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Figure 1: Different landscape illustrations.

Abstract

Non-photorealistic rendering has been proven to be particularly ef-
ficient in conveying and transmitting selected visual information.
Our paper presents a NPR rendering pipeline that supports pen-and-
ink illustration for, but not limited to, complex landscape scenes
in real time. This encompasses a simplification framework using
clustering which enables new approaches to efficient and coher-
ent rendering of stylized silhouettes, hatching and abstract shading.
Silhouette stylization is performed in image-space. This avoids ex-
plicit computation of connected lines. Further, coherent hatching of
the tree foliage is performed using an approximate view-dependent
parameterization computed on-the-fly within the same simplifica-
tion framework. All NPR algorithms are integrated with photo-
realistic rendering, allowing seamless transition and combination
between a variety of photorealistic and non-photorealistic drawing
styles.

Keywords: non-photorealistic rendering, line art, real-time hatch-
ing, level-of-detail, complex plant scenes, outdoor scenes

1 Introduction

Real-time visualization of landscapes in 3D has always been a chal-
lenging task and is still an active field of research, mainly due to
the huge geometric complexity of outdoor scenes. With recent ad-
vances in hardware and software, the interactive, photorealistic nav-
igation through impressively large and complex virtual landscapes
is possible [Deussen et al. 2002; Behrendt et al. 2005] and future
developments will surely break the actual computational limits.

However, as well as in other areas of computer graphics, there are
many applications for which photorealistic rendering may not al-
ways be the best choice. As examples, in landscape planning and
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architecture the challenge is not only the computational, but often
also the visual complexity of the scenes, making them hardly in-
telligible. Here, non-photorealistic techniques can be particularly
efficient in conveying and transmitting selected visual information.
Free from the constraints of photorealism, a controlled, meaning-
ful simplification and structuring of the scene can be performed,
leading to comprehensible renditions.

This paper presents an NPR rendering pipeline that supports real-
time, hardware-accelerated pen-and-ink illustration of complex
landscapes consisting of many detailed 3D plant models. Rather
than being replaced, photorealism is tightly integrated with a wide
palette of illustration elements, allowing seamless transitions from
realistic representations to abstract sketches for maximum flexibil-
ity in practice.

Due to the high complexity involved, established NPR algorithms
cannot always handle such scenes. The usually most important
component of an illustration is represented by silhouette and con-
tour lines. Our contribution is a technique for fast silhouette detec-
tion and stylization that, in contrast to previous approaches, avoids
the explicit computation of connected contour lines. Silhouette
style patterns are defined as two-dimensional textures and can be
combined with individual leaf contours.

Another important contribution of the paper is a novel method for
real time hatching. The technique introduced by [Praun et al. 2001]
does not work well for non-compact, highly fragmented objects
such as trees, because it requires a smooth object-space parameter-
ization. On the other hand, image-space hatching such as in [Lake
et al. 2000] suffers from the so-called shower-door effect: strokes
remain fixed on the screen rather than following the object surface.
Our solution is based on a combination of dynamic object space
parameterization with image-space, view dependant parameteriza-
tion. It simultaneously offers much better spatial coherence than
the object-space approach and greatly reduces the shower-door ef-
fect compared to image-based hatching. The method can be used
with standard tonal art maps of [Praun et al. 2001] and requires no
additional model information or parameterization.

All NPR algorithms are driven by an object-space abstraction
mechanism that works by clustering leaf primitives together into
so-called higher-level primitives. This enables abstract coloring, as
well as other interesting NPR effects.



2 Related Work

Significant progress has been achieved recently in the area of non-
photorealistic rendering, but existing algorithms are usually limited
to specific applications, mostly technical illustrations of compact
objects. A number of works have been presented in recent years
that focus on plant models and outdoor scenes.

Smith was one of the first authors describing fractals and formal
plant descriptions [Smith 1984] for computer graphics. Besides
other models he generated a computer-generated cartoon tree. The
branches of this tree display disks to represent leaf clusters. Reeves
and Blau [1985] in their famous work on rendering plants imple-
mented a similar form using small discs for the production of their
(realistic) trees. Sasada [1987] uses tree sketches in an architec-
tural environment. For the rendering of his trees he uses computer-
generated tree skeletons, the renditions are then projected as tex-
tures onto billboards.

In [Salisbury et al. 1997] a tree sketch is modeled using so-called
stroke textures that were introduced in [Salisbury et al. 1994;
Winkenbach and Salesin 1996]. In this approach the directions
of the foliage and trunk silhouette are modified by a given vector
field, and by an additional gray-scale value image. The so-called
difference-image algorithm is used, which places textures or strokes
in the resulting image until the differences in the gray-scale values
between the given and the resulting image are sufficiently small.

Kowalski et al. [1999] introduce a method to illustrate plant scenes
in the style of two well-known authors of children’s books. In con-
trast to the already mentioned procedures of Salisbury et al. [1997],
they deal with an automatic method that also uses a 3D model as its
basis. For rendering the image, the authors apply a multilevel al-
gorithm, which in the first step illustrates the scene conventionally.
The gray-scale values of the created image are the starting point for
the placement of so-called “graftal textures”, which are positioned
at those places that appear dark in the initial image using the same
difference-image algorithm mentioned above.

Deussen and Strothotte [2000] present another image-based method
for rendering tree models. The depth differences of the pixels in the
image are analyzed and silhouettes are drawn only if the difference
is above a given threshold. Using so-called drawing primitives they
are able to achieve a sufficient degree of coherence in their images.
However, hatching and silhouette stylization are not explicitly ad-
dressed. Our work builds on their approach of drawing primitives
and depth differences: while using similarly efficient image-based
techniques, our high-level primitives allows for significantly more
versatile visual composition.

In [Wilson and Ma 2004] several methods for hatching tree ob-
jects are presented using a set of two-dimensional buffers. In this
work nice images have been created, however, no coherence is
maintained which prohibits the results from being used in anima-
tions. An interesting but computationally costly method for com-
puting silhouette lines of complex objects is presented in [Sousa
and Prusinkiewicz 2003]. Another aspect was covered in [Xu and
Chen 2004]. In contrast to the above methods here real-world data
was obtained by scanning and methods for the abstraction and styl-
ization were applied.

Silhouette stylization has also been explicitly addressed
([Markosian et al. 1997; Hertzmann and Zorin 2000]). Mostly, an
explicit line description is needed in order to apply a silhouette
pattern, which are hard to obtain efficiently for complex landscape
scenes. Kalnins et al. [2003] develop a coherence-improved
arc-length parameterization. In [Northrup and Markosian 2000]
the 2D projection of the silhouette edges is used to merge edge
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segments into long strokes. Hardware-based methods like in
[Gooch et al. 1999] and [Raskar and Cohen 1999] admit only
minimal style control. The “loose and sketchy” technique of
Curtis [1998] admits a limited form of stylization by displacing
the original, image-based silhouette Our stylization approach uses
a similar idea, but runs in real-time and allows for arbitrary 2D
textures for stylization.

3 Rendering Framework

Our algorithms work on a level-of-detail description for complex
plant scenes that was provided by Deussen et al. [2002]. The data
is given as a set of plant models distributed over a terrain model. For
near views, a detailed polygonal model is used for each plant. As
distance increases, a level-of-detail data structure is used for effi-
cient rendering by using disks for the leaves and lines for branches.
This mechanism is also used to achieve simplified renditions, by
increasing the size of the leafs, similar to the drawing primitives of
[Deussen and Strothotte 2000].

In contrast to previous approaches, the user is provided with a con-
tinuous palette of real-time rendering styles that can be simultane-
ously used for different parts of the scene. Rendering is driven by
several parameters, depicted as axes in Fig. 2 and discussed in detail
in the remainder of the paper.
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Figure 2: An overview of rendering styles. The axes correspond to
sliders in our interactive editor.



Figure 3: Left column, from top to bottom, continued abstraction of a landscape: photorealism, half-NPR, full NPR, silhouettes and hatching
only. Right column: several other abstract renditions, from top to bottom: Van Gogh look (abstract, elliptical leafs around the HLPs),
pointilistic style, minimalistic drawing, combination of different styles.
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4 Axis “Higher Level Abstraction”

While a certain visual simplification can be achieved by manipu-
lating the size and shape of the leaf primitives and choosing ap-
propriate level-of-detail like in [Deussen and Strothotte 2000] (see
Section 6), the degree of abstraction is limited by the underlying ge-
ometric model for a given primitive size. In order to allow for more
abstract renditions, we employ a more general mechanism which
works by clustering foliage primitives (leaves) into larger and more
abstract 3D-shapes which we call higher level primitives (HLP),
such as spheres.

Figure 4: Top: Leaves (represented as dots) are grouped into spher-
ical HLPs and associated a HLP normal. Bottom: Different degrees
of abstraction obtained by displacement of leaves, shading and de-
tail reduction according to higher level primitives, for blending fac-
tors 0, 0.5 and 1.

The algorithm can be regarded as a re-modeling process: we
fit higher-level primitives (HLP) in the tree foliage. We use
a greedy clustering algorithm: leaf positions are successively
checked against the current HLP set, initially void. If a leaf can
be added to an existing HLP without increasing its size over a user-
defined threshold, it is added to that HLP, otherwise a new HLP
containing the leaf is created (currently, we use spheres as HLPs,
defined by a center and a maximum radius r, as Fig. 4 shows). For
each leaf, we define and store its corresponding HLP normal as the
vector from the HLP center to the leaf.

During rendering, the leaves can be re-positioned according to the
higher level primitives. We blend between the original leaf posi-
tion and its projection onto the HLP along the HLP normal, which
allows seamless control over the degree of abstraction (Fig. 4). A
nice contour effect is achieved by re-orienting the leafs to point
away from the the higher-level primitive.

5 Axis “Contour”

5.1 Contour Detection

Because object-space silhouette detection is prohibitive in terms of
computational complexity for our complex target scenes, an image-
space approach for contours has been used. The general approach to
image-based contour detection is to render depth, normals and color
g-buffers [Saito and Takahashi 1990] in a first step, then detect dis-
continuities in these buffers. For plants, only depth discontinuities
are used, similar to [Deussen and Strothotte 2000], because discon-
tinuities of first and second order derivatives or normals are unus-
able for the non-compact foliage of plants. We also found color-
derived contours rather visually unpleasing.
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A conventional edge detection filter is used for contour detection,
evaluating a pixel intensity pg € [0, 1] as the sum of the normalized
depth differences to its eight neighbours in a 3 x 3 neighborhood,
controlled by a threshold #:

po:sat(O.S*Z[sat(di—do—lﬂ) )

where sat(x) := max(0,min(1,x)) and d; are the depths in a 3 x 3
pixel neighborhood. We use signed depth differences in order to ob-
tain 1-pixel thick contours. The values are passed to a further filter
which removes isolated pixels by checking the 3x3 neighborhood
average (a contour pixel should have at least 2 neighbors)

5.2 Stylization

Although fast and easy to compute, conventional image-based con-
tours have a major drawback: the results are unconnected pixels,
thus the potential for stylization is very limited. We extend image-
based contours with a novel approach to stylization that applies
user-defined 2D-textures onto silhouettes and avoids the require-
ment of explicit silhouette description.

The main difficulty that has to be addressed is finding a parameter-
ized 2D support for the silhouette textures: one texture coordinate
along the contour, u, and the other perpendiculat to it, v. We want
to apply the style texture as a post-rendering step in image-space
(just after silhouettes are computed) and rely on the 1-pixel wide
detected contours as reference. We construct an approximate pa-
rameterization, using additional information stored in the g-buffers.

E -~
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Figure 5: a) Parameterization in image space: 1-pixel contours are
expanded inwards (the v coordinate). The parameterization along
the silhouette is aproximated with the length of the arc described
by a on the HLP projection (the dashed line). b) 4-channel SAM
(silhouette art map) and ¢) zooming and rotation behaviour for this
SAM : the per-object 2D orientation vector is depicted, which is the
reference for a.

A suitable direction for v should satisfy two important require-
ments: it must be roughly perpendicular to the contour and it must
vary smoothly across the contour to avoid sudden “jumps” in the
texture. The image plane projection of HLP normal defined in the
previous section has been proven to be a good choice. During scene
rendering, we store this 2D vector E at each pixel in the g-buffers.
To compute the v coordinate at a pixel, the nearest contour pixel is
searched along E, starting from the current pixel. The v coordinate
is then the distance to the contour pixel. If no contour pixel is found
within a fixed interval (p pixels), we skip the contour rendering for
the current pixel - this means that the extent of the search along
E determines the width of the silhouette support that is expanded
inwards (see Fig. 5a).

For the u coordinate along the contours we also use an approxima-
tion, because the exact computation along the 1-pixel wide detected



contours is a difficult task. Instead, the length of the path is approx-
imated by the corresponding path on the HLP image-space projec-
tion (Fig. 5a) For spherical HLPs, the same vector E is sufficient to
compute its corresponding angle a described in 2D. The length of
the arc described by « is scaled according to the distance, so as to
match the v coordinate (which is computed in pixels):
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where 1 is the HLP radius and c is a user parameter that controls
the aspect ratio (the stretching of the texture along the silhouette).
In this way, as the camera moves towards the object, the texture is
not stretched, but rather new “strokes” are added as u increases(Fig.
5¢). Because u is computed in image space, the texture will not fol-
low the rotation of the object (shower door effect). We can partially
compensate this by maintaining a 2D orientation vector per object,
Vo, that follows the apparent rotation of the object in image space:
Vp is initialized to (-1,0) and actualized each frame according only
to the rotation of the camera around the view direction (Fig. 5c).
Then, the angle o is computed relative to Vo.

Compared to more elaborate solutions, like in Kalnins et al. [2003],
which allows for a trade-off between 2D and 3D coherence, our ap-
proach can only maintain 2D arc-length coherence that looks well
for panning, zooming and rotation around the view direction. For
more complex transformation, texture may slide along the silhou-
ettes - a common coherence problem for NPR animation. Since u is
computed relative to a HLP, the continuity of the contour parame-
terization is limited to that HLP - texture discontinuities will appear
at HLP boundaries. Due to the path length approximation, the uni-
formity of the parameterization along the contour depends on how
well the (spherical) HLP approximates the respective patch of the
object. These are, however, far less disturbing effects than texture
sliding. All these effects can be seen in the accompanying video.

In order to define the style, a 2D texture structure similar to the
tonal art maps (TAM) of [Praun et al. 2001] is used, which we call
silhouette art map (SAM). There are two differences compared to
the TAMs: 1) because the support has a fixed size on the screen,
mip-mapping is no longer needed and 2) each channel of the SAM
can contain a different silhouette style, without imposing a nesting
property like for TAMs. Using multiple channels (usually 4), the
style can be changed along the silhouette, by selecting the desired
channel, i.e. style, according to different parameters, like shading
(the tree in Fig. Sc uses thicker silhouettes for darker shading, giv-
ing a hint on the lighting).

In contrast to previous image-based techniques that only allow im-
plicit stylization of contours (like the various drawing primitives
of Deussen and Strothotte [2000]), our approach leverages explicit
stylization in form of user-defined textures. Compared to methods
that explicitly render strokes like Kowalski et al.[1999], there are
some limitations in our approach. First, because the stroke tex-
ture are rendered in a single pass on the support given by the 2D-
expanded contours, strokes belonging to different silhouettes can-
not overlap. A possible extension of the technique would be the
use of multiple rendering passes to achieve overlapping strokes .
Another limitation is that silhouette art maps cannot be transparent,
because the post-rendering processing cannot recover the invisible
surfaces that would become visible at transparent pixels. Again,
multiple rendering passes are a partial solution: we consider this
as future work. On the other hand, our method operates in image
space taking full advantage of hardware acceleration and thus it can
handle very complex scenes.
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6 Axis “Primitive Size and Shape”

The smooth transition from realistic renditions of a scene to abstract
representations requires the ability to change the size and shape of
the foliage primitives (trunk and branches maintain a relatively un-
changed appearance). For shape control, we construct a special
alpha-matted texture for leaves and alpha tests: depending on the
alpha threshold, the outline changes from the original photorealis-
tic texture to an abstract shape. In Fig. 6 this procedure is shown for
the transition into a disc, but also other shapes are easily achievable
by using different alpha maps. We generate the alpha map by radial
extension of the original alpha map of the leaf. The individual out-
line of the leafs can be rendered for visual agglomeration”-style

rendering.
++0@
‘.’I'

Figure 6: Leaf shape variation encoded in the alpha channel of the
texture. From left to right: original leaf texture alpha, radially ex-
panded alpha, shapes obtained with alpha thresholds 0.7, 0.55, 0.4,
and 0.25.

7 Axis “Hatching”

Real-time hatching techniques have been developed in both object
and image space. Given the efficiency requirements, we follow the
tonal art map (TAM) approach of Praun et al. [2001], where hatch
strokes are stored at different discrete tone levels in textures, instead
of being rendered individually. Smooth tone transition is achieved
by interpolation between the levels. In order to maintain hatch den-
sity and width, several mipmap levels of each tone are used. For
coherent switching, a nesting property is imposed both among dif-
ferent tones and among the mipmaps to avoid popping artifacts.

The approach of Praun et al. [2001] relies on a smooth object-space
parameterization to map the texture onto an object. Unfortunately,
such parameterizations are ill-suited for highly fragmented objects
like the foliage of a tree, where the spatial coherence of the texture
is broken, as the example in Fig. 7a shows. Another class of tech-
niques would be image-space hatching, which instead suffers from
severe temporal coherence problems (”shower door”).

()

Figure 7: Mappings of a checkerboard texture on a tree surface: (a)
an object-space spherical mapping - texture coordinates are com-
puted using the projection onto a parameterized bounding sphere.
The spatial coherence of the texture is compromised, except for the
central region, where the different fragments of the object (leaves)
align perpendicular to the camera direction. The effect is worsened
by the fact that leaves are always drawn as facing the viewer. (b)
our view-dependent mapping using HLPs.



We address these issues with a novel, view-dependent parameter-
ization, based on the idea to combine the good spatial coherence
properties of image-space parameterization with the temporal co-
herence of object-space techniques. Only the plant foliage will be
considered, as trunk and branches can use the conventional object
space parameterization. The idea is similar to the silhouette styl-
ization: we use the partition of the object into high-level primitives
(see the re-modeling process in Section 4) and attempt to construct
a parameterization for each HLP patch.

A simple object-space parameterization can be obtained by pro-
jecting onto the HLP surface and using a parameterization of the
HLP, in our case a sphere. We parameterize each hemi-sphere as
in Fig. 8a and thus associate each 3D point with the 2D coordi-
nates (Sy,Sy) =: Sy (¢,0) € [0,7) x [0,7) of its projection onto
the hemisphere it belongs to.

0
Suv(x7y7z) = (mgﬂll*) (3)

T

where and n,m are the number of texture tiles along u and v, respec-
tively. Such a parameterization exhibits severe coherence problems
described above (Fig. 7a ), with the exception of the vicinity of the
projection of the center. We take advantage of this property and use
the spherical parameterization to compute the texture coordinates
associated to the viewing vector R from the HLP center C to the
current eye position E (see Fig. 8). We call R the reference vec-
tor and the corresponding texture coordinates the reference texture
coordinates.

(a)

o |B image plane

(c)

£ -

\vJ

Figure 8: (a) hemi-spherical parameterization; (b) actualization of
reference texture coordinates, and (c) offset computation.

In order to avoid the discontinuities of the spherical parameteriza-
tion defined above, we use it in a view-dependent fashion by defin-
ing it centered in the current reference vector R (Fig. 8b). As the
camera position changes, the reference vector R changes to R'. We
store the reference texture coordinates per object and update them
according to the camera change by adding the offset of R’ relative
to R through the parameterization S:
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R;w =Ruy +Suy (R/) — Sy (I—é)a C)]
where S is the hemispherical parameterization centered in R, thus
Suv (R) is actually 0. In this way, R always remains in the central
area of the hemisphere (Fig. 8b) - assuming small frame-to-frame
changes in the orientation of the object.

The second, image-space component of the texture parameteriza-
tion for an arbitrary point A of the object is an offset O relative to
the reference vector/texture coordinates. As shown in Fig. 8c, the
offset is first computed in the normalized device coordinate system
(image plane), then scaled such as to match the reference texture
coordinate units and added to the reference coordinates. We ac-
complish that by projecting the offset back to the camera coordinate
system at the HLP surface (O’) and approximating the correspond-
ing angle on the sphere (division by the HLP radius):

1, (P-MA),y (P-MC)y d © &
Oy = — = - = AN 5
Ty I AP
Tuy = Ruy + f(A) O, (6)

where r is the radius of the HLP, M is the modelview matrix, P the
perspective projection, d,d’ are the distances EB and EB’, / denotes
component-wise division of the 2D vector, and f (K) is an optional
surface function defined in image-space, for now f(A) = 1.

The orientation of the hatch texture is constant in image space,
which implies a shower-door effect when rotating around the cam-
era’s viewing direction. This can be compensated by using the same
method as for contours, based on the 2D orientation vector \70. The
texture coordinates computed above are simply aligned with Vo:

6141/ = QVO Ouw @)

where Qy,, is the matrix that performs the 2D rotation of the texture
coordinates to align the v-axis with V.

Using this parameterization, strokes will lack any parallax effects,
since the texture is simply applied in image space in a flat fashion
(see Fig. 9a). Alternatively, the surface function f (K) can be used
to avoid the flatness of the hatch textures by incorporating different
surface properties. For example, we used camera-space depth as
follows:

—

FA) = 1+ [ (M), — (M B

r

®)

to suggest the shape of the object. As shown in Fig. 9b and c, stroke
orientation is still constant, but the distance between them varies
with the distance to the camera, creating a paralax effect and a hint
of depth.

Just as for contours, the mixture between object-space and image-
space parameterizations is not fully temporal coherent: strokes ap-
pear to "adhere” to the object’s surface only at the projection of each
HLP center and there will be some texture sliding as the distance to
the center increases. As an analysis of hand-drawn sketches reveals,
this approach matches most hatching styles for plants: strokes have
a constant hatch direction, in contrast to the 3D-coherent, curvature-
aligned strokes that are used for smooth objects. Therefore, there
is no obvious way to define a temporally coherent behavior for the
former styles anyway. There is a trade-off between temporal and
spatial coherence according to the HLP size: with smaller HLPs,



Figure 9: Effect of different parametrizations on hatching: (a) flat
parametrization according to Eq. (5), (b) non-flat parametrization
according to Egs. (8, and (c) non-flat parametrization with Eq. (8),
but with the function f(A) discretized in 3 steps.

temporal coherence increases because there are more “adherence”
points, but the spatial coherence may decrease, as the stroke sup-
port becomes more fragmented. Because texture coordinates are
computed relative to each HLP, there will be texture discontinuities
across the borders of the HLP patches. These artifacts tend to be
hidden by the complex, non-smooth structure of the foliage.

Besides parameterization, a shading model for the generation of
hatching tones is also needed. For more pleasant results, the pho-
torealistic local shading can be gradually combined with more ab-
stract shading as described in the next section.

8 Axis “Shading”

Adding features and color to sketchy renditions can be done by
using the same source data available for photorealistic rendering
(normals, textures). However, more abstract views of a scene are
usually desired. In contrast to the attempt of Wilson et al. [2004]
to automatically adjusts complexity based on a measurement of the
detail, we make use of our HLP abstract representation to explic-
itly control the appearance (shading, hatching) and detail density
of the produced drawing. The HLP normals can be used for shad-
ing instead of or combined with the original normals of the model.
This results in smoother, more abstract shading of plants. We use a
variation of the Phong model, but virtually any local shading model
relying on normals can be used to create different effects, such as
Gooch shading, for instance ([Gooch et al. 1998]) Following hand-
drawn examples, detail (such as leaf contours) is reduced around
the HLP center. HLPs also enable other interesting leaf effects, like
the ”Van Gogh” style in Fig. 3 top-right.

9 Implementation and Results

Most of the algorithms described above can take advantage of mod-
ern programmable graphics hardware: they are implemented as ver-
tex and fragment programs (see Fig. 10). The rendering pipeline is
split into two parts. In the first stage, the scene is rendered into a
multiple buffer with all the attributes necessary for further process-
ing. In the second part, these attributes to construct the different
illustration elements, which are combined together according to the
parameters specified by the user.

We rendered test scenes on a 2.4 GHz Pentium 4 with nVidia
GeForce 6600 graphics, using the multiple render target feature to
implement the multi-buffer. Table 1 shows the rendering perfor-
mance for the relatively complex scenes in Figure 1. It can be ob-
served that frame rates are comparable to traditional photorealistic
rendering (using moderately complex local shading), although an
accurate comparison is dificult to make because NPR performance
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Rendering Part 1

Rendering Part 2

Fragment Program
- silhouette detection

Fragment Program
| - silhouette stylization

0y

Fragment Program
- HLP normal shading
= HLP detail control
- combine everything

LoD
Geometry

¥ - shadow
- depth

Vertex Program
= HLP computation
- hatching tex.coords.

- HLP normal

- hatching tone

= hatching texture,
- leaf contour

4

Fragment Program

- leaf shape and contour

= hatching texture sampling
= hatching tone

Figure 10: Layout of the rendering pipeline: part one is computing
multiple buffers, part two does the final rendering.

heavily depends on the chosen styles. The same level-of-detail
mechanism is used, which adapts the number of leaf primitives to
the distance to the object. For NPR renditions, the leaf size can be
much increased, resulting in less drawn primitives. This more ag-
gresive reduction tends to asympthotically balance out the computa-
tion overhead of NPR algorithms for larger scenes. Combining dif-
ferent styles in one view requires the post-processing shaders to be
run once for each style. Although the time spent in post-processing
is constant for a given screen resolution ( 25 ms on our system), it
can significantly reduce performance if many styles are combined.
Constant post-processing time and the level-of-detail technique en-
sures a total rendering time that is not so much depending of the
scene size, allowing the rendering of realistic outdoor scenes in
real-time. Faster graphics hardware and a more optimized imple-
mentation should significantly improve performance.

Sihlouette stylization is implemented in a post-processing shader.
The maximum width of the silhouette support that can be handled
is implementation-dependent: we use a maximum of 12 pixels, but
this number can be increased at the cost of longer shaders: each
additional pixel requires a texture sampling instruction, as well as
updating the distance to the origin of the search. For hatching, we
preferred to sample the texture in the earlier rendering stage to avoid
texture coordinate precision issues.

Fig. 3 shows the same scene rendered in a variety of abstraction
levels - the capability of our system to combine several rendering
styles in the same view is also illustrated. All renditions are pro-
duced with a frame rate of some images per second. We expect the
gain in comprehensibility and flexibility to make our framework a
viable alternative for the visualization of complex landscapes. An-
other interesting feature is the user interaction: our system allows
the user to paint the silhouette and hatching textures on-the-fly (in
a small window), such that the effect of every added stroke can be
seen immediately in the scene.

PR NPR
Fig. # polygons | % lod fps | % lod fps
1(b) 1,113,944 25.0 | 32.6 | 1030 | 234
I(a) | 93,134,464 282 | 3.1 1.13 5.4
1(c) | 378,106,940 0.1 8.1 004 | 5.6

Table 1: Rendering performance for different scenes at a resolu-
tion of 800x600. The lod column indicates how much of the total
geometry of the scene is actually rendered.
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Figure 11: Silhouettes and hatching patterns on smooth surfaces. The models are split along edges that span across different HLPs to avoid
incorrect interpolation. The teapot and the bunny model on the right also show stylized, shading-dependent silhouettes (charcoal and a ”’curly”

texture, respectively.)

10 Extension to smooth objects

An interesting experiment has been to apply our stylization and
hatching method on regular, smooth 3D models using the same
HLP re-modeling. For hatching, because the spatial coherence
problems no longer apply, we can also compute the offset O, in
3D using the hemi-sphere parametrization of the HLP (Eq. 3 and
Figure 8). Equation 5 becomes:

Ouv - Suv (K - é) (9)
To approximately account for the shape of the object, which is
should be suggested by the direction of strokes, we use the surface
function:

f(A) = length(A—C). (10)
There is one more issue to be addressed: the vertices of a triangle
may belong to different HLPs, which leads to incorrect interpola-
tion of texture coordinates across two patches (Fig. 11). Performing
all computations per pixel is expensive, so this has been solved by
duplicating those vertices such as the vertices of each triangle point
to the same HLP attributes. In Fig. 11 some illustration examples
are shown. The stroke direction suggests the local shape. While
this is not a true alignment to curvature or other direction fields, it
still yields usable results. Sliding and discontinuity artifacts tend
to be significantly more noticeable than for non-compact objects -
depending also on the applied stroke textures (less obvious for ir-
regular patterns). Again, the errors depend on how well the HLP
model approximates the original model.

11 Discussion and Future Work

We have presented a framework for real-time illustration of com-
plex landscape scenes that provides the user with the ability to
control the appearance and drawing style of the scene by merely
changing a few parameters. Re-modeling with high-level primi-
tives enables meaningful simplification as well as novel on-the-fly
parameterization techniques for efficient stylization of silhouettes
and real-time hatching of plants with spatial stroke coherence and
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reduced “shower door” effect. Moreover, photorealism and non-
photorealism are no longer separated, but naturally integrated in
the same rendering style palette.

Currently, there are a few drawbacks and several further research
directions we would like to explore in the future. The higher level
primitives we introduced can be systematically extended to other
3D shapes than spheres (ellipsoid, cylinder, etc.), in order to bet-
ter approximate different models. Although the parameterization
we described are for spherical HLPs, they can be easily adapted to
other shapes by considering their respective geometric properties.

Our on-the-fly stylization and hatching techniques also opens inter-
esting possibilities and can also be used for other objects than plants
with minimal changes. Compared to traditional, object-space pa-
rameterizations, they are easy to compute in real time, which makes
them an attractive alternative for interactive applications. On the
other hand, as they are based on approximations, coherence prob-
lems can occur: hatch and silhouette texture sliding and discontinu-
ities. The artifacts are less noticeable for the complex structures of
plants which tend to hide them. We hope to find further improve-
ments in this direction by refining the HLP re-modeling process.
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Figure 3: Left column, from top to bottom, continued abstraction of a landscape: photorealism, half-NPR, full NPR, silhouettes and hatching
only. Right column: several other abstract renditions, from top to bottom: Van Gogh look (abstract, elliptical leafs around the HLPs),
pointilistic style, minimalistic drawing, combination of different styles.
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