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Fig. 1. We introduce an algorithm for the autonomous reconstruction of indoor scenes, based on time-varying tensor fields (a). Given the partially scanned
scene, a 2D tensor field is computed on-the-fly over the floor plane, constrained by the partial reconstruction (b). The robot is guided by the field with smooth
paths, which are locally formed with field advection (red curve in (a)) and globally planned with the help of the field topology (see the curve networks in (b)
and (c), with reconstruction uncertainty color-coded along the curves). The topological structure is well-defined for incomplete scenes (b), suited for guiding
exploratory reconstruction of unknown scenes. The output is a full 3D reconstruction (d), at which the topology of the field reflects the scene layout (c).

Autonomous reconstruction of unknown scenes by a mobile robot inherently
poses the question of balancing between exploration efficacy and reconstruc-
tion quality. We present a navigation-by-reconstruction approach to address
this question, where moving paths of the robot are planned to account for
both global efficiency for fast exploration and local smoothness to obtain
high-quality scans. An RGB-D camera, attached to the robot arm, is dictated
by the desired reconstruction quality as well as the movement of the robot
itself. Our key idea is to harness a time-varying tensor field to guide robot
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movement, and then solve for 3D camera control under the constraint of the
2D robot moving path. The tensor field is updated in real time, conforming
to the progressively reconstructed scene. We show that tensor fields are
well suited for guiding autonomous scanning for two reasons: first, they
contain sparse and controllable singularities that allow generating a locally
smooth robot path, and second, their topological structure can be used for
globally efficient path routing within a partially reconstructed scene. We
have conducted numerous tests with a mobile robot, and demonstrate that
our method leads to a smooth exploration and high-quality reconstruction
of unknown indoor scenes.
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1 INTRODUCTION
With the recent widespread access to commodity RGB-D cameras
and the significant progress achieved in real-time reconstruction
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(e.g., [Chen et al. 2013; Dai et al. 2016; Newcombe et al. 2011; Nießner
et al. 2013; Whelan et al. 2015]), autonomous scene scanning and
dense 3D reconstruction of indoor environments by mobile robots
has drawn increasing attention from robotics and graphics commu-
nities [Charrow et al. 2015; Song et al. 2015; Xu et al. 2015]. Advances
in robot and acquisition technologies facilitate the exploration and
reconstruction of larger and more complex scenes, for a wide spec-
trum of applications ranging from virtual reality, games, movies, to
autonomous service robots.
While the simultaneous exploration and mapping of unknown

scenes is a long-standing problem, exploring an unknown scene
for complete scanning and quality reconstruction poses new chal-
lenges. Conventional exploration of an unknown scene is driven by
global spatial information about the environment. Consequently, it
is designed for quick expansion of the robot’s reach and acquisition
of knowledge about the scene. In contrast, high-quality scanning
for scene reconstruction hinges on local geometric information of
visible surfaces. The robot (and its attached sensor) must movemetic-
ulously to ensure complete and stable capture, as well as sufficient
overlap between adjacent scans, to reduce error in scanning and re-
construction. Achieving a balance between these two aspects (quick
exploration of the environment and high-quality scene reconstruc-
tion) is the main challenge for autonomous scene reconstruction.
We present a navigation-by-reconstruction approach to address

this challenge. In our approach, robot navigation is simultaneously
constrained and guided by the progressive online reconstruction,
accounting for both smoothness in local movement and efficiency in
global exploration. Meanwhile, the control of the attached camera
is dictated not only by the desired reconstruction quality, but also
by the movement of the robot. Our goal is an efficient, as-complete-
as-possible scene scanning with quality reconstruction using an
economical exploration path. The main technical challenge is to
achieve a well-synchronized planning for robot path and camera
trajectory, thus addressing the balance between local reconstruction
quality and global navigation efficacy.
Our key idea is to harness 2D directional fields to guide robot

movement, and then solve for 3D camera control under the con-
straint of 2D robot moving paths. In 2D, we compute and update
a geometry-aware tensor field [Zhang et al. 2007] constrained by
the currently reconstructed scene. More specifically, the 3D scene
geometry (i.e., the known surfaces) is projected to the floor plane. A
set of 2D tangential constraints along the projected boundaries is ex-
tracted and used to compute/update the tensor field. The robot path
is formed by particle advection over the tangential direction field,
which inherently avoids obstacles. In 3D, we compute a smooth cam-
era trajectory along the path to maximize the coverage of unknown
or uncertain regions while satisfying the kinematic constraints be-
tween the robot’s base and the camera.
During online scanning and reconstruction, the tensor field is

updated in real time, conforming to the incrementally reconstructed
scene (Figure 1). To ensure a smooth robot path when advecting
particles over the time-varying field, we propose a space-time opti-
mization of tensor fields via imposing both spatial smoothness and
temporal coherence. There are several important advantages of ten-
sor field guided navigation. First, tensor fields are orientation-free
and thus contain much fewer singularities (degenerate points), as

(a) (b) (c)
Fig. 2. A visual comparison of potential field (a), gradient field (b) and tensor
field (c), computed under the same constraint of a partially observed scene.
The potential field is generated with surface normals as constraint vectors,
while the gradient field is constrained by surface tangents. The two vector
fields suffer from crowded singularities (green and red dots), including sinks
(red dots) which can trap the robot, due to orientation inconsistency. In
contrast, the tensor field contains much fewer singularities and is sink-free.

compared to vector fields which are predominantly used in the liter-
ature (e.g., potential field [Khatib 1986] or gradient fields [Shade and
Newman 2011]). Fewer singularities lead not only to smoother path
advection, which is critical for quality reconstruction, but also to
more efficient navigation due to fewer ambiguities. In addition, ten-
sor fields are sink-free, avoiding the issue of local minima trapping.
Figure 2 shows a visual comparison of these fields. Most importantly,
the topological skeleton of a tensor field, comprised of all degenerate
points and the separatrices connecting them, can be viewed as a
routing graph. Using this global structure, it is possible to achieve
global path planning for efficient scene scanning (Figure 1(b,c)).

In summary, our work makes the following contributions:
• Tensor field guided autonomous scanning of unknown indoor
scenes, supporting both locally smooth path generation and
globally efficient path routing.
• Temporally coherent tensor fields computed and updated
with progressively acquired and online reconstructed scene.
• An efficient method for the path-constrained and scanning-
quality-driven optimization of 3D camera trajectories.

The termination of our autonomous scanning for closed environ-
ments is clearly defined based on tensor field topology, i.e., no more
unknown region can be scanned from any point on the topological
skeleton. We have implemented our method on top of ROS [2014]
and run it on a mobile robot Fetch [2016] holding an RGB-D camera.
We demonstrate that our approach outperforms several state-of-the-
art methods for a variety of indoor scenes, in terms of coverage rate,
as well as reconstruction quality and efficiency.

2 RELATED WORK
Autonomous scene exploration and 3Dmapping. Existing autonomous

scanning systems either employ an articulated robotic arm to per-
form detailed scanning of a single object [Krainin et al. 2011; Kriegel
et al. 2012; Wu et al. 2014], or drive a mobile robot equipped with a
fixed camera for exploratory scene mapping [Charrow et al. 2015].
In contrast to these works, we employ an eye-in-hand setting on a
mobile robot to achieve simultaneous exploration and scanning of
complex scenes, which requires joint optimization of robot paths
and camera trajectories.

For the purpose of 3D reconstruction, special consideration must
be taken for view planning and camera movement, in order to enable
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Autonomous scanning and reconstruction

Occupancy mapRobot scanning & online reconstruction Projected 3D constraints Tensor field and path advection
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Fig. 3. An overview of our method and system. Our system runs an online scene reconstruction and employs an occupancy map for storing spatial occupancy
information (a). The progressively reconstructed 3D scene geometry is projected onto the floor plane (b-left), to compute a geometry-aware time-varying
tensor fields. Robot movement is locally directed by path advection over the fields (b-middle), and globally guided with path finding, based on the field
topology (b-right). A smooth camera trajectory is computed along the path (c).

a robust camera localization and scan registrationwith Simultaneous
Localization and Mapping (SLAM). Robot path planning is achieved
via jointly minimizing the uncertainty of both scene mapping and
camera localization [Thrun et al. 2002]. To enable robust SLAM,
Ramanagopal and Ny [2016] propose a continuous view planning
approach where adjacent frames are required to overlap sufficiently
for the ease of frame-to-frame registration. Newcombe et al. [2011]
present a technique for real-time reconstruction where sensor data
is continuously received and fused into a 3D volume. Such fusion-
based reconstructions, however, still suffer from drift issues due to
ICP registration error, in particular in larger environments [Nießner
et al. 2013]. Advancedmethods, such as bundle adjustment [Agarwal
et al. 2010], robust optimization [Choi et al. 2015], structure-based
alignment [Zhang et al. 2014], or feature matching with deep learn-
ing [Zeng et al. 2016] are generally expensive for online use. This
makes the optimization of smooth sensor trajectories especially
important for autonomous online reconstruction.

Field-guided path planning. Using vector fields to guide robot nav-
igation has been practiced for a long time [Borenstein and Koren
1989; Khatib 1986]. The most commonly employed is potential fields,
which are generated by repulsive forces from known surfaces to
avoid obstacles, or attractive forces to direct the robot towards a
target position. Koren and Borenstein [1991] analyze the substan-
tial shortcomings of such methods (e.g., easy trapping into a local
minima or inducing unstable robot movement) and propose Vector
Field Histograms (VFHs). A VFH is a polar histogram of obstacle
vectors (viewing vectors from the robot to obstacles) that is locally
constructed around the current robot position. Therefore, the VFH,
together with its improved variants, is a statistical (instead of field-
based) representation of a local environment. This representation is
suitable for local obstacle avoidance, but not for global guidance.
Some works attempt to combine potential fields with a global

guiding structure that is estimated from a known environment
to attain global path planning [Ok et al. 2013]. Other types of
fields such as gradient fields of harmonic scalar fields have also
been studied [Shade and Newman 2011]. Information-theoretic ap-
proaches have been widely adopted for action selection during sens-
ing, and achieve the state-of-the-art performance in autonomous
exploration [Bai et al. 2016; Charrow et al. 2015]. Most of these
works, however, are not designed for smooth path generation and
thus the generated robot paths are not suitable for high quality

scanning. The work of Vallvé and Andrade-Cetto [2015] is the most
related to ours. It adopts an information-theoretic method to esti-
mate guidance constraints, which are used to compute a potential
field for path planning. Our tensor-based direction field is computed
with similar guiding constraints, but produces smoother robot paths.

View selection and trajectory optimization. The proper selection
of view directions for a sensor is a fundamental problem for au-
tonomous scanning. The most commonly adopted approach is dis-
crete view selection, which is also referred to as Next Best View
(NBV) problem. Many NBV algorithms have been developed for
active scanning and/or recognition of single objects [Krainin et al.
2011; Wu et al. 2014; Xu et al. 2016] and scenes [Low and Lastra
2006]. Relatively few works, however, have studied the problem of
continuous view planning or camera trajectory optimization, which
would be a more practical approach for autonomous scene scan-
ning. Reinforcement learning has been utilized to estimate camera
trajectories for scene exploration [Kollar and Roy 2008], but not
for quality 3D reconstruction. For scanning multiple objects, Fan et
al. [2016] select the best views for each object and then optimize the
entire scanning trajectory by solving a Traveling Salesman Prob-
lem, with a special scanning setup. It is, however, unclear how this
method could be extended to a mobile robot setting which requires
collision avoidance.
Directional fields and tensor fields. Directional fields, including

those which are orientation-dependent or orientation-free, have
many applications in computer graphics [Vaxman et al. 2016], rang-
ing from surface parameterization and remeshing [Ray et al. 2009],
nonphotorealistic rendering [Hertzmann and Zorin 2000] to street
and urban modeling [Chen et al. 2008]. We are particularly inter-
ested in symmetric tensor fields (also known as 2-direction fields or
line fields). A tensor field assigns each point in the problem domain
an orientation-free tensor. A useful feature of such 2-direction fields
is that they inherently minimize the number of singularities due to
orientation ambiguities [Zhang et al. 2007]. To our knowledge, our
work is the first that introduces tensor fields to guide autonomous
scene scanning, and extends them to leverage temporal coherence
for smooth path planning in a time-varying setting. The latter has
only been done with vector fields [Chen et al. 2012]. Topological
control of directional fields has been extensively studied for inter-
active field design [Chen et al. 2008; Zhang et al. 2006]. Compared
to those works, we work in a different problem setting where the
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(a) Field interpolation. (b) Path and trajectory computation.
Fig. 4. Field interpolation and path / trajecotry computation over time. For
a smooth transition from T t−1 to T t , we interpolate them with K sub-
steps (small grey dots in (a)), and start to evolve the field from the middle
frame T t

m . At each sub-step, a smooth robot path (lower grey curve in (b))
is generated by advecting a particle over the current field, along which a
camera trajectory (upper grey curve) is computed based on the robot path.

geometric constraints vary constantly over time with progressive
online reconstruction.

3 OVERVIEW
System overview. Our autonomous reconstruction system is com-

posed of a mobile robot that explores an indoor roomwith an RGB-D
cameramounted on top of it or held in its hand.Weworkwith indoor
scenes that can be regarded as a flat layout of walls and furniture,
without staircases or sunken regions. We maintain and update two
volumetric representations for the scene geometry, an occupancy
grid (OG) for spatial exploration and a truncated signed distance
field (TSDF) for surface reconstruction. In particular, we run Oc-
toMap [Hornung et al. 2013] for storing complex spatial occupancy
information, and use VoxelHashing [Nießner et al. 2013] for real-
time reconstruction (Figure 3(a)). Both data structures are updated
in parallel, and work in a common global reference frame.
Algorithm pipeline. Our algorithm interleaves three major steps

over time: geometry-aware tensor field update, field guided path
planning, and path-constrained camera trajectory computing. Fig-
ure 4 shows the computation and interaction of the various com-
ponents over time. At each time step, a key-frame tensor field, de-
noted by T t , is computed based on the up-to-date scene reconstruc-
tion. To ensure temporal coherence, however, one cannot switch
to T t directly. Instead, we conduct a smooth transition from the
previous key-frame,T t−1, to the current one, by interpolating them
with K sub-steps, resulting in a temporally coherent field sequence
(T t0 = T

t−1, . . . ,T tK = T
t ). The field-evolution, as well as the path

/ trajectory computation, then starts from the middle frame T tm
(m = K/2), until T tK = T

t is reached, at which the above process is
restarted. Algorithm 1 summarizes the process.

Based on the smooth transition fields fromT tm toT tK , we compute
a smooth robot path (lower grey curves in Figure 4(b)) via particle
advection, and optimize the camera trajectory (upper grey curves)
constrained by this path. Note although the path advection can be
done for an arbitrarily long time, the robot takes only the portion of
a single sub-step (green part of the curve) and start a new advection
for every new sub-step. Since the underlying fields transit smoothly,
the paths across consecutive sub-steps are smoothly connected.

Tensor field update and guidance. Given the current reconstruc-
tion, we project the occupied 3D volume onto the floor plane and

Algorithm 1: Tensor field guided autonomous reconstruc-
tion

Input : Initial position of robot: p0 (init.: pc ← p0).
Output :Reconstructed scene: S (init.: S ← ∅).

1 repeat
2 T t ← UpdateTensorField(S);
3 (T t0 , . . . ,T

t
K ) ← GenSmoothFieldSeq(T t−1,T t );

4 for s = K
2 , . . . ,K − 1 do

5 p(t)|s+1t=s ← PathAdvection(T ts , pc);
6 c(t)|s+1t=s ← TrajOptimization(p(t)|s+1t=s );
7 S ← ScanAndReconstruct(p(t)|s+1t=s , c(t)|

s+1
t=s );

8 pc ← ps+1;
9 T t−1 ← T t ;

10 until Stop condition is met;

perform a point sampling over the projected cells lying on known
surfaces. A tensor is then assigned to each sampled surface cell, with
its major direction being tangential to the corresponding surface. A
key-frame tensor field is computed using these 2D tensors as con-
straints (Figure 3(b)). Between adjacent key frames, we generate a
smooth field sequence through a space-time optimization. To further
increase the smoothness and simplify the topology, we introduce
automatic topological control for the tensor fields. Specifically, we
realize two physically meaningful control operations: cancelling of
a pair of degenerate points and moving a single degenerate point.
At any time step, the topological skeleton of the tensor field is used
for global path routing (not reflected in Algorithm 1).
Camera trajectory optimization. Constrained by the actual ro-

bot path (reachable positions) and scanning guidance (look-at di-
rections), a smooth camera trajectory is computed along the path
(Figure 3(c)). This optimization is highly non-convex due to the esti-
mation of base-arm kinematic constraints and scanning quality of a
view. Therefore, we propose a discrete-continuous method, which
first conducts a best view selection for each sample point along the
path and then performs smooth curve fitting for view interpolation.

4 TENSOR FIELD GUIDED EXPLORATION
In this section, we first describe our method for computing time-
varying tensor fields. We then introduce tensor field guided path
planning, including both local path advection for quality reconstruc-
tion and global path finding for efficient scanning.

4.1 Time-varying tensor fields
Tensor field basics. A tensor field on a 2D domain D ⊂ R2 is a

smooth tensor-valued function T : D → R2×2 which assigns to
every point p ∈ D a second-order tensor:

T (p) =

(
τ11(p) τ12(p)
τ21(p) τ22(p)

)
. (1)

A tensor [τi j ] is symmetric if and only if τi j = τji (i , j). We focus
only on symmetric tensors. A symmetric tensor T can be uniquely
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(a) Wedge-I (b) Wedge-II (c) Trisector
Fig. 5. Two basic types of degenerate points, wedge (in two different forms)
and trisector. The red lines in the top row are separatrix lines. The bottom
row shows the discontinuous incoming (blue) and outgoing (yellow) paths
passing through the degenerate points.

decomposed into an isotropic part S and an anisotropic part A:

T = S +A = λ

(
1 0
0 1

)
+ µ

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
, (2)

where µ > 0 and θ ∈ [0, 2π ). The major and minor eigenvectors of
T are perpendicular to each other. In our setting, the robot move-
ment is directed by the major eigenvectors at a given point. A key
feature of a symmetric tensor field is its orientation (sign) ambiguity
everywhere, making it equivalent to a line field that does not dis-
tinguish between forward and backward. This avoids the problem
of vector orientation in computing vector fields under geometric
constraints [Xu et al. 2009].
A point p is degenerate if and only if T (p) = 0, and regular oth-

erwise. Degenerate points are of great importance to our problem
since they may cause discontinuous or ambiguous robot movement.
A degenerate point of a tensor field is equivalent to a singularity in
a vector field. However, a vector field usually contains sinks which
can trap the robot and moreover, can cause oscillating movement
around them due to numerical stability issue. In contrast, a tensor
field contains only two types of degenerate points (Figure 5), namely
wedges and trisectors, but not sinks, thus avoiding the local trapping
issue. In addition, tensor fields allow flexible topological control via
manipulating degenerate points [Zhang et al. 2007]; see Section 4.2.
This justifies our choice of tensor field for robot guidance.

Key-frame tensor field generation. Given the scene geometry at
the current time step, we compute a key-frame tensor field with
the geometric constraints. To this end, we first project the grid cells
corresponding to known surfaces in the OctoMap grid onto the floor
plane. The surface cells which are higher than the robot height are
not projected since they would not affect robot movement. On the
floor plane, we perform farthest point sampling over the centers of
the projected boundary cells, to select a set of 2D constraint points.
The sampling distance ds is heuristically set to 0.2m, measured
by 2D Euclidean distance. We then define a basis tensor field for
every constraint point, which is a regular tensor field whose major
eigenvector aligns to the tangent of the 2D boundary at that point.
The final tensor field is formed by combining the basis tensor fields of

𝑦

𝑥

𝑡
𝑗 𝑗 + 1𝑗 − 1

key frame

(a) (b) (c)
Fig. 6. (a): Illustration of time-varying field computation over space-time
grid and pathline advection (yellow curve). (b-c): The pathlines generated
with (b) and without (c) spatial-temporal coherence. The curvature is color-
coded and plotted along the paths.

all constraint points with the help of Gaussian radial basis function:

T (p) =
∑
i
e−∥p−pi ∥

2/σ 2
Ti (p), (3)

where Ti is a basis field computed around constraint point pi . The
Gaussian band width σ can be used to control the range of influence
of a basis field. Since geometric constraints are mainly used for local
path guidance, they do not need to have large ranges of influence.
Thus, we use a small value for the band width: σ = 2.5ds . Due to
the highly dense tangential constraints in our problem setting, we
opt to compute a field for each constraint separately and then blend
them with interpolation, rather than solving a densely constrained
field in one shot which may lead to sub-optimal solution.

Spatial-temporal field interpolation. Given two adjacent key frames
of fields, T t−1 and T t , our next task is to compute K sub-step fields
that vary smoothly over time. A straightforward solution is to con-
duct point-wise linear interpolation between source and target ten-
sors. Such an independent point-wise interpolation, however, can-
not guarantee intra-frame field smoothness. Instead we formulate a
spatial-temporal interpolation over the scalar fields of τ11 and τ12
(see their definition in Equation (1)). Specifically, we minimize the
bi-harmonic energy functional, using the scalar field at time t − 1
and t as Dirichlet boundary conditions:

∥∆STτ ∥
2 + α ∥τ (; 0) − τ (; t − 1)∥2 + α ∥τ (;n) − τ (; t)∥2, (4)

where ∆ST is the spatial-temporal Laplacian defined on the space-
time grid as shown in Figure 6(a). Let τ (v ; t) denote the scalar value
at grid vertexv at time t , and τ (; t) the scalar field at time t , where τ
can be any τi j in Equation (1). α = 5× 103 is the weight of boundary
conditions. The discretization of the spatial-temporal Laplacian is:

ωτ (i; j) =
∑

k ∈N (i)

ωSτ (k ; j) + ωTτ (i; j − 1) + ωTτ (i; j + 1), (5)

where N (i) is the set of 1-ring neighbors of vertex i in each frame.
ωS is the intra-frame (spatial) Laplacian weight and ωT the inter-
frame (temporal) weight.ω =

∑
k ∈N (i) ωS+2ωT is the normalization

weight. We set ωS = 1 and ωT = 2 by default.

4.2 Field-guided path planning
Path generation by particle advection. Having obtained the time-

varying tensor fields T (t), we compute the robot movement path as
a pathline defined by a particle advected by the fields, starting from
the current position. Since tensor fields do not distinguish between
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forward and backward, we need to first disambiguate orientation
by orienting the major eigenvectors of the tensors within a local
region surrounding the current robot position. This is achieved
by letting the major eigenvectors of the tensor field follow the
front direction of the robot (the angle between these directions
should be less than 90◦), to minimize rotation of the robot movement.
Note that this local orientation is trivial to determine, and much
easier than globally orienting a vector field. After this orientation
step, the tensor field T (t) becomes a vector (velocity) field V (t) in
which particle advection can be expressed as a differential equation:
dp
dt = V (p; t). Its solution, given an initial value (p0; t0), is

p(t) = p0 +

∫ t

0
V (p(s); t0 + t)ds,

which defines the pathline starting from position p0 and time t0. As
shown in Figure 4(b), we compute a pathline for a time period of
three times sub-steps. The robot moves for only one sub-step along
the path, to get to the next position and restart path advection.

Figure 6 demonstrates how the smoothness of pathlines is affected
by the underlying time-varying tensor fields. In (b), we show a path-
line generated by advecting over the time-varying fields between
two key frames, computed with spatial-temporal coherence. As a
comparison, we show in (c) the pathline formed by fields computed
via point-wise temporal interpolation, with the same initial value.
The color-coded curvature is plotted along the paths. In Figure 12,
we show the impact of smooth robot paths on the quality of online
reconstruction, justifying our choice of time-varying tensor fields.

Path splitting at degenerate points. Both types of degenerate points,
wedges and trisectors, can introduce discontinuities to the generated
path, due to the discontinuous tensor field at those points. Therefore,
special treatment is needed at degenerate points to avoid potential
problems caused by such discontinuities or ambiguities.
• Stop and split at a wedge. Around a wedge point, the robot
path would make a sharp turn or even a U-turn (Figure 5(a,b)).
To avoid shaking of the camera caused by such sudden turns,
we detect the closest wedge point ahead on the robot path
and reduce the movement speed of the robot until reaching
the wedge. At the wedge, both robot path and camera tra-
jectory are replanned, thus splitting the path and trajectory
at the point. During the stop, the robot computes a smooth
connecting trajectory, to smoothly transit between the two
separate camera trajectories.
• Stop and choose a branch at a trisector.When the robot reaches
a trisector point, it could follow either of the two branches
(separatrices) ahead (Figure 5(c)). We resolve this ambiguity
by choosing the better branch based on reconstruction un-
certainty (see path routing below). Specifically, we choose
the branch along which more unknown or uncertain regions
could be explored. After determining the branch to pursue,
the same path and trajectory splitting process is performed
as for a wedge.

Path routing with field topology. Local path advection cannot guar-
antee an efficient and complete coverage of the entire scene. We
need to exert global path planning, based on the topological skeleton

(a) Topology of partial scene. (b) A minimum spanning tree.

(c) Topology of full scene. (d) Medial axis of scene boundary.
Fig. 7. The topological skeleton of tensor field can be computed for a par-
tially scanned scene (a) and used for guiding the robot scanning. When the
robot (white dot) arrives at a trisector, a minimum cost spanning tree is gen-
erated from the topological graph, to enable branch selection (b). When the
reconstruction is complete, the field topology (c) conforms approximately
to the medial axis of the full scene boundary (d).

of the current tensor field. Given any tensor field, its topological
skeleton can be viewed as an undirected graph with all the degen-
erate points as graph nodes and the separatrices connecting them
as edges (Figure 7(a,c)). Our global guidance takes effect when the
robot reaches a trisector point, at which it needs to determine which
branch to choose. We accomplish this by computing a minimum
cost spanning tree from the topological graph, rooted at the trisector
being visited. The cost of each edge on the graph is defined as:

c(e) =

(
1
ℓ(e)

∫
e
I (e,p)dp

)−1
.

where ℓ(e) is the path length of edge e . I (e,p) is the information gain
of reconstruction at a point p on e . Given a point, the information
gain is defined as themaximum reconstruction uncertainty (entropy)
that can be reduced from among all views at that point. Given the
current reconstruction, the information gain of a specific view point
is measured based on how much unknown region can be observed
from the view, as well as the scanning distance and slope angle of the
view; see details in Appendix in supplemental material. Thus, the
cost measures the reciprocal of the expected information gain along
the path corresponding to edge e . Therefore, by choosing the branch
leading to the minimal cost path, the robot favors shorter paths with
higher information gain. Figure 8 gives an example. Without global
path routing, the robot is easily trapped in the lower area and fails
to scan the top area with missing data. Guided by the field topology
with reconstruction entropy, the robot can immediately move to the
remote area needing more scans.
A notable feature of the topology-based path routing is that it

works well also for partially reconstructed scenes (Figure 7(a)). This
is due to two advantageous characteristics of tensor fields. First,
topological graph is well defined for any tensor fields computed
with any geometric constraint. Second, tensor fields minimize the
number of singularities such that no extraneous singularity appears
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(a) (b) (c) (d) (e)
Fig. 8. The robot (white dot) is directed by the topological skeleton of the
tensor field, and moves to the top area with missing data (see the separatrix
lines with high reconstruction entropy in red color). In (a), the robot is first
docked onto a trisector when passing through it, thereby launching branch
selection for global path routing.

in free space, leading to a simple and meaningful topological graph
for the partial scene.

Terminating condition. Based on the topological structure of the
tensor field and the definition of information gain, the termination of
our autonomous scanning for closed environments can be defined
as: if the expected information gain for all the accessible edges
in the topological graph is below a threshold (we use 0.01 in our
experiments), as in Figure 7(c), the robot stops exploring the scene.
The accessibility of an edge is determined by examining the physical
accessibility of sample points along that edge, based on a contact test
of robot body and reconstructed scene geometry. At this time, the
topological skeleton of the tensor field roughly reflects the topology
(medial axis) of the closed boundary of the room (Figure 7(d)). Each
point on the topological skeleton is locally well supported by the
projected surfaces of the scene, in the spirit of the maximal inscribed
disk definition of medial axis of 2D shapes [Blum 1967].

4.3 Automatic optimization of the guiding field
Another major benefit of tensor field is that it allows for manipula-
tion of degenerate points, for improving field topology for either
smoother path generation or simplified path routing. To achieve this,
we adopt two topological operations which are originally proposed
for interactive tensor field editing in [Zhang et al. 2007], i.e., moving
a single degenerate point and cancelling a pair of degenerate points.
The basic idea is to first convert the tensor field into a vector field:
V = α(T ) = µ(cos 2θ , sin 2θ )⊤, based on the definition in Equation
(2). We then perform the corresponding editing operation on V to
obtain V ′, using the method described in [Zhang et al. 2006], and
then convert it back to a tensor fieldT ′ = α−1(V ′). Rather than inter-
active editing, our problem setting demands automatic modification
to be applicable to robot guidance. The automatic modifications
are invoked after the computation of every key-frame. Note, how-
ever, they are optional and devised only to further improve the
exploration efficiency of our method.

Movement of degenerate points. There are three cases in which we
would like to move a degenerate point. First, for a wedge point, if the
angle between its two separatrix lines is less than 90◦, meaning that
the wedge is formed due to a sharp corner, we move it inward to

(a) Move a wedge towards inner corner. (b) Move a wedge out of a dead end.

(c) Move a trisector away from obstacle. (d) Move a trisector to avoid obstacle.

Fig. 9. Four cases for moving degenerate points.

lfs
lfs

𝑑𝑠

(a) Not cancelable. (b) Before cancelling. (c) After cancelling.
Fig. 10. Cancelation of degenerate point pairs. The pair in (a) is not can-
cellable since they are detected to be topologically significant. The pair in
(b) can be cancelled, with the cancellation result shown in (c).

the corner. This “hides” the wedge into the corner, thus making the
turn smoother; see Figure 9(a) for such an example. Second, a wedge
point usually represents an end point of the topological skeleton
of the tensor field. Given such a wedge point, if there is no more
information that can be gained after a round-trip has been made
around that point, the robot does not need to re-visit it with a deep
U-turn. In this case, we again move that wedge point inward along
its separatrix line for a distance so that the end path is eliminated;
see Figure 9(b). The third case involves obstacle avoidance at a
trisector. Since the robot would likely move towards a trisector
along its separatrix line, we need to ensure that the robot does not
collide into an obstacle when reaching trisector or after turning into
a branch. This is done by moving the trisector away from obstacle
until there is no collision detected either for the trisector point or
the sample points along its separatrice (Figure 9(c,d)).

Cancellation of degenerate pairs. The pair cancellation operation
allows the elimination of unwanted wedge-trisector (W-T) pairs,
leading to a geometrically smoother and topologically simpler field.
Unfortunately, not every W-T pair can be canceled since the wedge
and/or trisector may indicate important topological features of the
tensor field which might be destroyed. Therefore, the identification
of cancelable degenerate pairs is critical for automatic cancellation.
Edelsbrunner et al. [2002] propose a persistence-based identification
process which is applicable only to scalar fields. In [Nieser et al.
2012], an intuition was made that a pair of degenerate points can be
canceled only if they are close enough to each other, thusminimizing
the alteration to field topology due to cancellation. Similarly, we
detect cancelable pairs based on their shortest distance over the
topological skeleton of the field. The remaining issue is how to set
a proper threshold for this distance.

In defining the threshold, we consider the significance of a topo-
logical point on the medial axis of a shape (in parallel to a degenerate
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point on topological skeleton in our case), measured by the local fea-
ture size, the distance from that point to the shape boundary [Dey
2006]. With the intention of preserving topologically significant
degenerate pairs, we come to a heuristic condition for a W-T pair
(pS,pT) to be cancelable:

ds(pW,yT) < lfs(pW) + lfs(pT), (6)

where ds(·, ·) is the shortest distance between two points and lfs(·) is
the local feature size of a point; see Figure 10(a). We found through
experiments that this distance threshold is quite useful in practice,
and we leave the rigorous verification and/or proof for future work.
Once detected a W-T pair to be canceled, we find a small neigh-
borhood surrounding them, within which we iteratively smooth
the tensor field locally until each point inside the region becomes
regular (Figure 10(c)). In practice, we perform Laplacian smoothing
over the scalar fields of τ11 and τ12.

5 CAMERA CONTROL FOR QUALITY SCANNING
Having obtained the robot path within the next time interval, we
need to compute a camera trajectory to scan the scene along this
path segment. Camera control has received extensive researched in
the past decades. Our problem, however, is unique since the trajec-
tory is not only driven by scanning efficiency and reconstruction
quality but also constrained by the robot path.

5.1 Constrained optimization of the camera trajectory
Our goal is to compute a smooth 6DoF camera trajectory satisfying
the following requirements. First, in order to scan the scene effi-
ciently, camera views along the trajectory should obtain maximal
coverage of unknown or uncertain regions, according to the current
reconstruction. To ensure a proper reconstruction quality, however,
coverage alone is not enough. A good view should look at its target
regions from a close distance (within the valid scanning range), and
point as orthogonally as possible to the target surfaces. Second, to
facilitate frame-to-frame registration during online reconstruction,
linear and angular speed of the camera should be as constant as
possible, without exceeding a maximum threshold. Third, given the
movement path of the robot base, every point on the trajectory
must be reachable by the robot arm, according to the kinematic
constraints between the base and the arm.
Summarizing the requirements above, we reach the following

energy function for the camera trajectory:

E =

∫ 1

0
(−ωVV (q(t),α(t)) + ωLq

′′(t) + ωAα
′′(t))dt ,

with q(t) ∈ Ψ(p(t)),q′(t) < vm,α
′(t) < am, t ∈ [0, 1],

(7)

where p : [0, 1] → R3 is a parametric curve representing the robot
path, and q : [0, 1] → R3 a parametric curve for the camera tra-
jectory. For each point on the trajectory, the 6-DoF camera view
includes a position q(t) and a viewing angle α(t) (using the first
view as the reference). V (q,a) measures the quality of a camera
view, based on the information gain of the view in reducing the
uncertainty in scene reconstruction (see details in Appendix). Ψ(p)
is the reachable space (workspace) of the robot arm, when the robot
stands at a point p (The specification of Fetch arm workspace is

𝑝𝑠
𝑝𝑠−1

𝑝𝑠+1

𝑝𝑠+2

𝑞𝑠
𝑖Ψ(𝑝𝑠)

𝑞𝑠
∗

𝑦

𝑥
𝑧

0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)
Fig. 11. (a): Illustration of our optimization of the camera trajectory (green
curve) under the constraint of the robot path (red curve). (b): A real example
of the trajectory optimization, where the reconstruction entropy is color-
coded (blue is small and red is large) over the occupancy grid.

given in [Wise et al. 2016]).vm and am are the maximum thresholds
for linear and angular speed, respectively.
To solve Equation (7), our optimization samples the path p and

minimizes the discretized energy:

minimize E = − ωV
∑
s
V (qs ,as )

+ ωL
∑
s
(qs−1 − 2qs + qs+1)

+ ωA
∑
s
(as−1 − 2as + as+1),

subject to qs ∈ Ψ(ps ),qs+1 − qs−1 < 2vm,
as+1 − as−1 < 2am, s = 1, . . . , S − 1.

(8)

This objective function is highly non-convex due to the estimation
of view quality and robot arm workspace. We therefore simplify the
problem by further discretizing the feasible view space at a given
base position into a discrete set of candidate views, and solve the
problem with linear integer programming.

5.2 Discrete-continuous trajectory optimization
Discrete view selection. For each path sample ps , we sample C

points within its reachable space {qis ∈ Ψ(ps )}Ci=1. For each reach-
able point qis , we compute the best viewing angle ais based on the
view quality, which leads us to a set of candidate views {(qis ,ais )}
(Figure 11(a)). Thus, the optimization in (Equation 8) can be reduced
to a 0-1 integer linear programming problem, by associating each
candidate with a binary decision variable x is ∈ {0, 1}, where x is = 1
if the i-th candidate of ps is selected and x is = 0 otherwise:

minimize E = − ωV
∑
s

∑
i
V (qis ,a

i
s )x

i
s

+ ωL
∑
s

∑
i, j,k

(qis−1 − 2q
j
s + q

k
s+1)x

i
s−1x

j
sx

k
s+1

+ ωA
∑
s

∑
i, j,k

(ais−1 − 2a
j
s + a

k
s+1)x

i
s−1x

j
sx

k
s+1,

subject to (qis+1 − q
j
s−1)x

i
s+1x

j
s−1 < 2vm,

(ais+1 − a
j
s−1)x

i
s+1x

j
s−1 < 2am,

x is ∈ {0, 1},
∑
kx

k
s = 1,

s = 1, . . . , S − 1, i, j = 1, . . . ,C .

(9)

ACM Transactions on Graphics, Vol. 36, No. 6, Article 202. Publication date: November 2017.



Autonomous Reconstruction of Unknown Indoor Scenes Guided by Time-varying Tensor Fields • 202:9

We stipulate that exactly one candidate is selected at each path sam-
ple by imposing

∑
k x

k
s = 1. The Gurobi Solver [2016] is employed

to solve the optimization efficiently.

Continuous view interpolation. The next step is to connect the
selected best views {(q∗s ,a∗s )}Ss=1 to form a smooth trajectory. We
use cubic Hermite splines to interpolate the positions and tangents
at all views. The tangent at a view point is computed as the cross
product of the look-at vector and the y-axis. We then interpolate
viewing angles along the trajectory based on rotation minimiz-
ing frames [Wang et al. 2008], which minimizes the total angular
speed using two adjacent selected views as boundary conditions.
Figure 11(b) shows an example of computed trajectory (green curve)
along a robot path (red curve), given the reconstruction entropy.

6 IMPLEMENTATION
System setup. Our Fetch robot has a built-in computer with an

Intel I5-4570S CPU (2.9GHz×4) and 16GB RAM, running ROS on
a Linux system. On this computer, we run OctoMap, tensor field
update, path generation, and camera trajectory optimization. The
computed guiding instructions (moves and poses) are directly sent
to ROS to drive the robot base and arm. The robot holds a Kinect
(version 1) in its single arm. The online reconstruction runs on a
mobile workstation with an Intel I7-6700HQ CPU (2.6GHz×4), 16GB
RAM, and an Nvidia Quadro M3000M graphics card. The mobile
workstation is carried by Fetch, and the Kinect sensor is powered by
the battery of Fetch, making the whole system self-contained and
cable-less. Note that we do not use the pre-installed depth camera
mounted on the head of Fetch.
To demonstrate the generality of our method, we also imple-

mented and tested our system on a Turtlebot, amobile robotmounted
with a fixed (forward-looking) RGB-D camera (Kinect v1). The
Turtlebot carries a laptop computer with an Intel i7-6500U CPU
(2.5GHz×4) and 8GB RAM, running all computations except online
reconstruction, and driving the robot with ROS. The online recon-
struction runs on the same mobile workstation as that used by Fetch,
except that it is remotely connected by wireless LAN rather than
carried on the robot. This, again, makes the system self-contained.
Please refer to the accompanying video for the two systems at work.

Online reconstruction algorithm. WeemployVoxelHashing [Nießner
et al. 2013] for online surface reconstruction, which uses both RGB
and depth information for frame-to-frame registration (camera pose
estimation). For the Fetch setup, we utilized the (filtered) inertial
measurement unit (IMU) data provided with the robot arm to ini-
tialize the registration, which leads to an improved reconstruction
quality. Note that, however, the registration between frames that
undergo large transformations is still difficult, even assisted by IMU
data. This makes the optimization of robot path and camera trajec-
tory still essential to guarantee a high-quality surface reconstruction,
as demonstrated in Figure 12.

Parameters. When computing the tensor field, we employ a 2D
spatial grid with a resolution of 0.05m. The time step in computing
time-varying fields is chosen to be 4 seconds, with 10 sub-steps.
Thus, the duration of each sub-step is 0.4 seconds. With a moving
speed of 0.3m/s, the robot moves about 1.2m per time step. Figure 15

evaluates the impact of different choices for time step and sub-steps
on obstacle avoidance and path smoothness. The maximum limits
for linear and angular speed are set to vm =0.5m/s and vm =40 de-
gree/s, respectively. During the discrete optimization of the camera
trajectory, we sample 10 candidate views for each path sample.

Handling of collisions. Our tensor fields are formed with con-
straints of surface tangents, making the path advection inherently
obstacle avoiding. There are, however, still two cases that require
special treatment. First, if the initial position of the robot is close to a
wall, the robot may keep close to walls, given that there is only tan-
gential moves. This may cause collisions due to the non-neglectable
robot volume. Therefore, once the robot is detected to be too close
to a known wall (< 0.3m), it moves away from the wall along its
normal direction, if that is allowed by the known space. Second,
due to incomplete scanning, a path may stretch into an unknown
region in which an obstacle could block the path. If such a case
is detected, we add a look-at view pointing towards the unknown
region, to the path samples near that region (< 2m), during the
camera trajectory optimization. This ensures that the robot looks
into that region before rushing into it.

Collision avoidance for the robot arm can be incorporated into the
candidate view selection (Section 5.2), by removing those candidates
which lies in occupied cells in OctoMap. Although this does not
guarantee the entire camera trajectory is collision-free, due to the
discrete view sampling and data incompleteness in OctoMap, we
found the solution to be sufficient in our setting since the robot
rarely approaches a part of the scene too close, unlike in object-
targeted scanning.

Extraction and utility of field topology. To extract the topology
of a tensor field, we first detect degenerate points, by examining
the tensor index of every 2D grid point, and then compute for each
degenerate point the directions (angles) of its separatrices [Delmar-
celle and Hesselink 1994]. Starting from a degenerate point, we trace
separatrices along its separatrix directions via particle advection,
which stops at another degenerate point. The numerical instability
in path tracing, however, may miss connections between degener-
ate points. To mitigate this, we first pair the degenerate points by
tracing 2D shortest distance paths between them, and then force
each two paired degenerate points to be connected by a separatrix,
following the method used in [Palacios and Zhang 2007].
The trisector points in the topological skeleton serve as “gate-

ways” in global path routing, at which the robot performs branch
selection. The robot, however, does not necessarily move along a
separatrix so it rarely hits a trisector exactly. To allow path rout-
ing, we need a mechanism to detect whether the robot is passing
by, though not exactly hitting on, a trisector, and then “dock” it
to that trisector. To this end, we examine whether the robot path
first approaches and then leaves away a trisector, with the minimal
distance to the trisector less than a given threshold (0.5m). Once
a docking trisector is detected, the robot moves to that trisector
when reaching a position of minimal distance, and then launches
the branch selection. Figure 7(a) shows an example of this case.
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(a) Potential field path, fixed camera. (b) Tensor field path, fixed camera.

(c) Non-smooth camera trajectory. (d) Optimized camera trajectory.

Fig. 12. Comparing the reconstruction quality obtained by scanning the same scene corner along a path generated by tensor fields (a) v.s. that by potential
fields (b), with a fixed camera. Given the same path (generated by tensor fields), we compare the results along camera trajectories with (c) and without (d) the
smooth terms in the trajectory optimization.

7 RESULTS AND EVALUATION
Results of autonomous reconstruction. We have tested our system

(Fetch robot) with seven real indoor scenes; see the results from
Figure 1, 19 and 22. For all these scenes, our method achieved rea-
sonable scene coverage with high-quality 3D reconstruction. Table 1
reports some timings and statistics on these scenes. Overall, our
robot moves at an average speed of 0.3m/s and finishes rooms of
tens of square meters in less than 5minutes. Here we also report the
total scanning time and travel distance, with and without topology-
based global path routing. It can be observed that global planning
saves significant scanning effort. Table 2 lists the average and maxi-
mum running time for the various algorithmic components in each
time step. The major part of the computation time is spent on the
updating of tensor fields.

Figure 12 demonstrates how smooth robot paths and camera tra-
jectories affect the quality of online reconstruction. We visually
compare the reconstruction of the same corner of a room, scanned
with a fixed camera pointing to the wall, along a path segment gen-
erated by our tensor field and by potential field, respectively. Our
method leads to a more accurate depth fusion, due to the smoother
robot path and frame-to-frame transition. To demonstrate the effect
of camera trajectory optimization, we compare the reconstruction
along the same robot path (generated by our method), with and
without the smoothness constraint on linear and angular speed in
trajectory optimization. It can be seen that our method, with smooth
robot path and camera trajectory, results in the best reconstruction
quality with higher coverage. Please also see the quantitative evalu-
ations and comparisons in the next two subsections.

7.1 Quantitative evaluation
We conducted a series of evaluations mainly concerning two as-
pects, reconstruction quality and scanning efficiency, with both
synthetic and real scenes. Reconstruction quality is measured by the
root-mean-square error (RMSE) of the ICP-based frame-to-model

Table 1. Timings and statistics for seven real scenes. The total scanning
time and travel distance are compared for the cases with and without
topology-based global path planning.

Scene Area w/ topo. planning w/o topo. planning
Time Travel Time Travel

Fig. 1 60 m2 4.8 min. 58.3 m 11.8 min. 88.1 m
Fig. 19(a) 24 m2 2.7 min. 19.7 m 4.5 min. 35.2 m
Fig. 19(b) 22 m2 2.1 min. 13.3 m 3.4 min. 28.7 m
Fig. 22(a) 70 m2 4.1 min. 67.2 m 6.7 min. 87.5 m
Fig. 22(b) 35 m2 3.6 min. 40.5 m 10.2 min. 79.8 m
Fig. 22(c) 25 m2 3.3 min. 28.2 m 9.6 min. 66.3 m
Fig. 22(d) 50 m2 4.4 min. 52.1 m 9.7 min. 83.7 m

Table 2. Average andmaximum running time (in sec.) of the four algorithmic
components (tensor field update, path advection, trajectory optimization,
and others including topology control etc.), within each time step.

Scene Field Path Trajectory Other
Avg. Max. Avg. Max. Avg. Max. Avg. Max.

Synthetic 0.35 0.49 0.01 0.013 0.14 0.17 0.16 0.22
Fig. 1 0.55 1.02 0.01 0.022 0.23 0.33 0.26 0.38
Fig. 19(a) 0.39 0.75 0.01 0.013 0.15 0.19 0.16 0.27
Fig. 19(b) 0.35 0.77 0.01 0.014 0.12 0.16 0.16 0.23
Fig. 22(a) 0.49 0.95 0.01 0.019 0.21 0.29 0.23 0.34
Fig. 22(b) 0.42 0.81 0.01 0.017 0.17 0.25 0.19 0.31
Fig. 22(c) 0.37 0.75 0.01 0.015 0.13 0.21 0.15 0.23
Fig. 22(d) 0.47 0.87 0.01 0.019 0.19 0.26 0.21 0.34

registration during depth fusion [Choi et al. 2015]. For scanning
efficiency, we evaluate how fast our method could achieve a full cov-
erage of an unknown scene. Scene coverage rate is estimated against
the ground-truth geometry of synthetic or real scenes (see below),
based on the boundary voxels in the reconstructed occupancy map.
Synthetic evaluation is performed on Gazebo, a robot simulator

provided by ROS. Gazebo supports simulation of robot dynamics
and Kinect scanning. We collected 135 3D models of indoor scene
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Synthetic scenes. Real scenes.

Fig. 13. Comparison of smoothness of pathlines generated by tensor fields
(TF), potential fields (PF), and gradient fields (GF), measured by average (ab-
solute) angular acceleration (top row), as well as the topological conformity
of the three types of fields, measured against the medial axis of full scene
boundaries (bottom row). The results were obtained and averaged over 135
synthetic (left column) and 7 real (right column) scenes.

and organized them into a ROS-friendly format, forming a bench-
mark of autonomous virtual exploration and reconstruction (see the
supplemental material). The benchmark will be released, together
with the source code of our method running on top of Gazebo.

For the seven real scenes, we build pseudo-ground-truth reconstruc-
tion by careful human scanning with a hand-held RGB-D camera.
We used markers to facilitate offline refinement of scan registration.
The markers were removed when performing robot scanning. Scene
parts that are higher than the robot height (including the ceilings)
are excluded from scanning in all tests, by setting the corresponding
occupancy grid cells to be known (zero reconstruction entropy).

Alternative guiding fields. In order to verify the advantage of
tensor fields (TF), over vector fields such as potential fields (PF)
or gradient fields (GF), we conducted a number of comparisons.
The main problem with vector fields is that they contain more
singularities, which on a local scale sacrifices the smoothness of the
generated paths. On a global scale, the topological structures induced
by vector fields are usually too complex, making them not suitable
for path routing. To compare with potential fields, we obtained a
standard implementation based on the method in [Khatib 1986]. For
gradient fields, we used the method by Shade and Newman [2011].
Default parameter settings were employed for the two methods. We
conduct comparisons on the following two aspects:
• Smoothness of generated paths.We compare the smoothness
of paths generated from the three kinds of fields during the
autonomous exploration and scanning of both synthetic and
real scenes. The initial positions of the robot in all three fields
are the same. For all three methods, a fixed, forward-looking
virtual camera is used. We plot in Figure 13(top row) the
average (absolute) angular acceleration over the coverage rate
of the scene. In general, paths become less smooth (with larger
angular changes) as the scanning gets more complete, due to
the increasing geometric constraints. Tensor fields generally

Synthetic scenes. Real scenes.

Fig. 14. Temporally coherent tensor fields lead to smoother paths (top row)
and lower registration error in depth fusion (bottom row).

Synthetic scenes. Synthetic scenes.

Fig. 15. The impact of different choices for time step and number of sub-
steps on obstacle avoidance (percentage of advected paths being blocked)
and path smoothness, respectively, both evaluated on the synthetic dataset.

incur the least angular speed change of the generated paths,
among all the three types.
• Meaningfulness of topological structure. For the purpose of
global path routing, it is desirable that the topology of the
guiding field reflects the floor structure of the scene being
scanned. On both synthetic and real scenes, we compute the
topological skeletons of the three types of fields, with different
levels of scene completeness, and measure their conformity
against the medial axis of the full scene boundary. The con-
formity between two skeletons is measured by the skeleton
path similarity proposed in [Bai and Latecki 2008]. In general,
the topological skeletons should approximate the scene topol-
ogy better when scene geometry becomes more complete.
Figure 13(bottom row) shows that the tensor fields always
produce skeletons that best match the structural layout of
the scenes.

Temporal coherence of tensor fields. We tested the smoothness of
the pathlines generated by advection in tensor fields with and with-
out temporal coherence. The plots in Figure 14(top row) show the
average angular acceleration of the robot paths over coverage rate,
for both cases. It can be observed that temporally coherent fields
lead to much smoother robot paths. This in turn affects the recon-
struction quality over coverage rate. As shown in the bottom row,
the reconstruction error, measured by RMSE of ICP, is significantly
lower when the guiding fields are temporally coherent.
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Synthetic scenes. Real scenes.

Fig. 16. Using global path planning, the scanning coverage is increased (top
row) and the reconstruction entropy is reduced (bottom row) more quickly,
especially in the later stages of scanning.

Synthetic scenes. Real scenes.

Fig. 17. Effect of topological control over field simplicity, measured by
number of degenerate points.

Impact of time step during field updating. The length of time step
suggests the updating frequency of the tensor fields, which is critical
to obstacle avoidance. The lower the updating frequency, the more
probable it is that the generated robot paths would be blocked
by obstacles, because the guiding field may not reflect the so far
acquired scene geometry. Meanwhile, a high updating frequency is
computationally expensive. Within a time step, the number of sub-
steps would affect the smoothness of tensor field interpolation: finer
sub-steps produce temporally smoother fields, while demanding
more computational time.
We evaluate the above effects using the synthetic dataset. To

observe the impact of time step duration on obstacle avoidance, we
plot in Figure 15(left) the percentage of the advected paths being
blocked by obstacles, over different choices of time step. Given a
robot moving speed of 0.3m/s, the maximum length of a time step
which is collision-free is about 4s. In Figure 15(right), we show how
the number of sub-steps affects the smoothness of the advected
paths over time, with a fixed time step of 4s. The path smoothness,
measured again by average angular acceleration, converges to the
optimum when the number of sub-steps is 10.

Effect of global path planning. In Figure 16, we plot the coverage
rate (top row) and reconstruction entropy (bottom row) during scene
scanning, with and without global path planning. This experiment
was conducted on the synthetic and real datasets. Coverage rate
is estimated against the (pseudo) ground-truth reconstruction. As

Synthetic scenes. Real scenes.

Fig. 18. Effect of optimizing the camera trajectory on coverage rate (top
row) and reconstruction quality (bottom row).

shown by the plots in the top row, global planning results in a faster
scene coverage. The bottom row plots the reconstruction entropy
over coverage rate: when the scene coverage is low (in the early
stages), the benefit of global planning is not prominent, due to the
incomplete topological structure. When the scanning becomes more
complete, however, global planning starts to take effect, leading to a
faster convergence towards a complete and quality reconstruction.
This verifies the benefits of our global path planning.

Topological control of tensor fields. We investigate the effect of the
two automatic topological control mechanisms on field simplicity,
both on the synthetic and real datasets. Figure 17 shows the numbers
of degenerate points of tensor fields over coverage rate, with and
without topological control. The results show that our topological
control schemes lead to topologically simpler fields.

Optimization of the camera trajectory. In Figure 12, we show that
optimized camera trajectories lead to higher reconstruction quality.
Figure 18 verifies this effect quantitatively. In the top row, we show
the effect of different terms in our optimization on reconstruction
quality, plotted over the number of time steps. Here we compare
our full method to a version without a camera control (with fixed,
forward-looking camera), and that without linear or angular speed
smoothing. In the bottom row, we show a comparison of scene
coverage rate of the four methods above. These comparisons were
conducted both on the synthetic and real datasets. The results show
that our full optimization balances well between coverage efficiency
and reconstruction quality.

Termination criteria. Our autonomous scene scanning terminates
if no information can be gained any more from any point of the
topological skeleton of the tensor field. The validity of this termi-
nation criteria can be verified by the relation between the total
reconstruction entropy for the entire topological skeleton and the
scene coverage rate, as shown in Figure 16 (brown curves in the
bottom row). The results suggest that the convergence of the total
entropy reduction (information gain) largely conforms to the maxi-
mal scene coverage, for both synthetic and real scenes. This verifies
the effectiveness of our method and its termination criteria.
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Pseudo-ground-truth [Shade and Newman 2011] [Vallvé and Andrade-Cetto 2015]

[Charrow et al. 2015] [Bai et al. 2016] Ours(a)

Pseudo-ground-truth [Shade and Newman 2011] [Vallvé and Andrade-Cetto 2015]

[Charrow et al. 2015] [Bai et al. 2016] Ours(b)

Fig. 19. Visual comparisons of reconstruction quality, depicted as color-
coded RMSE plot on the reconstructed surfaces, obtained by our method
and the four alternatives (red indicates large error and blue means small).
Our method leads to the least amount of error.

7.2 Comparison
We also provide a quantitative comparison between our method and
four state-of-the-art methods: [Shade and Newman 2011], [Vallvé
and Andrade-Cetto 2015], [Charrow et al. 2015] and [Bai et al. 2016].
The first method adopts gradient fields of harmonic guiding fields,
while the second one employs potential fields. The latter three
methods are all information-theory based, among which only the
first is field-guided. Since the source code of the first three methods
are unavailable, we use our re-implementation for the comparison,
with the default parameter settings provided by the original works.

Under the same robot setting, i.e., a mobile robot mounted with
a fixed and forward-looking camera, we run the four methods on
the synthetic and real datasets. We evaluate their performance on
coverage rate, reconstruction quality, path smoothness, as well as
the reduction of reconstruction entropy. The former two results
are shown in Figure 20, while the latter two can be found in the
supplemental material.

In terms of the efficiency of exploration and scanning, information-
theory based methods generally perform better, as reflected by the
fast growth of the coverage rate of the latter three methods. Our
method is inherently driven by the information gain of reconstruc-
tion during global path routing, thus achieving a comparable perfor-
mance with those methods. This is also reflected in Table 3, which

Synthetic scenes. Real scenes.

Fig. 20. Comparison of coverage rate and reconstruction quality obtained
by our method and four alternative methods.

Table 3. Comparison of total scanning time and travel distance between
our method and four alternatives.

Method Synthetic scenes Real scenes
Time Travel Time Travel

[Shade and Newman 2011] 9.6 min. 127 m 15.2 min. 149 m
[Vallvé and Andrade-Cetto 2015] 7.3 min. 82 m 9.4 min. 97 m
[Charrow et al. 2015] 8.5 min. 104 m 13.7 min. 123 m
[Bai et al. 2016] 6.1 min. 65 m 8.8 min. 99 m
Ours 3.0 min. 46 m 4.1 min. 52 m

compares the total scanning time and travel distance of the five
methods, averaged over the tested synthetic and real scenes.
Meanwhile, our method results in a high reconstruction qual-

ity due to its special design choices made for quality scanning,
i.e., smooth robot paths and camera trajectories. In Figure 19, we
provide a visual comparison of reconstruction results obtained by
our method and the four alternatives, on two real scenes. For each
method, we show the reconstructed surfaces shaded with the color-
coded RMSE, with respect to the corresponding pseudo-ground-
truth reconstruction.

8 DISCUSSION AND CONCLUSIONS
We have presented a method for autonomous scanning of unknown
indoor scenes, guided by time-varying and geometry-aware tensor
fields. Our method attains the following key features: (i) It achieves
both locally smooth path generation and globally efficient path find-
ing, through exploiting the particle advection and topology-based
guidance of tensor fields. (ii) It computes time-varying tensor fields
that adapt to the time-evolving scene geometry and enhance spatial-
temporal smoothness. (iii) In contrast to fixed-camera settings used
by most robot navigation systems, our method pursues independent
planning of robot and camera movement, thus achieving flexible
exploration and scanning of indoor scenes.

Limitations. Our current solution has several limitations:

(1) Our method does not jointly optimize robot path and cam-
era trajectory. The path planning accounts for neither the
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scanning scope of the sensor nor the inverse kinematic con-
straints of the robot arm. A joint optimization with mutually-
informed path and camera planning could potentially achieve
a more efficient scanning and higher quality reconstruction.
Such a joint planning, however, could also be extremely diffi-
cult and costly to optimize.

(2) Our navigation-by-reconstruction strategy computes smooth
movement for both robot and camera. Nevertheless, one draw-
back of our strategy is that the robot can only perform pass-
through scanning along with the robot movement rather than
a detailed scanning towards a specific region or object while
standing at a point. Therefore, our method cannot obtain a
complete scanning coverage with a single pass navigation.
These are two complementary scanning strategies, which
would be useful for different scenarios.
In a scenario with high efficiency requirement, the smooth-
ness and fluency of robot path and camera trajectory are vital
for online reconstruction, since non-smooth camera move-
ments can lead to unacceptable reconstructions due to the
accumulation of drift; see Figure 12. Moreover, our solution
addresses the local trapping issue, thanks to our topology-
based guidance. Based on the results, we believe that our
method achieves an essential and valid balance between ex-
ploration efficiency and reconstruction quality.

(3) The geometry-aware tensor fields can either be over- or
under-constrained by the scene geometry, rendering them
fail to guide the robot move as expected. Figure 21 shows
two examples for the two cases above, respectively. The first
demonstrates how an advected path passes through a narrow
passage between two diagonally displaced blocks. Although
the path always succeeds to pass through, no matter how
narrow the passage is, it becomes too close to the wall after
crossing the gap. The second shows how a path would fail to
enter a “door” in a wall which is too thin, due to insufficient
perpendicular constraint.

(4) In the initial stage of scanning, the reconstructed geometry
may not be quite useful for computing an informative guiding
field. This may cause collision if the robot moves too fast. A
heuristic solution to this is to start with a small time step and
gradually increase it as the scanning proceeds.

(5) When the time step is large, field interpolation could intro-
duce new singularities. Although this is quite rare, topological
smoothing [Zhang et al. 2007] could be invoked if needed. In
any case, the main singularities with meaningful topology
would persist from time step to time step.

(6) From a high-level perspective, our approach is purely geomet-
ric. We do not learn or infer high-level structure or semantics
of the scene during scanning. Therefore, it does not offer
higher level guidance to the robot such as anticipation of
accessibility or safety, other than local avoidance of obstacles
and greedy maximization of information gain.

Future work. We see several interesting directions to pursue and
explore in the future. First, several technical components of our
method, such as global guidance by field topology, are currently
studied and realized as a proof-of-concept. We hope our work will

(a) (b)
Fig. 21. Path advection in tensor fields which are either over- or under-
constrained. (a): Although the field can always direct the particle through
the narrow passage, the path becomes too close to the wall after crossing
the gap. (b): A path would fail to enter a “door” in a wall which is too thin.

inspire more in-depth and theoretical future study on those prob-
lems. Second, we would like to investigate the use of 3D tensor fields
for a joint planning of robot and camera movement in 3D space.
The main difficulty here is that the smoothness and degenerate
behavior of 3D tensor fields may not be easy to control. Moreover,
an efficient GPU implementation may be needed to accommodate
the highly intensive computation. Third, it is worth considering
online analysis and learning within our framework of tensor field
guidance, to achieve a more intelligent exploration and scanning in
highly complex environments. Fourth, our navigation method could
be extended to non-planar ground surfaces, such as terrains, which
can be approximately regarded as 2D manifolds on which tensor
fields are well defined [Zhang et al. 2007]. Lastly, an interesting
direction would be applying 3D tensor fields for a more versatile
robot guidance, with applications ranging from drone exploration
and scanning to robot-hand grasping and manipulation.
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