we investigate to what
amount the dimensionality reduction depends on the shape of each
of the probability distributions. In Section 4.5, we have shown that
our method is a generalized formulation of conventional PCA. We
achieved this by scaling the covariances of each distribution with a
factor s that describes the importance of the uncertainty. Now, we
will leverage this model to show how the fitted projection varies for
different scaling factors in the interval s ∈ [0,∞). This interval can
be split up in two parts to investigate two different scenarios. For
0 ≤ s ≤ 1, we can interpolate between uncertainty-aware PCA and
regular PCA. Conversely, by choosing 1 < s < ∞ we can extrapolate
what the projection would look like if the uncertainty were higher.
In the following, we propose a novel visualization technique that is
tailored to analyze the effects of different scaling factors s and hence
influences of different levels of uncertainty.

5.1 Factor Traces
Factor Analysis shares many similarities with PCA and is often used for
the explanatory analysis of multi-dimensional datasets. The individual
latent factors, akin to principal components, are usually represented

0
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0

0

0
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Fig. 5. Progression of a factor trace (left) as the uncertainty increases.
Both unit vectors u and v rotate around w. Accordingly, the projected
distributions (right) rotate around the mean as well.

using factor maps. To create a factor map, the unit vectors of each
dimension in feature space are projected according to the latent factors
of the data [34]. We extend this technique to enable the exploration of
the effects of uncertainty on PCA.

Factor maps visualize static latent information that is hidden in the
input data. However, we are interested in visualizing the progression
of uncertainty. We do this by looking at the factor traces that are
described by the change of principal components under the varying
degree of uncertainty. In particular, we perform sensitivity analysis
by continuously scaling the covariances of the distributions from the
original dataset using s as a scaling factor, as described above. Figure 5
shows an example of factor traces of a three-dimensional dataset. For
each s ∈ [0,∞) a different subspace is chosen. As a result, the projected
unit vectors describe a trace in the image space. Thereby, we obtain a
compact representation of the analogous transformation of the feature
space coordinate system. As we mentioned before, there are two
intervals for s that are of interest for the analysis of the sensitivity with
respect to the uncertainty. The interval 0 ≤ s ≤ 1 is highlighted by
shading the area under the trace. In contrast, for the interval 1 < s < ∞

we only show the trace to avoid visual clutter, and we use an arrowhead
to represent s→ ∞.

In practice, we progressively sample s in the interval using a hy-
perbolic function. At the heart of principal component analysis is the
decomposition of the covariance matrix into its eigenvalues and eigen-
vectors. This entails various challenges for the interpretation of the
projection. While the eigenvectors of a positive semi-definite matrix
are always orthogonal to each other, their orientation is ambiguous as
their sign can change. In the resulting sequence, it can happen that the
sign of~vi and~vi+1 flips. This, in return, leads to a mirrored projection.
We account for this in factor traces by providing both projections of the
unit vectors of the original axes. For example, this becomes apparent
when looking at the purple trace in Figure 5. We discuss the limitations
of this approach in Section 8.

5.2 Interpretation

Factor traces simultaneously visualize different properties of the origi-
nal dataset with respect to the corresponding projection: the length of
each trace describes how strongly each original axis is affected by the
uncertainty in the data, whereas the distance of each part of the trace
to the center depicts the linear combination of the original unit vectors
that define the projection. Factor traces also offer a way to analyze the
robustness of the resulting projections with respect to uncertainty. The
covariance matrices and the overall shape of the data determine the cor-
responding eigenvalues. Because the principal components are sorted



by their eigenvalues and only the q largest eigenvalues are chosen, their
respective values also have a large effect on the resulting projection.
Figure 6 shows factor traces of two different datasets, together with
plots of their eigenvalues. With an increasing s, sometimes the dis-
tance between two eigenvalues λi,λ j decreases more and more. In
some cases, it appears that the eigenvalues will cross, but instead, they
will eventually start to move away from each other again. This effect
closely resembles avoided crossings, a quantum phenomenom [41].
The reason for this effect is that two eigenvalues coalesce as they end
up with the same length [29]. Eigenvalues that avoid crossing manifest
in distinctive bumps in their corresponding eigenvalue plots, which can
be seen in Figure 6d. The first dataset in Figure 6 does not contain
any avoided crossings. By contrast, Figure 6c and Figure 6d show a
three-dimensional dataset with two bumps (highlighted by the dotted
lines). Avoided crossings make it difficult to reason about the behavior
of the eigenvectors and consequently the resulting projection in these
points. In some cases—Figure 6c, for example—we can observe sharp
turns in the corresponding factor traces. Here, the avoided crossing is
between λ2 and λ3.

In conjunction with PCA, factor traces can aid the exploratory anal-
ysis of datasets by giving insights into the behavior of the principal
components under uncertainty. Apart from showing how the projection
changes under uncertainty, factor traces can help gauge how robust
and hence how trustful the projected view of the dataset is. While our
approach can aid in assessing projections, the visualization of high-
dimensional data involving a large variety of distributions remains a
difficult challenge. Generally, factor traces work well for datasets with
up to six original dimensions. Above this limit, the representation
becomes more difficult to understand due to overplotting. As shown in
Figure 6, the interpretation of factor traces can be further enhanced by
taking the corresponding eigenvalue plot into account. Depending on
the dataset, we see the possibility to encode this information directly
onto the factor trace, either by thickness or color.

6 EXAMPLES

Our method can handle various types of data uncertainty. Following the
classification of Skeels et al. [31], we will take a look at examples from
the measurement precision level and the completeness level. Measure-
ment precision can play a substantial role in the analysis of datasets,
especially for qualitative studies and experiments, where it is hard to
assign certain values to responses. One way to deal with this uncer-
tainty is to assign fuzzy numbers or even explicitly encoded probability
distributions to each of the data points, as we will show in Section 6.1.
Furthermore, we will look at different types of aggregations as sources
for uncertainty on the completeness level. Apart from these examples,
we see potential use cases for our method in visualizing preprocessed
data for real-time analysis, or data that has been aggregated to protect
the privacy of individuals, such as medical data. Regarding aggregation,
Section 8 gives more details about the computational complexity of our
approach. Please note that in the following examples, we use different
representations for the distributions to highlight the projections found
by our method.

6.1 Student Grades
Our uncertainty-aware PCA method can be used to perform dimension-
ality reduction on data with explicitly encoded uncertainty. Amongst
others, such data can be found in the domain of fuzzy systems. As an
example, we adopt the synthetic student grade dataset established by
Denoeux and Masson [5]. It consists of four test results (M1, M2, P1,
P2) for each of six students. The possible marks for the tests range
from 0 to 20, and the dataset is highly heterogenous: grades can be
represented either as real numbers, such as 15, without any uncertainty,
or as intervals, such as [10,12]. Furthermore, many grades are given
by qualitative statements like fairly good or bad. Both intervals and
linguistic labels contain uncertainty, modeled using uniform distribu-
tions and trapezoidal distributions, respectively. The original paper also
contains one unknown value. We model the missing value using a nor-
mal distribution N(14,5.72), which we extract from prior information:
the mean is similar to previous test results, and the variance represents
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Fig. 6. Factor traces for two different datasets: (a) The 4D Iris dataset
with (b) corresponding plot of the eigenvalues. (c) A 3D synthetic dataset,
also with eigenvalues (d). Whereas the Iris dataset has no avoided
crossing eigenvalues, the synthetic dataset has two avoided crossings
(d) represented by bumps in the plot (s ∈ {0.37,0.54}). The factor traces
are projected onto a 2D subspace—as a consequence only the second
bump manifests in the traces: at s ≈ 0.54 the orange trace v forms a
loop, while the purple trace u curves inward.

realistic deviations in both directions from this mean. Figure 7 shows
the PCA on this dataset. It is important to note that PCA performed
solely on the means of the input, as shown in Figure 7a, fails to capture
important uncertainty information in the data. Our method (Figure 7b)
appropriately depicts the uncertainty that is present in P1 of Tom and
Bob. This draws a very different picture from the result of regular PCA
because the topology changes: it is quite possible that Tom performed
similar to Jane—a fact that is not readily visible from Figure 7a. The
importance of P1 on the resulting projection can also be seen in the
factor trace (Figure 7c) for this dataset: with an increasing amount of
uncertainty factored into our method, the trace of P1 moves toward the
outside of the unit circle. The interpretation for this is that most of the
information of this axis is preserved after projection.

6.2 Iris Dataset

The Iris dataset1 has widely been used to study projection and machine
learning algorithms. It is four-dimensional and consists of 150 speci-
men of the Iris plants. Additionally, each instance can be attributed to
one of three classes, and the instances are distributed equally among
the classes. The clusters of the Iris dataset can be well described us-
ing multivariate normal distributions. We aggregate the data into three
distributions, by their class label, on which we then perform uncertainty-
aware PCA. The result of this can be seen in Figure 8a. For comparison,
we also perform conventional PCA and color each point according to
its class label—the results are shown in Figure 8b. Both projections
are almost identical. This shows that our method can find projections
with only a fraction of the original 4D data: three multivariate normal

1https://archive.ics.uci.edu/ml/datasets/iris
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Fig. 7. Importance of respecting the uncertainty in the input data. (a) Tra-
ditional PCA on the mean values of the student grades. (b) The projection
found by our method shows the uncertainty in the data more faithfully.
(c) The corresponding factor traces allow us to analyze the role of the
original axes. In this case, P1 approaches unit length, which means that
its information is present even after projection. (d) The dataset in tabular
form, providing the trapezoidal distributions for the linguistic labels. A
trapezoidal distribution T(a,b,c,d) is defined by its bounds a, d and its
discontinuities b, c.

distributions instead of 150 points.
This example also illustrates two different ways to visualize data

that has additional labels. To convey the class information, we need to
support the visual aggregation of each cluster. When using conventional
projection methods, this aggregation is usually performed in the image
space. Figure 8b, for example, uses color. Another technique that is
commonly used for aggregation in the image space is kernel density
estimation. For clusters that roughly follow a normal distribution, our
method provides a different approach: it allows aggregation in the
feature space, where all the information is still present, and subsequent
projection of the aggregated information. Subsequently, no further
aggregation has to be performed in the image space. In Section 7, we
provide a more detailed comparison to sampling-based strategies.

Figure 6a shows the factor traces for the Iris dataset. Here, we can
see that petal width moves closest to the center of our visualization.
This means that the dimensionality reduction, projects along this axis,
especially for s→ ∞. Furthermore, sepal width and petal length have
almost no shaded area. Because we use the shaded area to encode and
highlight the interval s ∈ [0,1), this illustrates that the projection of
these two axes remains almost the same while interpolating between
regular PCA and our method.

6.3 Anuran Calls Dataset

The Anuran Calls dataset2 contains acoustic sound features extracted
from frog recordings. In total, there are 7195 instances of such calls,

2https://archive.ics.uci.edu/ml/datasets/Anuran+Calls+

(MFCCs)
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Fig. 8. Comparison between (a) our approach and (b) performing PCA
on the original set of points of the Iris datasets. In (a) the aggregation
into clusters has been performed before the projection, while in (b) the
aggregation into the different clusters is performed visually through color.

and they are grouped by family, genus, and species labels. Again, we
perform aggregation of the instances, in this case, by looking at the
family class label. However, the interesting aspect of this dataset is
that, in contrast to the Iris dataset (Section 6.2), there is a different
amount of instances per class. There are calls from four different frog
families in this dataset—the numbers of instances per class are 4420,
2165, 542, and 68. These families can further be subgrouped by genus,
yielding eight distinct clusters. Furthermore, it is important to note that
many groups do not follow a normal distribution and exhibit varying
modality, as can been seen in Figure 9.

So far, we have assumed that all aggregated distributions represent
the same amount of instances. This can lead to overemphasized clusters
if their original sample count is small. Concerning this dataset, this
would mean that the family with 4420 instances would receive the same
amount of weight as the family with 68 instances. To achieve a better
fit to the actual data that these distributions stand for, we can adapt
our method to take class weights into account by slightly modifying
Equation 4. In particular, it suffices to use the weighted average to
evaluate Ê [·]. The computation of the sample mean needs to be adjusted
accordingly.

Figure 9 shows the comparison of our method, adapted to handle
cluster weights, to regular PCA on the original set of points. For Fig-
ure 9ab, the data is clustered by family, yielding four distributions.
Figure 9bc was aggregated by genus, which results in eight distinct
discrete probability distributions. For the projections that were created
using our method, we show the covariances that were extracted from
each of the different clusters. This demonstrates that even if the clusters
do not follow a simple distribution, such as the blue cluster in Fig-
ure 9b, our technique is still able to reconstruct the original PCA. The
projections that are found for the point data and the aggregated data are
visually the same. Assigning weights to each cluster according to the
amount of data that it represents is an obvious application of this exten-
sion to our method. However, we can also imagine that this technique
can be used in a more exploratory setting, for example, by investigating
the effect of one cluster on the resulting principal components.

7 COMPARISON TO SAMPLING

In this section, we provide a comparison of our method with another
strategy that could be used to construct the covariance matrix for un-
certain data: sampling. Instead of directly computing Cov(T,T) on the
distributions, we can draw samples from each of them. If we concate-
nate the resulting set of points, we can use the conventional way for
computing the covariance matrix as specified by Equation 1.

To compare the resulting covariance matrices, we need a suitable
distance metric. We choose the Hellinger distance. It is commonly
used to compare the results of linear models [37]. This distance metric
is typically used to compare two multivariate normal distributions p

https://archive.ics.uci.edu/ml/datasets/Anuran+Calls+(MFCCs)
https://archive.ics.uci.edu/ml/datasets/Anuran+Calls+(MFCCs)
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Fig. 9. Comparison of projections resulting from conventional PCA and
our method. Projections of the extracted covariances are shown as
ellipses. Clustering by family leads to four clusters, while clustering
by genus results in eight clusters. Although the clusters have a large
variance in the number of instances (a), our weighted approach matches
the projection of the original dataset well. The projection also remains
stable for clustering by a different class label, here, by genus (b). Overall
our method (d) performs well, even though not all clusters in the original
dataset follow a normal distribution (c).

and q. It is based on the Bhattacharyya coefficient, which can be used
to describe the overlap between p and q:

BC(p,q) =
∫ √

p(x)q(x)dx

The Mahalanobis distance is a special case of the Bhattacharyya dis-
tance (− ln(BC(p,q)) for distributions that share the same covariance.
Using the definition of the Bhattacharyya coefficient, the Hellinger
distance is defined as

H(p,q) =
√

1−BC(p,q)

To apply this distance metric to the problem of comparing the results
from principal component analysis, it is important to note that PCA is
completly defined by its sample mean and overall covariance matrix.
Together, we interpret these two artifacts as a multivariate normal
distribution. The resulting distribution can then be compared using the
Hellinger distance. In contrast to a description based on eigenvalues
and eigenvectors, our method is invariant against flipping and no further
preprocessing has to be performed.

For our experiment, we applied PCA to a synthetic dataset with 10
distributions TSyn = {t1, . . . , t10}, each following a normal distribution
ti ∼ N(µ i,Ψi). All the means µ i are drawn from another overarching
multivariate normal distribution:

µ i ∼ N(~0,Σ)

The covariance of each of the distributions Ψi is constant across the
dataset. It is created by reversing the elements of Σ. Because of this,
all covariances also share the same determinant.
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Fig. 10. Multiple comparison of our method to a sampling-based ap-
proach using the Hellinger distance for input data with two to 12 dimen-
sions. The x axis shows the increasing number of samples that were
used for the sampling strategy, while the y axis shows the distance to
the result from our method. The required number of samples for a good
result grows with the number of dimensions.

Figure 10 shows the results of our experiment. For each data point
we performed 40 runs and chose the median outcome. We can draw
several conclusions form our experiment. First, it shows that the sam-
pling approach converges to our method with an increasing number of
samples. This indicates that our method is a valid way to compute PCA
on probability distributions. Second, it shows that our method scales
far better than the sampling-based approach with a growing number of
dimensions. We expect the curse-of-dimensionality to be the reason for
this.

8 DISCUSSION

In the following, we discuss the uncertainty-aware extension of PCA
that we introduced, demonstrated, and assessed above from different
perspectives. To begin with, we compare its computational complexity
to traditional PCA. We follow up with more details on its application
to interactive visualization, especially concerning scalability. Finally,
we discuss the general limitations of PCA and how these carry over to
our method.

8.1 Computational Complexity
In general, our method has the same computational complexity as
regular PCA. For a dataset with N samples and D features, regular PCA
has a computational complexity of O(ND2) for the computation of the
covariance matrix. Retrieving the eigenvalues and eigenvectors has a
complexity of O(D3).

With our method, samples N are D-dimensional probability distribu-
tions instead of points. In many cases, the probability density function
of a random vector tn is known analytically, and E [tn] as well as
Cov(tn, tn) can be looked up in constant time O(1). Our adapted com-
putation of the global covariance matrix can be performed in O(2 ·ND2)
since we additionally need to compute the average covariance matrix
over all N distributions. Asymptotically, however, the constant fac-
tor 2 can be neglected. This results in a complexity of O(ND2) for
determining the covariance matrix.

We share the extraction of the eigenvalues and eigenvectors with
regular PCA. As mentioned above, this can be performed in O(D3).
Thus, our technique is of similar complexity as standard PCA. Please
note that in this analysis, we consider the aggregation of clusters as a
preprocessing step (more details in the next section). Its complexity
would add to the total complexity, but is not considered here. In
the following section, we provide details on why preparing clusters
is of special importance for the application of our technique to data
visualization.

8.2 Interactive Visualization and Scalability
Big data is gaining relevance, and the amount of data that can be
acquired and stored grows rapidly. For example, the Large Hadron



Collider (LHC) at CERN exceeded 200 Petabytes of collected sensor
data already in 2017 [9]. At the same time, it often is critical to visual-
ize such data for exploration, analysis, and knowledge generation [25].
Processing latencies are of significant concern for interactive visual-
ization regarding big data. We tackle this problem by separating the
computationally complex task of data aggregation from the projection
and visualization tasks. Since our method is aware of the shape of the
distributions, we can approximate the projection of clustered datasets
by the projection of their respective distributions. For a large num-
ber of samples N in a D-dimensional feature space, this aggregation
step is computationally costly since the covariance matrices have to
be computed in O(ND2). The advantage of our method is that the
aggregation can be done instantly during data acquisition and, in case
memory demands are of concern, there is even no need to store raw
data persistently [42]. In some fields, it is already common practice to
aggregate data as a preprocessing step, for example, the in-situ analysis
in large-data visualization [7]. Using our method, the characteristics of
the data are preserved during the complete pipeline, and its influence on
the projection can still be taken into account during the analysis process.
Please note that when a cluster of multiple data points is aggregated by
abstracting it as a normal distribution, the estimation of the covariance
matrix is an inevitable step. To do so, the number of data points needs
to be sufficient concerning the number of dimensions, and there must
not be problems with (local) outliers [30]. Similarly, a small number of
clusters can be a problem in high-dimensional space [14]. By scaling
the uncertainty of each cluster depending on the number of data points,
it contains, our method compensates for differences in cluster sizes, as
outlined in Section 6.3. However, more research needs to be done in
the direction of assessing whether the additional information provided
by each clusters’ weight and error covariance matrix can fully counter
this problem.

8.3 Limitations of PCA

In practice, PCA is applied to all kinds of datasets, where it is commonly
used as a tool for exploratory analysis. Conceptually, our approach
yields a projection operator that is more aware of the uncertainty in
the data. Just as with other linear methods, important information
that is present in the non-principal components gets discarded due
to the orthographic projection, which can guide the analysis into the
wrong direction. Our method inherits this limitation. For regular PCA,
methods have been developed to mitigate these effects—we provide
an overview in Section 2. For one, this is because one of the terms of
our method essentially performs PCA on the expected values of each
of the distributions, as described in Section 4.2. With regard to the
uncertainty in the data, a second limiting factor can arise: if the fraction
of the covariance introduced by the uncertainty in the data is small in
comparison to the covariance introduced by the expected values, and
if the uncertainty happens to be orthogonal to the projection, it can
also remain covert in the final representation. Future research may
investigate how non-linear methods, which could alleviate this problem,
can be generalized to probability distributions too.

Several other factors pose challenges to finding the correct principal
components. The presence of outliers in the data can strongly influence
the resulting projection. This stems from the quadratic term in the com-
putation of the covariance matrix. When outliers are of concern, forms
of Robust PCA (see Section 2), which rely on solving optimization prob-
lems, can be applied. It remains to be seen how similar approaches can
be adapted to uncertainty-aware PCA. Although PCA was originally
developed for real-valued data, it is often also used on datasets where
some of the axes represent ordinal, and sometimes even categorical val-
ues. Naturally, these axes can contain uncertainty information as well.
Furthermore, as of now, we do not explicitly model missing values. In
the context of regular PCA, several techniques have been developed to
deal with this—Dray and Josse [6] provide a summary of approaches
that can be applied in this case. One straightforward way to handle
these inputs in our framework nonetheless is imputation, as we have
done in the student grade example provided in Section 6.1. With our
method, these imputed values can even take the form of more complex
distributions, which is why we see this as a practical workaround.

9 CONCLUSION

In this paper, we have presented a technique for performing principal
component analysis on probability distributions. Unlike previous work,
which mainly was concerned with non-correlated error models, our
method works on arbitrary distributions. We achieve this by incorpo-
rating first and second moments of the uncertain input data into the
calculation of the global covariance matrix. Our formulation of the
global covariance matrix offers the potential for various extensions to
traditional PCA. Particularly, in this paper, we have shown the applica-
tion to aggregated datasets (Section 6.2 and Section 6.3) and datasets
with explicitly encoded errors (Section 6.1).

Principal component analysis, and linear dimensionality reduction
techniques in general, have the advantage over non-linear methods that
the projections remain interpretable. The principal components found
by PCA are linear combinations of the axes from the original data space.
With our technique, scaling the influence of the covariances of each of
the distributions allows us to perform sensitivity analysis concerning
uncertainty. The factor traces we propose are a visual method to assess
how uncertainty in the data is reflected by the contributions of each
original dimension to the principal components. Further, our technique
preserves the low computational complexity and clear algorithmic
structure of traditional PCA. This enables the assessment of uncertainty
induced differences to the projection by sampling different parameters
for scaling the uncertainty. As a result, our technique constitutes a next
step towards the earnest consideration of uncertainty in the analysis
of high-dimensional data and forms the foundation for straightforward
extensions in numerous directions.

APPENDIX

We show that our method, provided by Equation 4, indeed yields a
covariance matrix by looking at the different terms of this equation.
A matrix K is positive semi-definite if ~uTK~u≥ 0, for every non-zero
vector~x.

Theorem 1. The outer product ~x~xT ∈ Rd×d of a vector ~x ∈ Rd with
itself always results in a symmetric, positive semi-definite matrix.

Proof. Let~u ∈Rd be a nonzero vector. Using the definition of positive
semi-definitness from above,

~uT(~x~xT)~u = (~xT~u)2 ≥ 0.

The symmetry follows from the definition of matrix multiplication.

Our method differs from regular PCA in one term, which is defined
in Equation 5: In essence, this term computes the arithmetic mean of
the covariance matrices Cov(ti, ti) of each distribution ti. A matrix is
a covariance matrix if and only if it is symmetric and positive semi-
definite. By definition, Cov(ti, ti) always satisfies this property.

Theorem 2. Let K = {K1, . . . ,KN},Kn ∈ Rd×d be a set of covariance
matrices, then the arithmetic mean of this set 1

N ∑
N
n=1 Kn is a covariance

matrix.

Proof. Let~u ∈ Rd be a nonzero vector and A,B ∈ Rd×d positive semi-
definite matrices. Both addition A+B, and multiplication with a scalar
kA,k ≥ 0 result in positive semi-definite matrices:

~uT(A+B)~u =~uTA~u+~uTB~u

~uT(kA)~u = k(~uTA~u)

Because of this and the properties of symmetric matrices, it follows
that the arithmetic mean of K is a symmetric and positive semi-definite
matrix and therefore also a covariance matrix.
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