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Abstract

Generating synthetic images of rich landscapes is still a challenging task in various respects.
Firstly, efficient modelling methods for single plants have to be developed, as so far used ap-
proaches do not allow designing plants efficiently. Our hybrid method enables the user to
generate even complex plants in short time; this is described in the first paragraph. Secondly,
plant models must be combined in order to form vegetation. Spatial-temporal simulation
models based on individual plants help here. The vast amount of geometry involved here must
be reduced to allow interactive rendering. A specially designed level-of-detail algorithm rep-
resents the plant geometry in dependency to its size on screen and allows frame rates of sev-
eral frames per second even for complex landscapes.

1. Synthetic plant models and landscapes

Besides the fields of landscaping and landscape architecture synthetic plants play an im-
portant role in many applications. In botany, such models can be used for modelling plant
growth and genetic expression, for evaluating mathematical models applied to backscattering
measurements and for visualizing spatio-temporal processes. In the movie industry they are
used for modelling special effects or special plants that cannot be found in nature. In comput-
er games they are used for synthetic backgrounds. The different applications need different
models, but generally, the need for very detailed visual plant descriptions grows as fast as
computers are able to handle those complex models.

2. Modelling of plant models

In recent years several important advances have been made to model such realistic plants
models efficiently. Two major mechanisms are described in literature, on the one hand proce-
dural methods are used, parameterized algorithms that generate plant geometry for one or a
small set of plants. Various algorithms were proposed [1,2,3,4], but only the AMAP system,
now developed by Bionatics is still developed.

One the other hand, rule-based systems was introduced that describe the plant geometry by a
set of rules that are applied to create a complex model from a simple initial state. The most
prominent approach is known as L-Systems, developed by Lindenmayer and Prusinkiewicz
[5]. Here, a textual rule basis is used for describing the plant. The rules do string rewriting in a
given text. Starting from an initial word, the sequence grows until a given number of rewrit-
ings was performed. In a second step, the final string is interpreted graphically to produce the
geometry. Over the years these systems were extended by mechanisms for interaction of
plants with their environment [6] and by introducing positional information [7]. The latter
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extension allows the user to edit his models quite efficiently. Spline functions can be used to
vary important parameters of plants along their growth axes. Instead of programming L-
System rules manually, the user is able to change the shape of plants by parameters based on
these functions.

A similar editing technique was proposed by Bernd Lintermann and one of us in combination
with the plant modelling tool xfrog [8]. Here, a mixture of procedural and rule-based methods
is used to model a plant: procedures compute the geometry of plant parts and are combined by
a simple rule based mechanism. The procedures are represented by components. A set of
components is connected by the user to describe the structure of the plant. The algorithms are
controlled by graphical user interfaces on the basis of spline functions. For a complete de-
scription see [9], a sample plant is shown in Fig. 1. For the xfrog modelling system a plant
library of several hundreds of different plants exists that can be maintained by the user [10].
Also for L-Systems many models have been created.
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Figure 1: Steps in creating a sunflower: real leaf textures are scanned and projected on the surface of a leaf ele-
ment represented by a leaf component. Arrangement of plant parts is performed by multiplying components as

shown in the blossom. Putting all together a set of ten components is able to represent the whole plant.

3. Modelling synthetic landscapes

A landscape is formed by human artefacts, a biotic items and a set of plants. For modelling
plant societies, growth patterns and statistic values of the plant populations are obtained from
nature and are represented by the computer. The main problem is simply the number of plants
and the huge amount of geometry which is necessary to model vegetation. A single square
meter of a meadow contains thousands of plants and needs millions of triangles to represent it
realistically. Millions of plants must be combined to represent a square mile. In [11] an open
system is described that is able to model and render complex plant scenes with hundreds of
millions of triangles. The raytracing algorithms used for that purpose render an image in about
one hour on a sixteen processor SGI computer — far away from interactive rates.



Figure 2: A synthetic landscape modelled by Bernd Lintermann using xfrog and the open system described in

[11].

In [12] the rendering performance for the same scenes was improved to several frames per
second — now using graphics hardware and a specially designed level-of-detail (LOD) algo-
rithm. The plant is represented by geometry, if the virtual viewer is close and by a set of
points and lines if far away. Points are used for compact objects such as leaves, lines for long
and thin objects such as branches. Both sets are obtained by randomly sampling the plants
surface. For a given distance to the plant or a size of the projected plant model, respectively, a
specific number of points and lines are displayed. This number decreases such that the num-
ber of points and lines always represents the plant model faithfully.

The problem with most of these LOD schemes is the computing time necessary for each
frame. In our case we solved the problem by randomly reordering the point and line sets for
each plant and storing them in graphics memory. This reordering is done in a way that each
head of a set always results in a valid approximation of the plant geometry. The amount of
points and lines shown for each plant is now computed by a simple formula and results in a
number which tells the graphics card, how much of the points and lines for a plant model have
to be displayed. Doing so, no transfer of data to the graphics card is necessary during render-
ing, all the approximation data is stored on the card in a pre-processing step.

Figure 3 shows some examples of plant approximations: In the upper line, a plant model is
represented by geometry and by several sets of points. In the middle, a set of plants is shown;
the plants in the background are represented by points. In the last line, a line approximation of
a plant with thin leaves is given.
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Figure 2: Level-of-detail description of a plants: (a) geometric description of a pine tree; (b) representation by 13.000
points; (c) 6.500 points; (d) 3.250 points; (e) 1.600 points; (f) several plants, the models in the background are
displayed by point sets; (g) line approximation of a plant with thin leaves.

Showing larger scenes requires some additional effort. In a plant population of several million
plants it is very time consuming to represent every plant even if only one point is shown. This
arises from the fact that each model has to be visited and the model representation has to be
read. Much cheaper is it to represent a number of plants —a square meter or larger— by a new
virtual plant description. This is done by building a spatial data structure for larger terrains
that stores squares of the terrain in the form of virtual plants. Doing so, even larger scenes can
be displayed interactively.

On the other hand sometimes a very large plant has to be subdivided into several virtual
plants. This is due to the fact that if the camera is close to such a plant, the hear leaves have to



be represented as geometry while the far leaves still can be approximated. As our LOD meth-
od works for the plant as a whole, it has to be split into parts to improve performance.
Currently we are working on hierarchical spatial data structures to enable interactive render-
ing speed for arbitrary landscapes and —in the farer future— for a whole synthetic planet.

4. Rendering terrain

Another time-consuming task for the computer is to represent terrain. Usually terrain data is
represented by irregular sets of triangles (TIN) or regular grids for the surface and large tex-
tures for its visual appearance. Geometry and texture can be of enormous size, often it is not
possible to store the whole data in main memory and therefore efficient hierarchical caching
algorithms have to be used. More than that, the complexity of the data requires in many cases
to model important parts of the scene with a higher complexity than others. This can be repre-
sented easily by TINs but requires some effort using regular grids. In this case, a hierarchical
representation is used: a basic grid represents the scene; important parts do have their own
local grids that replace the basic grid.

For display, another kind of hierarchy is required: the scene is divided into parts using a so-
called quadtree. In the first step the complete scene is divided into four parts of equal size. If
the geometric complexity of the parts is above a given threshold, they are further divided into
four parts. All parts are stored as knots in the quadtree. Doing so, it is necessary to cut the
geometry of each part at the border. Again this is easy for TINs but a harder job if a grid hier-
archy is used. In this case, all the local refinements must be clipped also.

Now geometry is represented hierarchically for each part of the tree. This is done by repre-
senting the highest order knots by a base mesh that is refined by the data associated with the
child knots. The algorithm ensures that the error in the altitude is always below a threshold for
each approximation inside the quadtree. If the virtual viewer moves towards a point in the
scene, closer and closer approximations are computed by moving downwards the tree hierar-
chy. Moving horizontally requires obtaining new parts of the base meshes and refining them.
Both operations can be realized using solely local refinements of the geometry and by ensur-
ing a minimal data stream. Our approach is based on a work presented by U. Thatcher [13],
which allows handling such complex terrain data interactively.

5. Conclusion

It is still a difficult task to represent complex virtual landscapes interactively. The developed
algorithms for modelling and rendering of single plants seem to work well for the quality
needed in outdoor scenes. Indeed, much more work has to be done to handle all the data in-
volved in this process.

In this context, the rendering capacity of modern graphics cards is not so much the problem,
much more important is the bandwidth between hard disk, main memory and graphics
memory to transport the enormous amount of data needed to represent outdoor scenes. Theo-
retically, buses like AGP 8X enable to transfer up to 2 Gigabyte per second for uploading
onto the graphics board but in practice values are much lower. Therefor efficient data repre-
sentation and compression techniques have to be developed to reduce the amount of data nec-
essary to transfer. More and more operations can be performed in the graphics card, which
will help to solve these problems.



Open problems are animation and interactive editing. So far our data structures are quite static
and do not work well with dynamically changing data. We are able to cheat in order to simu-
late wind, but animations like growth of plants is not possible yet. Also, the user has limited
possibilities to change landscapes interactively. This is due to the fact that the geometric de-
scription of many plants is combined to an overall representation of the scene to enable inter-
active rendering. Single plants can be added here, but after changing substantial parts of the
scene, pre-processing must be performed again before display.

In the future we will work in this direction, our goal is to develop a frontend for GIS that al-
lows the user to enhance GIS data by adding visual features necessary for display and then
enabling him/her to visualize complex landscapes with rich vegetation and all other artefacts
needed for landscaping.
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