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Fig. 1. Bubble Treemap of the S&P 500 index, decomposed into sectors and companies. Uncertainty arises from aggregating one
week of stock data in November 2016. Each circle represents a stock, its area is proportional to the mean closing price, whereas the
standard deviation is depicted using the outlines. Our visualization helps to discover a medium-sized sector with low uncertainty and
assess its composition (a), as well as a sector with high uncertainty and the company that mostly introduced it (b).

Abstract—We present a novel type of circular treemap, where we intentionally allocate extra space for additional visual variables. With
this extended visual design space, we encode hierarchically structured data along with their uncertainties in a combined diagram.
We introduce a hierarchical and force-based circle-packing algorithm to compute Bubble Treemaps, where each node is visualized
using nested contour arcs. Bubble Treemaps do not require any color or shading, which offers additional design choices. We explore
uncertainty visualization as an application of our treemaps using standard error and Monte Carlo-based statistical models. To this end,
we discuss how uncertainty propagates within hierarchies. Furthermore, we show the effectiveness of our visualization using three
different examples: the package structure of Flare, the S&P 500 index, and the US consumer expenditure survey.

Index Terms—Uncertainty visualization, hierarchy visualization, treemaps, tree layout, circle packing, contours

1 INTRODUCTION

Hierarchical data plays a significant role in information visualization
since many datasets are inherently hierarchical, or are purposefully
made hierarchical. Thus, many different representation methods for
hierarchies have been developed [37]. Node-link diagrams represent
such structures by nodes that are connected by edges. In contrast to
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that, implicit representations focus on the value within each node and
encode the hierarchy through inclusion. Many implicit methods, such
as treemaps, divide the canvas in accordance to the relative sizes of the
respective sub-hierarchies and this way optimize for space, which leads
to compact and scalable representations.

In our opinion, however, there is a trade-off between compactness
and readability—if a treemap is very compact, the underlying structure
is difficult to grasp since the compactness does not leave space for
grouping cues or other visual features. With traditional treemaps [25],
it is not feasible to encode additional information such as uncertainty
in a geometric way. Furthermore, inclusion via area suggests additive
propagation, which might not be the case for uncertainty. In contrast, if
much space is wasted, e.g., with circular treemaps [46], visual scalabil-
ity suffers to a point where interaction is almost mandatory to reduce
the visualized data.

We strive to find a good compromise between compactness and
readability with our new visualization technique: Bubble Treemaps.



They allocate extra space in the layout to encode certain and uncer-
tain information together in a geometric manner, similar to error bars.
Leaf nodes of a hierarchy are encoded as circles and enclosed by an
arc-based parameterizable contour. Contours of sibling sub-hierarchies
are packed using a force-directed model and enclosed by another pa-
rameterizable contour. This process is recursively continued until the
whole tree is traversed. This way, we can encode additional group-level
information, such as uncertainty, into the visual representation of the
contours. Figure 1 shows a typical example of a Bubble Treemap,
emphasizing nodes with high uncertainty using deformations of the
contour (amplitude and frequency) to resemble variability of box-plots
while maintaining treemap-typical color coding of higher-level nodes.

We consider uncertainty as a distribution of possible values per node,
as opposed to a single and exact value. Showing the mean value alone
is often not sufficient to describe a distribution. Instead, we need visual-
izations that are capable of displaying additional statistical features that
help the reader gain a better understanding of the data. Many visual
variables do not work well for illustrating uncertainty [29]. As noted
by Hullmann [24], uncertainty visualization is error-prone, especially,
when drawing false conclusions because of bad communication regard-
ing the underlying statistical model, e.g., confusing standard deviation
with variance. Our technique offers great flexibility to choose appropri-
ate encodings, depending on the task and underlying model—it even
works well in black and white.

Our contribution is threefold: First, we propose a layout based on
circle packing to use space purposely, achieving a reasonable trade-off
between a compact representation of the hierarchy and its inherent
information. Second, we define node contours analytically, resulting in
a new parameter domain to be used for additional visual variables, in
particular, for uncertainty visualization. Third, we describe different
models of uncertainty and discuss their relation to hierarchal data. Our
discussion is rounded up by demonstration of our technique using three
example data sets. An implementation of Bubble Treemaps can be
found online1.

2 RELATED WORK

The following section gives an overview of work related to our method.
First, we review the state of the art in visualizing hierarchical data.
Next, we provide a summary of recent work for visualizing set mem-
berships, since this topic is closely related to how our method encodes
the topology of an underlying tree structure. At last, we describe recent
methods of uncertainty visualization for graphs.

Visualization of Hierarchical Data There are many different
methods to visualize hierarchical data; Schulz et al. [38] provide an
extensive survey of implicit hierarchy visualization. Treemaps have
been shown to be effective at conveying hierarchical information. Most
of the traditional treemap approaches, such as Squarified Treemaps [11]
or Voronoi Treemaps [4] follow a top-down strategy, recursively subdi-
viding a given area according to the underlying hierarchy. Similarly,
Auber et al. [3] describe a treemap layout algorithm that produces ir-
regular nested shapes by subdividing the Gosper curve. The boundaries
of the areas, however, are not incorporated explicitly into the layout—
the contours are inlaid retroactively and not used to encode additional
quantitative values.

Circle packing has been widely studied in theoretical computer
science, especially for its connection to planar graphs [14]. Stephen-
son [40] provides a summary of the general field of circle packing.
Usually, a more pragmatic approach is pursued for its application to
hierarchy visualization: Wetzel [44] and Wang et al. [43] propose meth-
ods based on nesting circles in a bottom-up fashion, which is later
refined by Zhao and Lu [46]. Viegas et al. [42] use a combination of
circle packing together with a balloon layout to visualize information
flow in social networks. Several domain-specific works combine dense
packing of circles with layout methods from graph drawing such as
Bubble Trees or radial layouts [2, 23]. We utilize the method by Wang
et al. to create our initial packings (Figure 2).

1https://github.com/grtlr/bubble-treemaps

McGuffin and Robert [30] provide an extensive study on the space
efficiency of different tree representation methods. They introduce a
novel metric that aims to measure the distribution of area across nodes
in hierarchical visualizations. One conclusion of their work is that a
perfect partitioning of the space might not be ideal when additional
information (for example labels) needs to be displayed. Similarly,
Schulz et al. [38] argue that packing the space too tightly conceals the
underlying structure and methods that deliberately leave empty space
would enable a better perception of the tree structure. These findings
were an inspiration for us when developing Bubble Treemaps.

Bubble charts are often used to visualize three-dimensional data. To
create a bubble chart, two dimensions are mapped to the x and y axes
of the plane, while the third dimension is mapped to the size of a circle
at the corresponding position. Bubble charts are commonly used on
websites [12, 18], often they are part of an interactive exploration tool
for the data. Sometimes, however, either the category of the entities or
their hierarchical structure is lost.

(a) Circular Treemap (b) Bubble Treemap

Fig. 2. Bubble Treemaps are initialized using a circular treemap layout
and subsequently compacted using a force-based approach.

Contours and Set Membership As mentioned above, treemaps
encode a hierarchy implicitly by aggregating the areas of the child
nodes into the area of the parent node. We do this similarly: all child
nodes are enclosed by a contour that represents the current node. As
a result, our approach shares similarities with methods that depict set
membership for spatially embedded objects. For example, Bubble
Sets [13] use marching squares (a 2D version of the marching cubes
algorithm [28]) to draw contours around embedded objects, while we
use arcs. Kelp diagrams [17] and especially the refined version Kelp
Fusion [31] share more similarity, even though they were developed
for geographical data. Notably, the authors mention the potential of
enclosing areas by contours based on arcs but do not provide details.
Riche and Dwyer [35] present a method that builds upon Euler dia-
grams to visualize set membership by drawing contours around objects
of the same logical group while minimizing the number of crossings
between contours of different groups. In the last years, several meth-
ods have been developed to improve Euler diagrams: force-directed
methods are utilized to optimize their respective layout [33] and to find
smoother boundaries [39]. There also exists work on drawing area-
proportional realizations of Euler-like diagrams [32]. While Euler-like
diagrams have similarities to our approach, they do not take hierarchical
structures into account.

Our method for drawing contours shares similarities with approxi-
mate solvent-accessible surface areas, which come from the field of
biomolecules. They model the surface area that is accessible by a probe
with a fixed radius [27]. There exist efficient algorithms that compute
these analytical surfaces, but they make assumptions on the structure
of the molecules that do not hold for the general case of arbitrary
intersecting spheres [21].

Visualization of Uncertainty Historically, the representation of
uncertainty received broad attention in scientific visualization [10, 34].
Uncertainty, however, can also be present in different data sources of
information visualization [1] and visual analytics [15].

https://github.com/grtlr/bubble-treemaps
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Fig. 3. Overview of the Bubble Treemap method. We start with measured distributions organized in a hierarchy (a). We usually only know the leaf
level. By applying a suitable uncertainty model, we propagate characteristics of the underlying distribution toward the root (b). Then, we compute
the treemap layout using circular arcs and a force-based model (c). Finally, we draw leaf circles and inner-node contours around each level of the
hierarchy (d).

Bertin [5] and MacEachren et al. [29] study various visual variables
for uncertainty regarding intuitiveness and performance in map reading
tasks. These visual variables are further refined by Guo et al. [20]
for graph edges. Gschwandtner et al. [19] compare different represen-
tations of uncertainty of temporal data in the form of time intervals.
Hullmann [24] investigates the evaluation of uncertainty visualizations
and shows that different study designs have a strong influence on the
result. Apart from the visual variables described by Boukhelifa et
al. [9], most visual variables are used for representing areas or volumes
and cannot be used to encode uncertainty into shapes. In the context
of other domains, several methods have been developed to encode un-
certainty information directly into geometry. Khlebnikov et al. [26]
deliberately introduce noise into multivariate volumetric rendering to
blend multiple variables. Some work visualizes uncertainty in node-link
diagrams. Schulz et al. [36] propose a method to perform graph layouts
for probabilistic networks. The statistics package R can show decision
trees with uncertainty in their leafs. While we apply several visual
variables and ideas from explicit node-link diagrams for uncertainty
visualization, we deal with implicit depiction of hierarchal data and
inclusion relations.

3 OVERVIEW

Given a hierarchy of values with uncertainty in the form of additional at-
tribute values for the leafs and an aggregation model (Figures 3a and 3b),
we construct a Bubble Treemap by extracting characteristics from dis-
tributions for each level of the hierarchy, then mapping these character-
istics to circles and analytically defined arc-based contours for leafs and
inner nodes, respectively. To achieve a compact layout, we implement
a force-directed model (Figure 3c).

A hierarchy with uncertainty is represented by a tree T = (V,E,A),
similar to a regular tree in graph theory, with vertices V (nodes), edges
E, and attribute vectors ai ∈ A⊆Rn associated with each node. Typical
attribute vectors of interest would be the mean and standard deviation
(µ,σ)i. Our visualization, however, is not limited to one characteristic,
instead, we aim to display multiple statistical properties of the underly-
ing distributions at once. We achieve this by not striving for a perfect
partitioning of the space, but rather purposefully allocating space that
we parametrize and then use to encode such additional information.

In the next sections, we describe how to model and propagate uncer-
tainty, construct arc-based contours, and compute our treemap layout.
Afterward, we discuss the usage of visual variables for uncertainty
within Bubble Treemaps, followed by three example data sets from
different domains to demonstrate the usefulness of our method. Finally,
we discuss implementation details and limitations of our method.

4 MODELS AND PROPAGATION OF UNCERTAINTY

An important factor in uncertainty visualization is understanding the
underlying model. Often, uncertainty influences data, due to measure-

ment errors, incomplete information, or inference errors. For example,
to deal with measurement imprecision and show statistical significance,
we often perform several measurements and aggregate them to an en-
semble. Usually, we are interested in several characteristic numbers,
instead of full-blown probability density functions, because numbers
are easier to work with—just think of the mean and standard deviation.
Regarding hierarchies, models for uncertainty dictate what information
to depict, not just for leaf nodes, but also for parent nodes at each inner
level. To capture and effectively visualize these characteristics, we have
to have a basic understanding of different sources of uncertainty and
their propagation within the hierarchy:

Probabilities We consider probability density functions (PDFs) pi
as a basic building block. Each PDF maps the value of a continuous
random variable xi to probability density pi:

pi : R→ R≥0, where
∫

∞

−∞

pi(xi)dxi = 1 (1)

Depending on conditional dependencies between the random variables,
the joint PDF may resemble anything between the chain rule and
Bayesian networks, but its integral is always one. Furthermore, the
chance that a certain outcome occurs is quite abstract. For this reason,
we expand our discussion using a more aggregated model that relates
probability to value.

Expected Value and Standard Deviation Let us assume that
we collect data for each node individually to obtain a distribution. To
express characteristics of such a distribution, we usually resort to the
expected value µi and standard deviation σi:

µi =
∫

x pi(xi)dxi, σi =

√∫
x2 pi(xi)dxi −µ2 (2)

This formula also suggests why error bars and similar techniques are
so popular: they match our natural perception of fluctuation in terms of
distance. We take this as another reason to encode certain and uncertain
information in geometry, i.e., to maintain the relation between expected
value and standard deviation.

Propagation Methods Regarding the propagation from children
to parent, assuming linear aggregation and independence among the
children, the expected values µ1,...,n add up, while the standard devia-
tions σ1,...,n aggregate using the Euclidean norm:

µ1,...,n =
n

∑
i

µi, σ1,...,n =

√
n

∑
i

σ2
i (3)

In this case, the propagation is quite geometrical (plain addition and
length of a vector) with expected value propagation matching the
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(b) Selection of the next circle from the envelope. The
leftmost intersection point i1 is shown in red. Note that the
circle c is skipped in this configuration.

(c) The intersection graph of a set of circles. The
original circles in gray are enlarged to reflect the
smoothness parameter s. The red arrows show the
traversal that computes the envelope.

Fig. 4. Different steps that are needed to construct the contour: (a) construction of tangent arcs, the basic primitive of our contours; (b) selection
procedure for the envelope; (c) traversal order of the intersection graph.

treemap metaphor. This propagation further justifies our encoding
in leaf size and contour width. The more generic and complicated
approach supporting non-linear dependencies can be computed using
Taylor series. Though, for complex models another approach is usually
taken to work around computational and complexity issues.

Monte Carlo-based Methods To avoid a complete survey and
calculation, we usually sample a carefully selected subset of the entire
population to infer representative information about the entire popula-
tion. We distinguish the uncertainty induced by the samples and the
uncertainty of the Monte Carlo model itself. The propagation model
of the latter can be used for testing conditional dependence: For ex-
ample, let us assume that we have measured hierarchical geographic
data and aggregate measurement errors from leafs to root. If nodes are
independent, the propagated error increases with the standard deviation.
If nodes depend on each other, the error might decrease, due to higher
support from measurement points. To recall, non-linearities or depen-
dencies should be ascertainable, because of the geometrically emergent
properties of propagation of expected value and standard deviation.

Within the limited scope of this work, covering the all statistical
characteristics and models for uncertainty out there is impossible.

5 CIRCULAR ARC CONTOURS

In the spirit of treemaps, we recursively draw inner-node contours as
arc-based entities around leaf circles to depict parent-child relationships.
Instead of using an implicit description of the contour together with, for
example, the marching squares algorithm for rendering, we construct
the contour in the form of a parametric curve. This approach has the
benefit of having an analytically defined model, which we utilize to
encode an additional attribute dimension. We do not need to discretize
space to draw the contour (which could lead to discontinuities), and
it allows us to describe the contour directly using arc segments. Fur-
thermore, as a small advantage, our Bubble Treemaps do not require
color and can be completely described using vector graphics. In the
following section, we describe the different steps that are necessary to
construct the contour—Algorithm 1 describes the complete procedure.

For a given inner node ni ∈V , we need to find an enclosing surface
that includes all circles of leafs(ni). Computing the enclosing contour
consists of three parts: First, we need to find the circles that make up
the envelope Ei ⊂ leafs(ni), which is described in Section 5.2. The
envelope contains the subset of circles that are exposed at the outside
of the set. By iterating over these circles, we can construct the contour
as a circular arc spline defined as a sequence of biarc curves [7]. A
biarc curve consists of two arc segments that share the same tangent
direction at the connection point, which leads to a smooth transition
(G1 continuous). Therefore, all elements stay circular, which makes
layout computation (Section 6) much easier.

5.1 Parameters
There are several parameters that describe the space requirements of
the contour. These parameters can be defined separately for each node
ni. The margin mi describes how far the contour will be placed from the
underlying structure. The parameter wi reflects the width of the contour,
which is important if we want to encode additional information directly
into the contour, or use the contour to emphasize the structure of the
tree. At last, the padding pi models how close adjacent objects can be
placed. Please note that there exists such a tuple of parameters for each
ni ∈V of the tree (leafs and aggregate nodes alike). In many cases, we
are only interested in the total amount of space that is required for the
contour, which we define as di = mi +wi + pi for a corresponding node
ni.

In addition to the parameters inherent to a given node, each level of
the tree is assigned a smoothness parameter si. This parameter controls
how tightly the contour will fit around the children(ni) and represents
the radius that is used for the tangent arc. Varying s allows us to adopt
several concepts from computational geometry; the influence of this
parameter on the contour will be discussed in Section 9.

The basic primitive of our method is the construction of the tangent
arc. Formally, given two circles a and b with center points at pa, pb and
radii ra, rb and the desired radius of the tangent arc rt ≥ ‖pa−pb‖−
(ra + rb), we can find the center of t by virtually enlarging a and b by
rt to obtain a′ and b′:

r′a = ra + rt and r′b = rb + rt

The intersection (a′∩b′)+ gives us the center pt of t. Truncating this
circle (with radius rt ) to the length between the two tangent points of
t with a and b gives us the desired tangent arc. Figure 4a outlines the
construction with tangent arcs shown in red.

5.2 Finding the Envelope
For finding the envelope Ei, we virtually enlarge each circle of leafs(ni)
by di + si. The result of this step is the set of circles C′. We can now
compute the intersection graph of C′, a graph that contains an edge
(ci,c j) with ci,c j ∈C′ iff c1 ∩ c2 6= /0. For the sake of simplicity, we
assume the graph to be connected. In case of a disconnected intersection
graph, a larger smoothness parameter si should be chosen. Next, we
find the circle with the leftmost point among all elements of C′, which
has to be part of Ei by construction. Starting from this element, we can
traverse the intersection graph, always choosing the edge that leads to
the circle with the leftmost intersection point (as shown in Figure 4c).
The selection procedure is shown in Figure 4b. Here, the current circle
is a and we consider the intersection points i1, . . . , i4, comparing their
respective angles to v = pb−pa. We only need to consider the angles
that are counter-clockwise to v. From those, we choose the largest one



(α in this case). Note that it is not sufficient to find the outer face of
the embedded intersection graph because there might be small circles
that are skipped depending on the specified smoothness s, which is the
case for circle c in Figure 4b—the proposed selection method solves
this problem.

5.3 Constructing the Contour
We use Ei to construct the contour. To create the circular arc spline, we
first add a tangent arc to each neighboring pair of circles. In the second
step, we convert these circles to arcs. Then, we set the start angle α

and the length θ of the arc segment by converting the left and right
neighbors of each circle to polar coordinates centered at the current
circle. It is important to note that one needs to handle the cases of
inward arcs, which are oriented clockwise, and outward arcs, which
turn counter-clockwise.

The described method only works if the intersection graph is con-
nected. Additionally, the smoothness parameter s is constrained by the
maximal distance d = ‖pa−pb‖ between two circles a,b ∈Ci, so that
the contour will not intersect itself:

s≥ r′a
2−

(r′a
2− r′b

2 +d2)2

4d2 (4)

If a and b move further away from each other, the tangent arc will move
into the gap in between. By constraining smoothness this way, we
prohibit that the tangent arc moves across the line segment connecting
the centers pa and pb of the two circles. Limiting s as described in
Eq. (4) also covers the case where the radius of the tangent arc is too
small to find a tangent point for each a and b, which is the case when
a′ and b′ do not intersect.

Algorithm 1 Construction of the contour
1: procedure CONTOUR(ni)
2: let E be a sequence that represents the envelope
3: C′← enlarge leafs(ni) by di + si
4: c← element from C′ with leftmost extent
5: E.push(c)
6: c← circle with leftmost intersection
7: while c 6= E[0] and c has unvisited leftmost intersection do
8: E.push(c)
9: c← circle with leftmost intersection

10: let R be a sequence that will hold the contour
11: for all adjacent pairs c1,c2 ∈ E do
12: t← tangent arc between c1 and c2
13: t1, t2←truncate c1 and c2 to t
14: R.push(t1, t, t2)
15: return R

6 LAYOUT ALGORITHM

Similar to circular treemaps [43, 44, 46], our layout algorithm maps
one attribute dimension, such as the expected value, to the area of
the circles. The topology of the underlying tree is encoded implicitly
through containment, i.e., the area of a child lies completely within the
area of its parent node. To achieve a compact representation, we use
an adapted version of the circular treemap algorithm to initialize our
layout, similar to the one described by Wang et al. [43]. Afterward,
we traverse the hierarchy bottom-up and perform a force-based circle
packing while accounting for the space that is occupied by the contours
of the respective sub-hierarchies.

Once we have the initial layout, we perform a post-order traver-
sal over the circular treemap and transform it to a Bubble Treemap.
We achieve this by constructing a spring-based system, as shown in
Figure 5, for each sub-hierarchy. The post-order traversal that vis-
its each node ni ∈ V starts from the leafs, which at first remain in
the arrangement that was determined by the circular layout algorithm.
In subsequent steps of the traversal, the elements Ck of each child
k ∈ children(ni) are grouped together using a contour Gk, as explained

pi

g1

g2

g3

C1

C2

C3

Fig. 5. Schematic of the force-based method for two levels of the hierar-
chy. After laying the children out in the first step (dashed), they become
fixed and will be moved as a whole in the second step (solid).

in Section 5. Depending on the structure of the tree, the elements of
Ck can either be circles, coming from leaf nodes, or contours that were
already constructed in previous steps. We can interpret Ck as a rigid
body, with mass distributed according to its area, on which external
forces can be applied. Then, we define the center of the current (circu-
lar) node ni as the center of a spring system with a fixed position pi.
Next, we compute the center of mass gk for each k and connect it to pi
using a spring.

Figure 5 shows an example of such a setup for two levels of a
hierarchy. The springs can be seen as attractors that pull each Ck toward
pi. We then simulate the forces in the system using a physics engine,
avoiding collisions between each Ck, to create a force-based layout.
In practice, we found that approximating the contours by virtually
enlarging each circle of leafs(ni), to the extent of the contour, already
yields good results while simplifying the configuration of the physical
simulation.

After computing such a force-based layout for ni, the relative posi-
tions of the elements of Ck to each other are fixed and are subsequently
transformed as a whole in later steps of the post-order walk. A detailed
description of the algorithm is shown in Algorithm 2.

Algorithm 2 Hierarchical Bubble Treemap layout
Require: ni is a node of a tree with circular layout

1: procedure LAYOUTNODE(ni)
2: pi← center of ni
3: W []← empty list of rigid bodies
4: for all k ∈ children(ni) do
5: LAYOUTNODE(k)
6: Ck← list of elements for each k ∈ children(ni)
7: for all C ∈Ck do
8: G← create rigid body from CONTOUR(C)
9: gC← center of mass of G

10: connect gC to pi using a spring
11: W .push(gC)
12: SIMULATEFORCES(W)
Require: T is a tree with circles in the leafs.

1: procedure BUBBLETREEMAPLAYOUT(T )
2: root← CIRCULARTREEMAPLAYOUT(T )
3: LAYOUTNODE(root)
4: return root

7 VISUAL VARIABLES

Visual variables in the context of diagrams and maps have been inves-
tigated extensively [5]. The expected value (node area) simply adds
up from the leafs to the root, as for all the other treemaps, and is very
similar to the application of visual variables to maps. Please note that



we could encode uncertainty inside nodes, e.g., using radial gradients
like Vehlow et al. [41], at the cost of a design dimension to encode ad-
ditional information. Instead, we restrict our discussion to the encoding
of uncertainty on the contour.

(a) Opacity (b) Dash Frequency (c) Wave Frequency

(d) Blur (e) Interval (f) Wave Amplitude

Fig. 6. Example visual variables applied to the contour. Opacity (a), dash
frequency (b), and wave frequency (c) can be used if a constant contour
width is desired, whereas blur (d), interval (e), and wave amplitude (f)
can be used if a variable contour width is permitted.

(a) Blur (b) Interval (c) Wave Frequency × Amplitude

Fig. 7. Multiple levels of example visual variables for varying contour
widths. Please note how frequency influences amplitude.

Our technique only requires black and white (cf. Figure 6) and
offers a wide set of design choices with regards to visual variables.
Usually, we desire equal saliency between certainty and uncertainty,
with detection-like tasks being considered an exception. Based on work
by MacEachren et al. [29], we start our discussion using opacity as
baseline for uncertainty (Figure 6a). Because of the small line width,
the difference between various nodes is barely visible. If contrast is an
issue, experimenting with more clean and geometric visual variables
for uncertainty is an obvious choice. With sketchiness being considered
unprofessional [9], we went for clean waveforms on the contours.
The first one is dash frequency (Figures 6b), resembling a rectangular

signal, and the second one is wave frequency (Figures 6c), resembling a
sinusoidal signal. As expected, both visual variables are easily readable,
provide more perceivable levels and a better highlight. Despite the
visual similarity to dashing and sketchiness, we refrain from judging
intuitiveness based on related work, because the application is very
different. Dash frequency seems to introduce high-frequent noise.
Therefore, the frequency (and phase) of the dashes has to be selected
carefully to avoid interferences between different lines of the same
hierarchy and among siblings of sub-hierarchies.

To discuss saliency, we present a set of visual variables with varying
contour width. We have implemented fuzziness [29] using blur to
preserve color and mass of the dissolved lines. Blur (Figure 6d) is
more readable than opacity and introduces much less noise and saliency
than dashed lines or wave frequency. The levels of blur (Figure 7a) are
difficult to distinguish, which is in line with the findings of Boukhelifa
et al., who found that up to four levels of blur can be discerned [9].
Regarding intuitiveness, Correll and Gleicher [16] discuss a binning
effect between certainty and uncertainty.

The next one is a representation that is inspired by error bars. To
prevent confusion, we call this visual variable interval (Figure 6e). Re-
garding intuitiveness, we expect it to be very close to the well-known
error bars. At first glance, smaller levels are more difficult to recognize
whereas higher levels are easy to distinguish (Figure 7b). The last vi-
sual variable is wave amplitude at a fixed frequency (Figure 6f). Please
note that there is a dependency between those two variables regarding
perception, i.e., low frequencies are detrimental to distinguishability
and high frequencies lead to a Moiré effect (Figure 7c). From the same
figure, we have a hunch that perception of frequency could be curve-
geometry depended. Nevertheless, sine waves with constant frequency
and a variable amplitude seem to work well. We could only speculate
that the amplitude fulfills its role as emphasis while frequency aids
regarding quantitative coding. Studying their dependencies is left for
future work. We suspect that differences in overall value (cf. Fig-
ure 6 and 7) shift saliency toward certainty or uncertainty, respectively.
Therefore, if equal saliency is desired, we suggest counterbalancing
based on value, e.g., integrating all pixels of each contour within a
certain area and then compensating by adjusting the intensity.

8 EXAMPLES

This section aims at demonstrating the usefulness of our technique
using exact data as well as uncertain data. In the following examples,
we use color to differentiate between categories. In the FLARE data
set, we colorize each group of children with the same color, whereas
in the other datasets we colorize complete sub-hierarchies (children
of root nodes) with the same color. Our prototype is implemented in
C++, using Box2D2 for the force-directed layout (8000 iterations) and
Cairo3 for vector graphics output. Table 1 provides a summary of the
example datasets.

Table 1. Summary of example datasets. The runtime was measured on
a desktop workstation equipped with an Intel i7-4770 CPU at 3.9 GHz.

dataset nodes leafs max. depth uncertain time [s]

FLARE 252 220 4 3.2
S&P 500 639 503 3 X 6.3
CES 403 295 6 X 7.7

8.1 FLARE Package Structure
Figure 8a shows the structure of the FLARE data visualization software,
which comes from the UC Berkeley Visualization Lab. The dataset was
created by Jeff Heer and is part of the examples of D3.js4. The FLARE
software consists of 10 modules that can contain further submodules.
This example contains only certain data and aims to show the structural

2http://www.box2d.org/
3https://www.cairographics.org/
4https://bl.ocks.org/mbostock/4063582#flare.json
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Fig. 8. Visualization of the package structure of the FLARE software:
(a) our method, (b) result using Squarified Treemaps for comparison.
The color coding is the same for both visualizations. However, Squar-
ified Treemaps, in contrast to Bubble Treemaps, require color to avoid
structural ambiguities.

properties of our approach. We map the size of each module to the area
of the circles in the leafs. A Squarified Treemap of the same dataset [8]
is shown in Figure 8b, slightly adapted to better fit our color palette.
Please note that the colors of the Bubble Treemap are set to match the
ones of the Squarified Treemap to allow a better comparison—which is
still possible even though such non-uniform colors in sub-hierarchies
impair the readability.

A particular problem of many traditional treemap approaches is that
the hierarchy is hard to read and might even be ambiguous. Thus,
treemaps are often colorized and use different shading styles, as shown
in Figure 8b. Even though we can also use color to increase readability,
it is not necessary for our method. In Figure 8a, we take the colors from
Figure 8b and transfer them to our treemap. The resulting coloring
is even a bit disadvantageous, since now different colors are placed
in a sub-hierarchy, but our visualization remains readable due to the
clear structuring of outlines and the additional space we allow for our
visualization. Not being restricted by color means that we can use
this strong visual cue for showing additional aspects of the data. This
supports our claim that reserving some extra space offers advantages
for visualizing hierarchies.

Fig. 9. Visualization of the data from the Consumer Expenditure Survey.
The sizes of the leafs are proportional to the value of each item in the
survey; the standard error is shown through the thickness of the contours.
Also, contours with high uncertainty are blurred, to give the impression of
uncertainty. The food category (cyan) and the housing category (yellow)
have a high standard error and are therefore depicted with a stronger
blur.

8.2 S&P 500 Index
Traditionally, financial data has been visualized using treemaps. Ana-
lysts are usually interested in the history of the stock in the form of a
time series, since the current price of a stock alone does not give much
information on how well the stock is performing. Our proposed method
can be used to show the current value of a stock as well as supplemental
information about its behavior over a given range of dates, providing
additional context. In many cases, it is also of interest how well a
sub-industry or a sector as a whole is performing. Figure 1 shows a
visualization of the companies that are part of the Standard & Poor’s
500 index (S&P 500), grouped by sectors and sub-industries. For this
example, we collected data using the Yahoo Financial API, for one
week in November 2016. The size of the circles represent the mean
closing prize of the stock for the given week. We use the contour to
show the standard deviation σ of each stock. Even though stocks can
depend on others, for our visualization purposes we assume that they
behave independently. This allows us to use an uncertainty model as
described in Section 4 to propagate σ toward the root.

Our visualization shows the stocks that were stable during the given
period of time and others with larger variations. By looking at the
waviness of the contours, it is relatively easy to identify the stock with
the biggest changes, since the variance is reflected in all the contours of
the respective sub-systems. In this case, the reason for the big changes
were a 5-for-1 stock split, which led to single stock only having a fifth
of the original value.

8.3 Consumer Expenditure Survey
The Consumer Expenditure Survey (CES) is an annual survey by the
United States Department of Labor that measures the income, as well
as the expenditures of consumer units, i.e., families or households in
the US. The United States have about 109 million consumer units, out
of which approximately 30,000 consumer units are sampled [6]. From
these samples, the mean expenditures are estimated.

Even though the consumer units are chosen carefully to reflect the
population, finding a perfect sample is impossible. The sampling error
that is introduced through this method is measured using the standard
error and gives information about the uncertainty with which the values



(a) Circular Treemap (b) Bubble Treemap (c) Nested Treemap

Fig. 10. Size comparison between circular treemaps (a), a corresponding
Bubble Treemap (b), and a Nested Treemap (c) for a 3-ary tree where
all leafs have the same value. When the branching factor of the tree
increases, the difference becomes less pronounced between (a) and (b).

are afflicted. The survey uses stratified random sampling instead of
simple random sampling. Because of this, the usual standard textbook
formulas do not apply here. Blaha [6] describes the replication methods
that were used to calculate the standard error, namely the Balanced
repeated replication. The standard error would indicate the magnitude
of the variability if the survey were to be repeated with different samples
of consumer units [6].

We use our method to visualize the diary survey of the 2014 dataset5,
the result can be seen in Figure 9. We map the value of each item to
the radius of the circles. For our visualization, we use a combination
of thickness and blur to show the uncertainty. Each of these visual
variables alone would suffer from deficiencies: Blur might get hard
to read quickly, since the contour would become too light, whereas
thickness alone would be perceived counter-intuitively (uncertain values
would appear very thick). Blur can only be perceived correctly up to
four levels [9], hence, we map the uncertainty to four levels of thickness
and set the blur proportional to each level. Our visualization shows
two categories that are afflicted with a high standard error: the Food
category, shown in cyan, and the Housing category, colored in yellow.
Within the housing category, the subcategory with the highest standard
error is Fuel and Utilities.

9 DISCUSSION AND LIMITATIONS

In comparison to circular treemaps, we can use space more efficiently,
especially for k-ary trees with a small branching factor. Figure 10
shows this problem for a 3-ary tree with four levels and leafs of equal
size. In the most extreme case, namely, a binary tree where the left
and right children have equal sizes rc, the parent circle has to have
a radius rp = 2rc. When the circles of the children are drawn on the
inside of the parent, only 50% of the area of the parent circle is used.
Rectangular treemaps are perfectly space-efficient, e.g., Squarified
Treemaps (Figure 8b) and Nested Treemaps (Figure 10c). Please note
that the leafs can appear unequal when the aspect ratio is not the same.

Arc Primitives The main visual characteristic of Bubble Treemaps
is that the inner structure is defined by an arrangement of leaf nodes
that is reflected on the outside by a contour. Nesting contours leads to
parallel curves that capture the underlying tree structure. This effect
would be difficult to achieve with energy-based contouring methods
such as implicit curves or splines. Using circles and arcs as basic
primitives of our method has several advantages: The users already
have a good intuition of how to interpret Bubble Treemaps, since circle
primitives are used throughout many different visualizations already.
Furthermore, adding labels to circles and biarc curves should be simple
and visually pleasing because of their clean geometry. For example,
labels can be added by either allocating more space per node or, if
suitable, using segments of the contours. Another compelling reason
to build our method upon circles are the clear visual outlines that can be
achieved, which leads to an engaging visualization. Other circle-based
visualizations [22, 45] show that arrangements of circles are judged as
aesthetic.

5https://stats.bls.gov/cex/programs/r14.zip

(a) Neutral areas (b) Colored areas

Fig. 11. Comparison of neutral shading (a) and colored (b) inner node
areas. While filling contour areas allows us to encode additional infor-
mation, it also introduces bias regarding area perception: In (a) the sum
of the green leafs correctly appears smaller, while in (b) the sum of the
green area erroneously appears bigger, than the red node.

Area Perception Like circular treemaps, Bubble Treemaps do
not reflect the aggregate size of a sub-hierarchy in the inner node
area of the enclosing contour. Filling the inner node areas with color
would allow us to encode information, such as the topology of the
hierarchy. There is, however, a risk of shifting saliency regarding
aggregation of expected values. This effect is illustrated in Figure 11,
where the topology of the tree is emphasized using different shades of
gray (Figure 11a) and color (Figure 11b). Filling the area of each level
in a neutral color improves the perception of the groups, as well as the
depth of the hierarchy. In Figure 11b, each sub-hierarchy was assigned
a color, and different levels of depth are emphasized by decreasing
the saturation. This highlights the group structure of each node but
introduces a bias in area perception: The aggregation of the green group
now falsely appears larger than the single red node. The potential error
amplifies with increasing contour thickness, which further aggravates
the interpretation under the presence of uncertainty. Therefore, we
advise against filling inner node areas if visual aggregation of leaf
nodes is desired.

Hierarchy Perception In general, the efficiency of treemaps de-
creases with increasing tree depth, since the implicit representation
tends then to hide the underlying structure. Bubble Treemaps share
this characteristic to some degree: If deeper sub-hierarchies are placed
toward the center of the visualization that are not directly adjacent to
contours, including the root node, grasping depth becomes difficult. In
all other cases, e.g., the green node to the very left in Figure 9, reading
the depth is done by counting the number of contours on the outside of
a group. As shown in Table 1, the datasets in this paper have a depth
that ranges from three to six levels and up to about 500 nodes. For
such hierarchies, our proposed method works well, but we expect that
deeper hierarchies will pose greater challenges.

Depending on the chosen visual variables and their parameters, un-
certain regions can appear more salient then certain regions. While this
might be desired in some scenarios, i.e., when searching for categories
with high uncertainty, in the general context of uncertainty visualiza-
tion this might be confusing. One way to deal with this problem is to
additionally adjust the opacity of these uncertain regions, giving the
user better visual cues to interpret the visualization, while retaining the
quantitative encoding. Regarding the encoding, we expect frequency
and amplitude to behave similarly to gradient as a visual variable in
that only a certain amount of levels can effectively be perceived. Our
intuition is that a fine granular distinction should be possible (cf. Fig-
ure 7).

Computational Complexity and Runtime The computational
complexity of constructing the contour strongly depends on how the
smoothness s is set. If s is much greater than the biggest radius max(ri),
this will lead to the degenerate case of the intersection graph where
each circle intersects each other circle. To identify the successor of the

https://stats.bls.gov/cex/programs/r14.zip


(a) s→ 0 (b) s = 14 (c) s→ ∞ (d) p = 4,s→ 0

Fig. 12. Setting the smoothness factor s toward infinity yields the convex hull of the set of circles. The other parameters of the contour are constant.
We can use the same construction to obtain the offset polygon of the circles by introducing an additional padding for each circle.

current circle, we need to find the circle with the leftmost intersection
point. While traversing the intersection graph, we have to consider
all other circles when searching for the next element. This leads to a
computational complexity of O(n2).

The runtime of the layout step of our method is mainly bound by
the setup of the simulation, especially how many iterations are needed
to achieve a good layout. Therefore, one needs to find a good compro-
mise between quality and runtime and predicting the exact number of
iterations in advance is difficult. For the datasets that we show in this
paper, we have found that 8000 iterations usually lead to good results.

Table 1 shows runtimes for different datasets, as well as additional
information about each dataset. Even though the force-based simulation
mainly determines the performance of our algorithm, there are several
characteristics that influence the runtime of the computation. The
overall number of nodes is the most obvious one, but since the physical
simulation is performed for each sub-hierarchy, the maximum depth of
the tree and the overall breadth of the tree are also important factors.
This is reflected in the runtime of the CES dataset, which has fewer
nodes than the S&P 500 dataset, but due to the higher maximum depth
still takes longer to compute.

Parameters of the Contour The way we construct the contour
around the tightly packed circles leads to a general notion of a contour.
By adjusting parameters that define the contour, namely the smoothness
s and the padding p, we can emulate different concepts of computational
geometry. As described in Section 5, s controls the radius of the tangent
arcs and can be used to steer how closely the contour will cling to the
underlying circles. The effects of the parameters on the contour are also
shown in Figure 12. When s→ 0, we obtain the concave hull of the set
of circles (Figure 12a). Increasing s will relax the contour, therefore
decreasing its total perimeter (Figure 12b). Finally, for s→ ∞, our
algorithm computes the convex hull of the set of circles (Figure 12c).
Independent of s, we can also adjust the padding p of the contour.
This controls how far the contour will be offset from the original
circles. By additionally setting s→ 0, we simulate the offset polygon
(Figure 12d). Adjusting these parameters per level, s in particular, can
be used to further improve readability. For the provided examples, we
slightly reduced s with each level. This leads to contours that resemble
isocontours, a representation that many users might already be familiar
with from topographic maps or 2D contour plots.

We imagine that the generality of the description of the contour
makes it possible to be used in other contexts of visualization as well.
Lately, advances have been made in the field of visualizing set mem-
bership for objects embedded in the plane [13, 31]. Our method for
constructing a contour around objects is not restricted to our use case
but could be applied to draw contours around arbitrary objects that are
embedded in the plane. For this to work, it should be possible to define
a bounding circle for each object and to know the maximum distance
that the elements of each cluster have, to choose a good value for the
smoothness parameter. Bubble charts that visualize hierarchical or
categorical data could also benefit from the proposed contour method.

10 CONCLUSION

We have presented Bubble Treemaps, a novel method that allows us to
visualize hierarchical data afflicted with uncertainty. The main idea of

our visualization is to deliberately allocate extra space that can be used
to encode additional information. For this, we have presented a method
to group circles together using contours based on circular arc splines.
We have described a hierarchical force-based layout algorithm that we
use to transform a circular treemap into a more compact representa-
tion. Since encoding uncertainty into visualizations is difficult, our
method tries to leave as many design choices as possible. We show how
several visual variables can be used to effectively convey uncertainty
information, while still showing the original underlying structure.

In future work, we want to incorporate temporally changing data
into our visualization. Since we use the circular treemap algorithm as
an initialization for our method, to some degree, we inherit its prop-
erties, namely that the initial layout is not stable. After performing
the force-based layout, however, our algorithm could be used for dy-
namic or interactive representation by simply repeating the force-based
layout procedure, if the changes in the leafs are not too large. We are
confident that the subsequent adjustment should allow user interac-
tion. Furthermore, we are interested in incorporating appearing and
disappearing hierarchies. For this, we imagine that the initialization
could be changed to space-filling curves, which would create some
robustness against changes. Visualizing changes in the topology is
especially relevant for depicting structural uncertainty.
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