
Chapter �

Pixel�Oriented Rendering

of Line Drawings

In Chaps� � and �� several analytical approaches for creating line drawings
were introduced� These methods allow the generation of a broad variety of
drawing styles� and some applications of scienti�c and medical illustrations
were given�

In the following� a pixel�based method is presented� A set of G�bu�ers is
used for encoding visual and geometric properties of the models� G�bu�ers
store information for each pixel of the image� These bu�ers are combined
with other geometric data to form the line drawing�

In comparison to analytical solutions� a pixel�oriented approach has sev�
eral advantages and also shortcomings� While working analytically� the re�
sults are resolution independent� which is not the case for pixel�oriented meth�
ods� An analytic hidden surface removal algorithm may generate more and
other information about visible lines and surfaces than can be achieved by a
pixel�oriented method� This makes analytic methods more �exible and also
more general than pixel�based algorithms�

A pixel�oriented strategy� however� o�ers the general advantage of easily
using graphics hardware which makes algorithms very fast� In addition� the
methods are independent of the graphical primitives used to form the models�
Everything that can be processed by the hardware can also be used to form
the line drawing� Also� the algorithms can be parallelized easily� and in
general they are much simpler to implement and to maintain than analytic
methods� This makes pixel�based approaches preferentially applicable where
results have to be generated quickly and where huge or complex data sets are
to be handled�

After discussing previous work and presenting the ingredients of the me�
thod� some results are shown� A statue and a bust of Beethoven are used for



��� � Pixel�Oriented Rendering of Line Drawings

this purpose� The models have been chosen because of their slightly curved
but complex geometry� which is also the case with most of the medical models
shown in this book so far� In the last section some suggestions on combining
analytic and pixel�based methods are given�

��� Previous Work

Pixel�based algorithms for solving visibility problems have a long tradition in
computer graphics� Catmul 	Cat
�� presented the idea of using a z�bu�er�
an array storing the color and depth for each pixel of the image� This bu�er is
used to compute visible parts of the given geometric data by comparing depth
values of the surface pixels with the values already stored in the z�bu�er� The
amount of memory needed by this method can be reduced by using a scan
line method which works only with one line of the z�bu�er �cf� 	Mye
���
Rossignac re�ned this method for Constructive Solid Geometry 	RR����
other work was done on processing of data stored in Binary Space Parti�
tioning Trees� Hardware implementations� as described by Booth� Forsey�
and Paeth �cf� 	BFP���� of z�bu�ers can be found in nearly all graphics
hardware�

Saito and Takahashi 	ST��� applied image processing to the z�bu�er
and introduced other pixel bu�ers �they called them G�bu�ers to enhance
images in the case that the underlying geometry is given� Their work is stated
to be one of the roots of non�photorealistic imaging�

Though extended in some ways� the real breakthrough for non�photorea�
listic imaging and especially for the use of line drawings took place in more
recent years� motivated by the work of Lansdown and Schofield 	LS����
Strothotte et al� 	SPR���� SSRL��� and Winkenbach� Salisbury and
Salesin �cf� 	SALS��� WS��� SWHS�
��

While Schofield mostly used pixel�based methods for non�photorealistic
rendering �he invented G�bu�ers independently of Saito and Takahashi�
Strothotte et al� focused on generating line directions that are drawn by
applying di�erent line styles�

It was the idea of Winkenbach et al� to use prioritized stroke textures for
generating hatching lines� These textures are placed on the surface of objects
to form the line drawing� Extensions like resolution dependent textures and
orientable textures are given�

Leister 	Lei��� introduced a special kind of ray tracing in combination
with image processing operators for generating line drawings� His method can
be seen as an application of volume texturing in order to visualize objects
with an outlook similar to copper plates�

The method presented here is an extension of the work of Saito and
Takahashi� Additional G�bu�ers and cross sectional information are used
to form the typical outline of hatched line drawings� Half�toning on the basis
of the hatching lines is used to approximate the intensities of a given image�



��� A Pixel�Oriented Graphics Pipeline ���

��� A Pixel�Oriented Graphics Pipeline

A pixel�based method for achieving line drawings is quite di�erent from ana�
lytic approaches� First� some basic G�bu�ers are calculated� Image operators
are applied to the basic bu�ers in order to generate additional bu�ers repre�
senting necessary information for the drawing process like structural lines or
vector �elds�

In the next subsection the set of G�bu�ers and corresponding image op�
erators is presented� and some extensions to standard image operators are
given� In Sect� ������ a half�toning scheme for short hatching lines is intro�
duced� Their placement is controlled by an error di�usion algorithm�

The generation of long hatching lines �as needed especially for generating
medical illustrations is shown in Sect� ������ In this case the half�toning must
control not the placement but the appearance of the lines� this is described
in Sect� ������ Some results show the usability of the approach�

����� Basic G�Bu�ers

A set of bu�ers forms the basis of all subsequent operations �see Fig� ����
Each of them can be calculated e�ciently by using standard graphics hard�
ware� For simpli�cation the domain of each pixel is assumed to be the set of
integers�

The �rst G�bu�er is the image itself� It is represented as the pixel array I
with values describing the light intensity for every point of the image� For the
purpose of creating black and white line drawings� a gray�scale map su�ces�

Figure ���� Basic G�bu�ers� image intensity �left�� depth values �center�� and primitive
index �right�



��� � Pixel�Oriented Rendering of Line Drawings

The second G�bu�er �Z is called the depth bu�er or z�bu�er� The values
determine the distance of the model to the viewing plane for each pixel� Later�
some image operators will be applied to this bu�er in order to generate other
bu�ers�

Another useful bu�er is the id�bu�er� refered to as ID � The value �color
or gray�scale value of every pixel encodes the index of the visible geometric
primitive at this point� For instance� this bu�er can also be used for com�
puting e�ciently a high quality representation of the image I � as the hidden
surface problem is already solved if an id�bu�er is present�

The last basic G�bu�er �N stores normal vectors of the geometry� For
each pixel the corresponding normal vector of the visible geometry is stored
�if it is de�ned� Usually one needs three images to store the values� the
pixels of each image storing one coordinate�

Table ���� Basic G�bu�ers

Description Symbol Domain

Image I I

Depth values Z I

id�bu�er ID I

Normal vectors N R
�

It should be pointed out that numerical accuracy is often crucial for ob�
taining good results� Therefore� intermediate G�bu�ers might be stored by
using �oating point numbers or long integers�

����� G�Bu�er Operators

In the following the set of image operators is shown� These operators are
applied to the basic G�bu�ers to compute other G�bu�ers necessary for gen�
erating the line drawing� A functional notation is used for the operators� For
example� the bitwise �and� of two images I�� I� is denoted as �And�I�� I����

Tables ��� and ��� list the image operators used for generating the line
drawings� Most of them are known from standard image analysis literature
�e�g�� 	RK���� The implementation of the others can be found below�

Di�erence Operators� Calculating the value of �rst and second order di�er�
ences from a pixel image is a classical operation in image analysis� In 	ST���
the Sobel operator �cf� 	RK��� is used� In the following� Gi�k denotes the
value of the pixel in line i and row k of G�bu�er G�

d��Gi�k� �
�

�

�
BB�
jGi���k�� � �Gi�k�� �Gi���k��

�Gi���k�� � �Gi�k�� �Gi���k��j
�jGi���k�� � �Gi���k �Gi���k��

�Gi���k�� � �Gi���k �Gi���k��j

�
CCA



��� A Pixel�Oriented Graphics Pipeline ��	

The purpose of this operator is to detect discontinuities in the basic G�
bu�ers� These discontinuities can be used to form structural lines� Therefore
the operator is normalized� kd� denotes the threshold� d�min and d�max the
minimal and maximal di�erences�

Di���Gi�k� �

�������
������

d�min � d��Gi�k�

d�max � d�min

� if d�max � d�min � kd�

d�min � d��Gi�k�

kd�
� if d�max � d�min � kd�

To detect discontinuities of second order� the following operator is used
by Saito and Takahashi� It is also normalized to allow the generation of
uniform lines�

d��Gi�k� �
�

�

�
�

�Gi�k �Gi���k�� �Gi���k

�Gi���k�� �Gi�k�� �Gi�k��

�Gi���k�� �Gi���k �Gi���k��

�
A

Table ���� Unary G�bu�er operators

Description Symbol Domain

Bitwise operators Set�� I� I

Unset�� I� I

Round�� R� I

Value of �rst order di�erence Di���� I
� � R

Value of second order di�erence Di���� I
� � R

Direction of pixels with same value Iso�� I
� � R

�

Integer conversion of direction vector �angle A���� R
� � I

Retrieval of direction vector from integer value A�� I� R
�

Table ���� Binary G�bu�er operators

Description Symbol Domain

Bitwise operations And�� I� I� I

Or�� I� I� I

Pixel�wise arithmetic operations Add�� I� I� I

Sub�� I� I� I

Max�� I� I� I

Min�� I� I� I

Mul�� I� I� I

Div�� I� I� I

Multiplication with scalar value Smult�� I�R� R

Threshold operation Tresh�� I� I� I



��� � Pixel�Oriented Rendering of Line Drawings

Di���Gi�k� �

���
��

d��Gi�k�� if d�max � kd�

d��Gi�k�

�d�max�kd���
� if d�max � kd�

Although these operators allow to extract discontinuities in a desirable way� a
second operator for detecting �rst order di�erences was designed to generate
�lighter� lines which are needed for high�quality pixel�vector conversion �as
needed below� The di�erence operator Di�� generates lines� as can be seen
in the center part of Fig� ���� Vertical and horizontal lines are generated as
required� but diagonal lines are too fat� Application of the operator Di��a
leads to a better �lighter result�

Figure ���� Results of
di�erence operators� Original
image� after applying Di���
and after applying Di��a

The operator Di��a is also normalized� i�e�� it delivers binary values and no
information about the level of discontinuity is provided�

The operator has a procedural implementation that works in two steps�
First� the image is scanned line by line� If the horizontal di�erences are above
the threshold kd� � the pixel is set� Second� the image is processed row by
row� In this step a pixel is set only if either the upper or right neighbor is
not set at this time�

proc Di��a��
for k 	� 
 to height � �� do

Unset�Gi����
for i 	� � to width� �� do

if jGi���k �Gi�kj � kd�
then Set�Gi�k� else Unset�Gi�k� �

od

od

for i 	� � to �width � �� do
for k 	� 
 to �height � �� do

if jGi�k�� �Gi�kj � kd� � �Gi�k�� � 
 � Gi���k � 
�
then begin

Set�Gi�k��
if Gi�k�� � 
 � Gi���k � 
 then Unset�Gi�k� �

end �

od

od

end



��� A Pixel�Oriented Graphics Pipeline ���

An application of the di�erence operators to G�bu�ers is shown in Fig� ���
�center and ��� �right� where structure lines are generated using the image
and the z�bu�er by application of di�erence operators� These results can be
seen as �rst sketches of the given statue�

Figure ���� Application of di�erence operators to the image and the z�bu�er� Di���I��
Tresh�Di���I�� ���� Tresh�Di���Z�� ��� �from left to right�

The Iso�Operator� During the generation of hatching lines it is sometimes
necessary to draw lines along pixels with the same depth value� This is done
by using another G�bu�er that stores the directions of pixels with the same
value �if this direction is unique�

This bu�er can be generated by applying the Iso�operator to a G�bu�er�
The Iso�operator is de�ned by the perpendicular vector of the pixel�wise
gradient direction�

Gradx�Gi�k� � �Gi���k�� �Gi���k�� �Gi���k

�Gi���k �Gi���k�� �Gi���k��

Grady�Gi�k� � �Gi���k�� �Gi���k�� �Gi�k��

�Gi�k�� �Gi���k�� �Gi���k��

Iso�Gi�k� �
�
Grady�Gi�k���Gradx�Gi�k�

	T

In Fig� ��� the direction of the vectors is visualized� The vectors are stored by
their direction angle using the functions A�� and A����� The other operators
of Tables ��� and ��� should be clear to the reader� who is otherwise referred
to the standard literature of image analysis�



��� � Pixel�Oriented Rendering of Line Drawings

Figure ���� Visualization of Iso depth vectors and the associated G�bu�er

Until now it was shown how G�bu�ers can be created by using image op�
erators applied to the basic G�bu�ers� In the next subsection two half�toning
schemes working on hatching lines are described� First� short hatching lines
are distributed on the image� later the outline of lines is changed according
to a given gray�scale value�

����� Half�Toning Using Short Hatching Lines

The half�toning process is a function which maps an image of gray�scale values
to another image composed by the colors black and white� The half�toning
process must preserve the integral gray�scale value over each �su�ciently
large part of the picture�

A classic method is the algorithm of Floyd and Steinberg 	FS
��� The
image is processed row by row� For each pixel the error that arises with
drawing a black or white pixel is accumulated and added to the next pixel�
thus spreading the error over a larger area�

In Fig� ����b the half�toned image of the given reference �Fig� ����a is
shown� Points can easily be replaced by short hatching lines� if the error is
treated appropriately �cf� Fig� ����c� If two line directions and smaller lines
are used� the result gives a good approximation of the reference image�

Usually� during half�toning no knowledge is assumed about the content
of the image to be processed� This is not the case here� as we want to do a
special kind of half�toning which leads us to hatched images�

Figure ��� shows how information about the model can be used by a half�
toning process� Figure ����a shows the result of half�toning the robe of the



��� A Pixel�Oriented Graphics Pipeline ��


�a� �b�

�c� �d�

Figure ���� A half�toning process with short hatching lines� �a� reference image� �b�
application of an error di�usion algorithm using points� �c� the same done by using short
lines� �d� two line directions combined� smaller lines used



��� � Pixel�Oriented Rendering of Line Drawings

statue using short hatching lines with a slope of �� degrees� In Fig� ����b
the same is done using iso depth values for redirecting the slope of the lines�

�a� �b�

Figure ���� Enhanced half�toning using short lines� �a� half�toning with two static line
directions� �b� redirecting the slope of the lines to the direction of iso depth values

In the next section the focus is on generating long hatching lines� A
half�toning method based on these lines is described below�

����� Generating Long Hatching Lines by Intersections

In scienti�c illustrations long hatching lines are widely used� The hatching
lines in Fig� ��� might be interpreted as intersections between the object and
a set of planes�

Such a set of intersecting lines should help in directing subsequent half�
toning operators along the surface of the objects� The lines can be created
either analytically by intersecting the model with a set of planes� or by a
combination of pixel�based operations and image analysis� In both cases the
result should be a set of curves in �D�

Currently the intersections are generated using the latter method �cf�
Fig� ��
� The process has several steps� First� the full model is shaded using
�at shading and a dark background� By applying the operator Di��a and
performing a pixel�vector conversion� the outline of the model is generated�

Now the same is done by using additional clipping planes �Fig� ��
�a�
The operator Di��a is applied again and the outline of the model is sub�
tracted� What remains is the pixel representation of the intersecting line
�Fig� ��
�b� A pixel�vector conversion is carried out to achieve the desired
pixel vector� The whole set of vectors can be seen in Fig� ��
�c�



��� A Pixel�Oriented Graphics Pipeline ���

�a� �b� �c�

Figure ��	� Pixel based generation of intersecting lines� �a� �at shaded image of the
model by using an additional clipping plane� �b� resulting vector after subtracting the
outline of the full model� �c� the whole set of intersecting lines

����	 Half�Toning Using Long Hatching Lines

The generated lines have to be drawn in an appropriate way� To match the
half�toning requirements� each line li is responsible for a tube ti �cf� Fig� ����
The outline of the tube lies between the line and its neighbors� Using such
tubes results in partitionizing the surface of the object to be hatched�

Figure ��
� For half�toning the appearance of each intersection line li is responsible for
approximating the gray�scale values belonging to a tube around the line

If the overall intensity of the line li equals the intensity of the pixels in ti�
a correct half�toning is achieved� A simple method is to modulate the width
of li according to the intensities along the line� Doing so supposes that we
have uniform intensities in ti perpendicular to li�

In Fig� ���� a set of intersection lines is used for half�toning the bones
of a foot� The intensities of the image at the top were used for controlling



��� � Pixel�Oriented Rendering of Line Drawings

Figure ���� Using intersection lines for hatching� A set of intersection planes was used
to generate the lines	 The intensities of the image at teh top were used for controlling the
line width of the picture in the middle	 At the bottom a style similar to Fig	 
	
 was
approximated



��� A Pixel�Oriented Graphics Pipeline ���

the line width of the picture in the middle by using the above method� At
the bottom a style similar to Fig� ��� was approximated� Here� a uniform
line width was chosen� and the line was drawn for those places where the
intensities of the picture belong to a given interval�

����� Computer Generated Copper Plates

As mentioned in the introduction to this chapter� Leister used a modi�ed
ray tracing algorithm in combination with black and white volume textures
to simulate the generation of copper plates� This approach is quite similar to
explicitly generating intersections� as was done above� If the volume texture
consists of parallel planes� the ray tracing algorithm tests for each pixel if
one of these planes is present at the point where the ray hits the surface of
the visible object�

The advantage of explicitly generating intersections is that these intersec�
tions can be postprocessed later by applying a half�toning method that gener�
ates the hatching lines individually� In Fig� ���� a copper plate is simulated�
Several parts of the model were processed separately and later combined by
using z�bu�ers� The size of the generated dots was chosen according to the
intensity of the model�s image I �

Artists use several tricks while developing copper plates� It is too sim�
ple to assume one can achieve a computer generated copper plate by just
intersecting the model with a set of parallel planes� Real copper plates are
made by using non�parallel planes or even other objects� Sometimes several
planes are overlaid as can be seen in the face of the nun in Fig� ���� �left�
In Fig� ���� �right di�erent styles are used for the light and the dark parts
of the face�

Figure ����� Two copper plates of nuns demonstrate the usage of di�erent styles within
the same image �Gra��

The same was done for the computer generated copper plate of Fig� �����
The face was drawn by using two sets of intersecting planes and the rest was



��� � Pixel�Oriented Rendering of Line Drawings

Figure ����� A computer generated copper plate showing a bust of Beethoven	 The face
was drawn using two sets of intersecting planes� the rest using one set

generated using one set� The main di�culty was to direct the orientation of
the intersection planes in an appropriate way�

��� Concluding Remarks

In this chapter a pixel�based rendering pipeline was given� The pipeline
consists of three steps� First� basic G�bu�ers have to be generated� By
application of image operators additional bu�ers are created in a second step�
One may also create intersection information� if appropriate� In the last step
a half�toning process is applied to the data which maps the intensities of the
image bu�er I to the size� direction� and style of the generated lines�

For high quality images sometimes a high resolution of intermediate G�
bu�ers is needed� Therefore� it can be useful to partition the bu�ers �OpenGL
works with images of at most � ����� ��� pixels�

Analytical and pixel�oriented methods can be combined in many di�erent
ways� On one hand the analytical generation of intersections can be used to



��
 Concluding Remarks ��	

get �D results� on the other hand their pixel�based generation can be mapped
into �D by using back projection �parts of the intersections may be missing
if not visible� The results are now usable in an analytic approach�

G�bu�ers can be used in places where it is su�cient to store informa�
tion at discrete points� Every analytic approach involves the creation of the
image for a pre�de�ned view� At this point� pre�computed G�bu�ers may
introduce additional information like vector �elds �e�g�� iso�values or depth
information�

Pixel�oriented methods may also be used to obtain some kind of image�
based control on the number of and distance between hatching lines� The
avoidance of Moir� patterns is an important problem during the generation of
line drawings� It depends on the resolution of the output devices how closely
curves can be placed together without obtaining a Moir� pattern� If a line
drawing is to be rendered for a speci�c output device with given resolution�
G�bu�ers may allow e�cient calculation of the pixel distance from line to
line�

The generation of intersecting lines may now be an iterative process� A
new intersection is generated� the maximal and minimal pixel distances to
their neighbors is measured and the intersection plane is moved if the dis�
tances do not match pre�de�ned criteria� Such methods were proposed by
Saito and Takahashi in 	ST��� and also by Turk and Banks 	TB��� for
generating stream lines� Their application to line drawings is future work�

The fast generation and rendering of pixel�based hatching lines can be
used for displaying and interacting with complex environments like botanical
scenes� Based on our work on modeling and rendering realistic plants and
plant ecosystems 	DL�
� DHL����� the techniques presented in this chapter
will be applied to those scenes in order to provide interaction with objects
that otherwise require the display of tens of millions of polygons�

Contributor of Chap� �� Oliver Deussen




