
Master Project - Michael Zinsmaier

Michael Zinsmaier
Matr.: 01/637211
Universität Konstanz

FB Informatik/Informationswissenschaften
michael.zinsmaier@uni-konstanz.de

ABSTRACT
In this report, I discuss the benefits of using density fields
to visualize and explore large graphs. I give a detailed guide
on how to exploit modern graphics hardware in order to get
smooth and accurate results. I present a realtime normali-
zation algorithm that automatically adjusts the calculated
results to the screen colorspace while the user interacts. I
show the advantages of multi-rendering to preserve class in-
formation during the process. Finally, I motivate the benefits
of the approach on three examples.

1. INTRODUCTION
Graph visualizations and scatterplots are common tools to
present data sources like the Iris data set, social networks or
structures of XML files. Furthermore, there is a direct repre-
sentation of matrices, as graphs, and they are useful for the
formulation of various abstract problems. Graphs are usual-
ly formalized as G(V,E) with a set of vertices V representing
the data members and a set of edges E that defines the rela-
tionships between them. Scatterplots on the other hand can
be seen as graphs with |E| = 0 and one formulation can be
used for both approaches.
Being useful in many fields a lot of research has been done to
improve the visualization of graphs. This research is divided
into two parts: I) layouting and II) presenting.

Layouting tries to improve the perception of graphs or to
highlight some of their properties by moving vertices and/or
edges. There exists a variety of layout algorithms for diffe-
rent purposes and different graph scales. But the application
of such algorithms is only possible if the position of the mo-
ved object does not encode data. It is especially prohibitive
on scatterplots but also on road maps and many other gra-
phs.

Presenting graphs deals with the visual representation of
graphs on paper or on screen. Graphs are normally repre-

sented with discrete objects, most often circles or quads for
vertices and lines for edges. Several parameters like the si-
ze of objects, transparency, coloring, etc. can be adjusted
to improve the perception of graphs. However, large graphs
tend to clutter and are hard to read. Common technics for
reducing the amount of visual objects, are node merging and
edge bundling (which is related to layouting) but the algo-
rithms are computational expensive and are limited in the
scale of reduction.

I propose a continuous drawing method that uses Gaussi-
an functions to generate a density field of vertex influences.
With this approach arbitrary large graphs can be drawn wi-
thout neglecting the influence of a single node. Furthermore
varying the bandwidth of the basis-functions provides a na-
tural interface to explore data sets. However, computational
costs remain to be a limiting factor but the use of massive
parallel processors (GPU) can push the borders far enough.
My implementation uses geometry shaders and floating point
textures to take advantage of modern hardware.

2. RELATED WORK
Early work on density based graph visualization already fo-
cused on Gaussian kernels and two dimensional graphs but
was limited through insufficient graphics hardware. Graph-
Splatting [5] is an early attempt that experiments with height
fields, contours, and color mapping to visualize the obtained
density field. Furthermore, the authors map an additional
scalar field to the visualization by adding high frequency
noise. The intensity of the noise expresses the scalar values.
Texture blending is used for hardware acceleration, but to
keep the accumulated values in the margins of 8 bit color
resolution, the input values have to be scaled by an iterative
algorithm and loose precision.
Lampe and Hauser [2] recently applied these ideas to the vi-
sualization of streaming data, like the commercial air traffic
in US. They define the line kernel which effectively extends
Kernel Density Estimation [4],[3] to edges by applying the
Gaussian kernel function to the convex combination of two
consecutive points. An interesting feature is that the inte-
gral of these kernels sums up to a third data value which
proves especially useful to integrate informations about the
time spent between two points. To read out data, users can
build the integral over a certain area. The authors use a si-
milar GPU approach as GraphSplatting [5] to enable real
time data streaming but overcome the necessity of scaling
through the usage of floating point textures.

Figure 1: Radius of influence r of 1, 2 and 3 on
gauss1D(x, σ = 1)

While using similar technics as [5] and [2] my focus lies on
the interactive visualization of large static graphs and scat-
terplots. Therefore I present a hardware accelerated algo-
rithm that determines a suitable normalization factor in a
few micro seconds and can thus respond to changes in the
density field in real time. Also, I propose the usage of mul-
tiple distinct density fields in one visualization, to deal with
class information, like in the Iris data set.

3. THE DENSITY FIELD
In this section I briefly define the generation of a continuous
2D function from a graph G(V,E), named henceforth Den-
sity Field.
Let g be a graph with n vertices vi, i ∈ {1, 2, .., n}. Each
vertex vi has a position pi = (xi, yi) ∈ R×R, i ∈ {1, 2, .., n}.

Definition:

Df (x, y, σ) =

n∑
i=1

f(x, y, pi, σ) (1)

Now the influence has to be added to the nodes. For that f
is chosen as gaussian kernel :

f(x, y, pi, σ) =
1

2πσ2
· e−0.5(

x−xi+y−yi
σ

)2 (2)

The result is a continuous 2D field, constructed by summing
up n Gaussian basis functions. Sigma (σ) remains as a free
parameter and can be used to control the smoothness of the
field.

4. IMPLEMENTATION
The density field D has to be sampled to get a scalar value
at each pixel. The most stable way to achieve this, would
be to calculate the contribution of all vertices for the center
of each pixel. While the introduced error would be minimal,
the method requires solving an equation with n subterms for
each pixel. To increase performance, the fast decreasing bell
shape of the Gaussian function can be exploited by adding
a radius of influence r to control the number of subterms.
The bell will be cut off at r (Fig. 1).

4.1 Using the Hardware
Sampling D consists of many identical and independent sub-
problems, thus parallelization of tasks can be used to speed
up computations. Using a common PC the CPU or the GPU
can be used to calculate solutions to the equations. While
CPUs can solve less than 100 problem instances in parallel,
this number is much higher using a GPGPU approach. An

1

2π(a · σ)2
· e−0.5(x+y

a·σ)2 =
1

a2
· 1

2πσ2
· e

−0.5

(
1
a

(x+y)

σ

)2

Figure 2: Scaling sigma with a factor a equals scaling
(x, y) with 1

a
and adding a factor of 1

a2 . If only the
relation of values matters the factor can be omitted.

efficient range query data structure is required to take ad-
vantage of r. However, such a data structure is difficult to
implement on the GPU.

4.2 Texture Blending
To avoid these difficulties the problem can be translated into
graphics and the blending abilities of OpenGL can be used.
Instead of the pull approach, where each pixel asks for the
contribution of the vertices, a push approach, where each
vertex spreads its contribution to the pixels can be used.

The push approach:

• take all vertex positions pi

• generate a quad with side length r ∗ σ and center pi

• apply a texture with precomputed solutions of the Gaus-
sian function

• accumulate all textures into a frame buffer object (FBO)

• convert the results to the screen colorspace

This approach can be implemented in standard OpenGL and
works without range queries. Also, the solutions of the Gaus-
sian function can be stored in textures and the evaluation of
one pixel simplifies from solving eq. 1 to the accumulation
of precomputed values. Furthermore, changes of sigma can
be mapped to changes of the texture size (Fig. 2). Thus, it
is enough to store the standard normal distribution in the
textures. These advantages come at the costs of applying
the textures to the quads and the introduction of additional
discretization errors. Because GPUs have efficient texture
support the negative performance implications are minimal,
but discretization errors can be harmful.

Introduced errors:

• texture to quad mapping => approximation of the
Gaussian function

• limited resolution of textures

• limited resolution of the FBO

• no contribution of points with distance(pi) > r

• conversion to the screen

Figure 3: Reducing a parent texture of width 4 (up-
per example) or width 3 (lower example) with a ker-
nel of size 2 in one dimension.

4.3 Normalization
To display the accumulated results values have to be mapped
from the interval [0,maxV alue] into the colorspace of the
display. A direct approach would be to map to the interval
[0, 1] and use the values to address one color channel. The
maxV alue of accumulating n nodes has the following upper
bound (eq. 3):

upperBound = max(gauss2D(x, y, σ = 1.0) ∗ n)

= max

(
1

2π
e−

x2+y2

2 · n
)

, x = y = 0

≈ 0.159 · n (3)

However, using upperBound as maxV alue, wastes big parts
of the limited screen colorspace, as the points most likely will
not have the same position. To get a better maxV alue, one
could try to estimate the distribution of points, but since the
data is irregular and the user can interactively change the
zoom level and the field of view a pleasant result cannot be
achieved (Fig. 6 (left)). The best response to these problems
is to scan over the result and search for the exact maxV alue.

4.4 MaxValue Calculation
The implemented search algorithm uses the GPU to calcu-
late the maximal value on many small rectangles in parallel
and fills a smaller texture that contains only those maximal
values. After reaching a certain size, the CPU jumps in and
scans the remaining texture sequential.

let k be the kernel size
w be the target texture size
pw be the size of the texture that should be reduced

Then Figure 3 shows the process of rendering in one dimen-
sion. The target texture has size w = 2, the kernel has size
k = 2 and the parent texture has either width pw = 4 (up-
per example) or pw = 3 (lower example). Notice that the
parent texture width pw can be smaller than w ∗ k because
w is calculated as follows:

w =
⌈(pw

k

)⌉
(4)

The depicted algorithm in more detail:

1. Switch from texture to kernel space. This means con-
verting the OpenGL texture coordinates of the target
texture from [0, 1] to [0, w · k]. One pixel of the target
texture belongs to k pixels in the kernel space. The
original texture coordinates were centered on each pi-
xel, the obtained coordinates represent the center of a
group of k pixels.

texCoord ∗ w ∗ k

2. Move − k
2

to the left border of the kernel window and

then + 1
2

to the center of the first kernel member. (Noti-
ce that the length of one pixel in kernel space is exactly
1)

−k − 1

2

3. Add an offset of {0, 1..k − 1} to sample the pixels of
the kernel.

+offset

4. Divide the coordinates through pw to switch back to
texture coordinates. The new coordinates possibly lea-
ve [0, 1] but match exactly the pixel centers of the
parent texture. To deal with values greater than 1,
GL WRAP can be set to GL CLAMP TO EDGE

∗ 1

pw

Altogether the shaders have to solve the following formula:

maxV alue = maxoffset(value(k,w, pw))

= maxoffset((texCoord ∗ w ∗ k)−
k − 1

2
+ offset) ∗ 1

pw
) (5)

4.5 Discretization
Using a set of colors to represent discrete intervals (Tab.
1), results in something similar to contour lines which is
easy to read and gives a good intuition of the real data
underneath. Therefore a sequential single hue scheme from
colorbrewer [1] can be used for that. Additionally, vertex
class information can be preserved through blending, using
different color channels or multiple render passes. With that
information, different hues can be used during discretization.
However, this requires appropriate color schemes that can
be intermixed if clusters overlap. The examples (Fig. 7) are
produced with a single render pass and a red, green and blue
color scheme.

interval from to
0 0.00 0.04
1 0.04 0.07
2 0.07 0.12
3 0.12 0.20
4 0.20 0.31
5 0.31 0.45
6 0.45 0.61
7 0.61 0.77
8 0.77 0.91
9 0.91 0.97
10 0.97 1.00

Table 1: Color intervals based on gauss1D(x, σ = 1.0)
with x ∈ [0, 2.575] (99% radius)

5. TACKLING ARTEFACTS
Discretization errors can cause visual artefacts like jagged
lines, holes and noise. Apart from perceptual disturbance,
such errors can suggest incorrect data properties to the user
and therefore have to be removed. This section describes
the problems that occurred during the master project and
explains how to resolve them.

5.1 Quadratic Textures
Textures are quadratic, the sampled function is not. Samp-
ling the Gaussian function in a certain range gives a circle
of data values and should be represented by a circle of tex-
ture values. Setting texture edges to zero solves this problem
(Fig. 4).

5.2 Radius of Influence
If the radius of influence r is too small, significant functi-
on values get ignored. The accumulation of textures makes
things even worse because small values can add up and beco-
me visual important. There is a trade off between performan-
ce and big sampling ranges that can not be solved perfect-
ly. However, sampling the function in the interval [−4σ, 4σ]
works well in the experiments.

5.3 Frame Buffer Object Resolution

Figure 4: Sampling without edge postprocessing (left
side) leads to different sample ranges. Setting edges
to zero solves the problem (right side)

Figure 5: One kernel (left side) and the artefacts
through blending 1000 kernels with the same center
(right side) using a FBO with 16 bit resolution (half
float)

The resolution of the FBO has the strongest influence on
the results. If it is chosen too low, rounding errors occur
during the accumulation of textures (Fig. 5). The shown ar-
tefacts depend on the artificial distribution of the example.
Even small distances between the vertices will hide the pat-
terns. Nevertheless, the accumulation errors exist and cause
Moiré Patterns and other side effects. While color resolution
was limited to integer formats or half precision floats in the
past, single and even double precision is available on modern
GPUs. Experiments showed that single precision floats are
sufficient to eliminate the visual artefacts.

6. RESULTS
In this section, I present the results of applying the algo-
rithms I) to an artificial hierarchical dataset, II) to the Iris
data set. I highlight the implications of the normalization
algorithm and multi-rendering.

The Hierarchical data is generated by drawing n0 points
from a normal distribution centered at screenWidth

2
/ screenHeight

2
with σdistribution = σ0. Each of these points becomes the
center of a new cluster with n1 points and σdistribution = σ1.
This process is iterated until the desired number of levels is
reached and the points from the last level form the graph.
The user can now interactively change the free parameter
σ and discover the different levels. However, if maxValue is
not adjusted accordingly, on most levels only the borders of
the clusters can be seen. The inner borders diminish, due
to the insufficient mapping to the screen color space (Fig.
6 left). Applying the normalization algorithm, enables ad-
justing maxValue automatically, and subculsters and heat
spots become visible (Fig. 6 right).

The Iris data set is a well known multivariate data set that
consists of four attributes and three classes. The attributes
Sepal Length, Sepal Width, Petal Length and Petal Width
separate the three species of Iris flowers. Sepal Lenght and
Sepal Width is chosen for rendering because the advanta-
ges of multi-rendering are emphasized by the large overlap
between two of the clusters. One could just form a graph
g from the 150 items of the data set and render them in

Figure 6: An artifical data set without dynamic nor-
malization (left side) and with our normalization al-
gorithm (right side). Inner clusters and heatspots
become visible.

Figure 7: The Iris data set rendered into three densi-
ty fields. The fields are displayed with a red (setosa),
green (versicolor) and blue (virginica) color scheme.

on pass. However, it is difficult to separate the clusters for
versicolor and virginica in this case. Instead class informati-
on is used to generate multiple density fields. The effects of
this method can be seen in Figure 7 in the lower left corner.
The red and blue point are separated from the green cluster,
not only by their color, but also by their shape. They form
distinct, disconnected clusters.

7. REFERENCES
[1] C. Brewer. Colorbrewer 2.0 @ www.colorbrewer.org,

2009.

[2] O. D. Lampe and H. Hauser. Interactive visualization
of streaming data with kernel density estimation. In
Proceedings of the IEEE Pacific Visualization
Symposium (PacificVis 2011), pages 171–178, March
2011.

[3] E. Parzen. On estimation of a probability density
function and mode. The Annals of Mathematical
Statistics, 33(3):pp. 1065–1076, 1962.

[4] M. Rosenblatt. Remarks on some nonparametric
estimates of a density function. The Annals of
Mathematical Statistics, 27(3):pp. 832–837, 1956.

[5] R. van Liere and W. de Leeuw. Graphsplatting:

Visualizing graphs as continuous fields, 2001.

7.1 The Push Approach

Figure 8.a: A set of four points that shall be conver-
ted into a density field.

Figure 8.c: Applying the Gaussian texture and nor-
malizing the values. (symbolic figure not the same
points)

Figure 8.b: Converting the points into four quads.
(symbolic figure not the same points)

Figure 8.d: Displaying the result as discrete co-
lors.(symbolic figure not the same points)

7.2 FBO Artefacts

Figure 9.a: The visible effect of choosing the FBO
resolution too low.

Figure 9.c: Increasing the FBO resolution solves the
problem.

Figure 9.b: Without discretization the Moire pat-
terns are visible (increased contrast).

Figure 9.d: Switching back to the continuous view
shows smooth kernels as intended.

7.3 Zooming on Hierarchical Data

Figure 10.a: The data points (red dots) and the hier-
archy tree with their parents (orange)

Figure 10.c: Increasing the σ value merges more and
more data points into the clusters.

Figure 10.b: Low level clusters generated with a
small σ value.

Figure 10.d: Most clusters merged. Subclusters re-
main visible due to the normalization algorithm.

7.4 Multiple Density Fields

Figure 11.a: The single values of the Iris data set.
Sepal Length versus Sepal Width.

Figure 11.c: The clusters merged but the single va-
lues in the lower left corner are still disconnected.
Also one can see two red heat spots.

Figure 11.b: Nearby data points merge and form
small clusters.

Figure 11.d: Although the green and blue cluster
have a large overlap the cores of their clusters can
still be seen.

