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A blind/no-reference (NR) method is proposed in this paper for image quality assessment (IQA) of the
images compressed in discrete cosine transform (DCT) domain. When an image is measured by structural
similarity (SSIM), two variances, i.e. mean intensity and variance of the image, are used as features.
However, the parameters of original copies are actually unavailable in NR applications; hence SSIM is
not widely applicable. To extend SSIM in general cases, we apply Gaussian model to fit quantization noise
in spatial domain, and directly estimate noise distribution from the compressed version. Benefit from this
rearrangement, the revised SSIM does not require original image as the reference. Heavy compression
always results in some zero-value DCT coefficients, which need to be compensated for more accurate
parameter estimate. By studying the quantization process, a machine-learning based algorithm is pro-
posed to estimate quantization noise taking image content into consideration. Compared with state-of-
the-art algorithms, the proposed IQA is more heuristic and efficient. With some experimental results,
we verify that the proposed algorithm (provided no reference image) achieves comparable efficacy to
some full reference (FR) methods (provided the reference image), such as SSIM.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Images and videos are often compressed for efficient storage
and transmission, which inevitably introduces some distortions,
such as blocking and ringing artifacts. These distortions degrade
visual quality, and reduce the information validity. To ensure that
the end users get satisfactory experience, the user experience is
often fed back to produce better image/video quality or to further
save bandwidth budget by parameter reconfiguration. User experi-
ence about image quality can be assessed by subjective or objective
methods. For subjective evaluation, it is required to gather the
opinions of human observers in given condition; hence it is cum-
bersome and inapplicable in real time. On the contrary, objective
score is calculated from a designed algorithm with fast implemen-
tation speed, and its results should be consistent with subjective
evaluation.

According to availability of original images, objective image
quality metrics are classified into three categories: (1) full-refer-
ence (FR) schemes assume that the reference image is available
to be compared; (2) reduced-reference (RR) schemes are set up
in the condition that only partial information of the reference
image is available, for example, some features of the reference
image are embedded in the compressed image and can be
extracted for analysis; and (3) no-reference methods are the ones
that only the compressed image is available for quality assessment.
Compared with the previous two, the third category is more chal-
lenging and is studied in this paper.

Image quality assessment (IQA) algorithm utilizes the statistical
features [1] of natural images and distortions, which can be col-
lected in spatial domain or transform domain. In the past decade,
some efforts have been made to develop some objective IQA algo-
rithms. The performance of IQA algorithms can be further
improved if image features are extracted and cooperated with
human visual system (HVS). A series of IQA metrics, such as noise
quality measure [2], structural similarity [3], visual information
fidelity (VIF) [4], PSNR-HVS model [5], visual signal-to-noise ratio
[6], most apparent distortion (MAD) [7] and feature similarity
(FSIM) [8], have been proposed, which fit with human opinion
well. Recently, Lin et al. use the phase and magnitude of Fourier
transform [9] and internal generative mechanism [10] to refine
IQA schemes. Liu et al. indicate that gradient information [26]
captures both image contrast and structure, and give it suitable
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masking as well as adaptive weighting by their proposed IQA. Wu
et al. classify the visual content fidelities into the primary visual
information and the residual uncertainty, and evaluate their infor-
mation fidelities respectively [25]. It is noted that most of the
above algorithms are FR and RR ones. Though some attractive
results have been produced, their applications are still limited
because extra information about the original image is required.
Different from them, Bovik et al. propose a NR scheme, i.e. dubbed
blind/no-reference image spatial quality evaluator (BRISQUE) [11],
to quantify the possible missing information of ‘‘naturalness’’ in
the image. For the other NR IQA, Saad [22] and Moorthy [23] study
the natural scene statistics (NSS) model in discrete cosine trans-
form (DCT) and wavelet domain respectively, and then use these
models to evaluate image impairment. In NR IQAs [11,22,23], low
level features of an image are distilled in spatial, DCT and wavelet
domains respectively, and Gaussian model or asymmetric general-
ized Gaussian model (AGG) model is used to estimate these feature
distribution. The changes of model parameters from the compres-
sion are selected as high level features and used to predict image
quality scores. However, the performance improvement of these
NR IQAs is limited because the physical process of compression
is not considered. Recently, Wang et al. extract statistical features
through the multi-scale and orientation transform, and then
develop the distortion measure from SSIM [28]. Different from
them, the decompressed blocks are used as low-level features in
this paper, because they are strongly related to compression.
Furthermore, the proposed algorithm estimates the quantization
noise and uses this noise estimation in SSIM model, rather than
directly estimates image quality score, which gives better physical
interpretation than other popular NR IQA models.

With mobile devices, images or videos are often coded by DCT-
based compression and transmitted to accommodate the band-
width requirements. Considerable time and resources are taken
to ensure that the end user has constant visual experience and sat-
isfactory quality of experience (QoE). It is widely accepted that dif-
ferent scenes have different bit-rate requirements for comparable
visual quality; hence the efficiency of encoding and multiplexing
can be significantly optimized if image quality at the receiver is
measured and fed back to the sender. NR IQA can also be used to
control the post-processing to improve the quality of the decoded
images. For these two applications, the proposed algorithm is com-
petent due to its high execution speed and accuracy.

In the proposed algorithm, the particular information of the
compressed stream helps us to develop IQA algorithm with less
computational cost and better performance. First, we use different
models to describe the noise distribution on large or small DCT
coefficients. Second, a machine learning based method is used to
estimate the noise on zero and nonzero DCT coefficients, respec-
tively. Finally, we modify SSIM to be a function of noise variance.

In this paper, we first overview SSIM, as it is the basis of the pro-
posed algorithm. Subsequently, a probabilistic model of the com-
pressed noise on spatial and DCT domain is overviewed, and an
algorithm for noise estimation is proposed. SSIM is modified to
accommodate the proposed noise estimation. Finally, we examine
the proposed IQA and demonstrate its efficiency.

2. Overview of SSIM

Fig. 1 illustrates a general scheme for IQA. A natural image C is
degraded by some distortions, such as compression, to be its infe-
rior copy D. This process is described as

D ¼ C þ nSpatial ð1Þ

where nSpatial is the quantization noise. The natural image and its
inferior copy are fed into human visual system for mutual informa-
tion analysis.
In the above model, IQA is calculated as

Score ¼ IðC; FjSÞ
IðC; EjSÞ ð2Þ

where I( ) is the mutual information operator. S is the model param-
eter for reference image C, associated with the normalization model
of various visual neurons. C and D pass through HVS model [24] to
form E and F, i.e. E and F are the brain reflection of C and D.

The denominator of (2) is irrelevant to the distorted image, and
it merely reflects the interaction of image features and HVS charac-
teristic. Natural images share some common features, thus the val-
ues of I(C, E|S) for different C are similar. Therefore, IQA is
dominated by the numerator of (2), i.e. the mutual information
between the original image C and the contaminated image D,
where S stands for the HVS features of the visual neurons. Includ-
ing three HVS features, i.e. luminance, contrast and structure, SSIM
[3] uses their mutual information to form IQA as

SSIMðC;DÞ ¼ ½lðC;DÞ�a½cðC;DÞ�b½sðC;DÞ�c ð3Þ

where a, b, c are parameters to control the relative importance of
the three components. l( ), c( ) and s( ) are luminance, contrast and
structure comparison operators, respectively. l( ) is the function of
mean intensities lC and lD of images; c( ) is a function of image
standard deviations rC and rD. For structure comparison s( ), mutual
information of C and D is represented by rCD as

rCD ¼
1
L

XL

i¼1

ðCi � lCÞðDi � lDÞ ð4Þ

where L is the pixel number in image C.
SSIM is good at extracting structural information, such as edge

or gradient features, which conveys important visual information
for perception and understanding. It exploits low level HVS prop-
erty and does not require complex transform or multi-scale
decomposition, hence it is the most popular IQA and is applicable
in real time.

In practical applications, the weight factors for three compo-
nents (i.e. a, b, c), are set to 1, and SSIM is simplified as

SSIMðC;DÞ ¼ ð2lClD þ C1Þð2rCD þ C2Þ
ðl2

C þ l2
D þ C1Þðr2

C þ r2
D þ C2Þ

ð5Þ

where C1 and C2 are constants. On image scale, SSIM is revised to its
mean (MSSIM) as

MSSIM C;Dð Þ ¼ 1
M

XM

i¼1

SSIMðCi;DiÞ

where M is the number of blocks. SSIM defined in (5) includes lumi-
nance, contrast and structure features, but its calculation requires
some parameters, such as lC, lD, rC, rD and rCD. In the rest of this
paper, we will explore how to estimate these parameters.

3. Quantization noise estimate

3.1. Quantization noise model

Transform-based coding algorithms are widely used to com-
press images or image sequences. Each image is firstly divided into
equal-size blocks. Subsequently, linear transform (e.g. DCT) is
applied on these blocks. The compressed copy of C is therefore
expressed as in [12]

D ¼ T�1QðTðCÞÞ ð6Þ

where Q( ) is the quantization procedure, and T and T�1 are the for-
ward and inverse transform. The quantization operator Q intro-
duces compression noise on the decoded images. The linear



Fig. 1. A general IQA model [4].

Fig. 2. Actual distribution of quantization noise of blocks vs Gaussian distribution.
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relationship between the noise in transform and spatial domains is
expressed as

nSpatial ¼ T�1nDCT ð7Þ

Because noise in spatial domain is the linear sum of the inde-
pendent noise components in DCT domain, it can be assumed to
be Gaussian distributed, according to the central limit theorem as

nSpatial ¼ Nð0;KQ Þ ð8Þ

where KQ is the covariance matrix of quantization noise in spatial
domain. The noise in spatial domain is related to the noise in trans-
form domain with the IDCT operation as

KQ ¼ T�1KTransformðT�1ÞT ð9Þ

KTransform is a diagonal matrix, whose diagonal elements are the
expected noise power of each DCT coefficient. DCT is an orthogonal
operator, which is used to completely de-correlate the pixels in spa-
tial domain, and produce independent DCT coefficients. A common
assumption is that an original DCT coefficient is independent uni-
form distributed within its quantization interval [12], if the quanti-
zation step size is small or the quantized DCT coefficient is large. Let
G be the DCT of C and xi be the value of the i-th element of G. Based
on above assumption, the noise variance r2

i of xi is expressed as

r2
i ¼ q2

i =12 ð10Þ

where qi is the quantization step size for the coefficient.
Although uniform model simplifies the analysis, it is subjected

to some limitations. Experimental results show that uniform noise
model results in poor estimation of quantization noise. Prior
knowledge about DCT coefficients of the natural images can be
integrated into the noise model for better noise estimation. For
example, a Laplacian model is widely used to describe DCT coeffi-
cient distribution [13,14]. The distribution of xi is

pGðiÞðxÞ ¼
ki

2
expf�kijxijg ð11Þ

When the quantized DCT coefficient x lies in the interval ½q j
i ; q

jþ1
i �,

the variance estimated by the Laplacian model is computed in the
closed form through integration

r2
GðiÞ ¼ j

Z qjþ1
i

q j
i

ð�x� yÞpGðiÞðyÞdy ð12Þ

where j is the normalization factor, j is the index of quantization

interval of xi, and �x is the centroid of ½q j
i ; q

jþ1
i �. Experimental results

indicate that the Laplacian model works well only if the quantized
DCT coefficients are zero. On the contrary, the uniform model of
nonzero coefficient approximates Laplacian tail better than the
exponentially decaying tail. As a result, a noise model should be
selected according to the DCT value for yielding more accurate noise
estimation [27].
3.2. Prior knowledge about quantization noise

As stated in Section 3.1, the compressed noise in spatial domain
follows Gaussian distribution. We consider the noise distribution
of 8 � 8 block, which contains 64 independent elements. Its noise
amplitude is the sum of these 64 noise components

nspatial
block ¼ N 0;

X64

i¼1

rspatial
i

 !
ð13Þ

Quantization noise does not exist for specific DCT coefficients,
such as zero-value DCT coefficients of the original image, hence
noise estimate only considering the quantization scale [12] is not
reasonable. This motivates us to propose a more accurate probabi-
listic model taking into account statistics of natural images.

We randomly select 13 raw images from LIVE database [17].
These images are compressed with quality score 40, and the com-
pression distortion of their blocks is calculated. The distribution of
their distortion is plotted in Fig. 2, which is well fitted with the
Gaussian distribution with variance ri = 0.028. Therefore, the sim-
ple zero-mean Gaussian model is able to describe noise distribu-
tion precisely. This observation is very useful for analyzing the
distortion in our noise estimation.

In [16], Pao et al. model the relationship of pixel values in DCT
blocks as well as quantization noise in the DCT domain. They use
the autocorrelation to roughly express the relation of DCT coeffi-
cients. Image content varies with their covariance differs.

The pixels in natural image are highly correlated, and their
autocorrelation is computed as

rðp; qÞ ¼ r2
f q
jpjqjqj ð14Þ

where p and q are the horizontal and vertical distances between
two pixels, r2

f is the variance of pixel values, and jqj 6 1 is the cor-
relation coefficients. After DCT operation, the variance of the (u, v)
th DCT coefficients r2

F ðu;vÞ is written as
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r2
F ðu;vÞ ¼ r2

f ½ARAT �u;u½ARAT �v;v ð15Þ

where R ¼

1 q q2 � � � q7

q 1 q
q2 q 1
..
. . .

.

q7 1

2
666664

3
777775, [ ]u,u is the (u, u) th component

of the matrix, A is the basic vector of DCT.

If two blocks have similar quantization distortion distributions,
i.e. with similar r2

F ðu;vÞ, their r2
f and q should be similar. As a spe-

cial case, the similarity of two image blocks O1 and O2 can be
defined in spatial domain as SIM = kO1 � O2k2 or in DCT domain
as SIM = kT(O1) � T(O2)k2. Estimating the probabilistic model for
an image from its inferior copy is an ill-pose problem and has an
infinite number of solutions. Modeling the probability for each
block is an over-sensitive problem and difficult to address. More-
over, the model precision is insufficient if we merely use one
model to describe all types of blocks. According to the similarity
defined above, we classify image blocks into several clusters, and
assume that the blocks in the same cluster share similar mutual
features. For parameter estimation, an original block is regarded
as a random variance of the de-quantized block, which is a biased
estimate from the cluster center with random variance following
Gaussian distribution. If there are m blocks in cluster X, the distri-
bution of its elements Xie[1,m] is N(bi, ri), where bi is the bias
between i-th decoded block and the cluster center Xcenter, and ri

is noise variance of i-th block. The probabilistic model of the clus-
ter noise also follows Gaussian distribution N(bX, rX), where
bX ¼

Pm
i¼1bi and r2

X ¼ 1
m

Pm
i¼1r2

i . It is obvious that bX approaches
zero, hence the cluster variance r2

X can be used as the noise esti-
mate for blocks in the cluster X.

There is a fundamental tradeoff between bias and variance in
the parametric estimation problem [15]. We set Z as the cluster
center to represent the general characteristics of similar com-
pressed blocks. In this paper, the original image is an unknown
and non-random variable in the form of a 2D vector C, and Z is
the observed random variable. The vector C parameterizes the den-

sity f(C; Z) of the observation Z. Let the estimator of C be C
_

. Here,
the ‘‘mismatch’’ between the mean of estimates and its true value
is denoted as bC, and the fluctuation of the statistical estimator is

rC. They are defined as bC ¼ EðC
_

Þ � C and rC ¼ E½ðC
_

�CÞ
2

�, respec-
tively. The mean square error (MSE) is widely used to measure
the difference between the estimator and its ground-truth, and is

related to bC and rC with MSE ¼ b2
C þ r2

C . In this application, the
estimation of MSE is subjected to a tradeoff between bC and rC.
For instance, if only quantization noise on nonzero DCT coefficients
is taken into consideration, the smooth estimation of the original
image will reduce the variance of the image blocks at the expense
of increasing bias (e.g. at lower spatial resolution). On the contrary,
a biased shrinkage estimator reduces the variance of the ordinary
squares estimator, while it enlarges the gap between the estimated
variance and the true one.

General characteristics of blocks are used as prior knowledge
for noise estimation. It is tightly associated with the clustered
blocks, hence the number of clusters and clustering methods have
some impacts on the accuracy of the prior knowledge. We adopt a
standard method, i.e. fuzzy C means (FCM) clustering here. If a
finite collection of m elements X = {X1, . . . , Xm} is clustered into l
fuzzy clusters with respect to the criterion

Cost ¼
Xl

i¼1

X
k;Xk2~Xi

kXk � Xi;centerk2

0
@

1
A ð16Þ
where Xi,center is the cluster centroid of the i-th cluster ~Xi. FCM
groups data points by populating some multidimensional space into
a specific number of different clusters. With cluster number
increasing, cluster diameter decreases and the data in the cluster
is more compact. The blocks belonging to the same cluster will have
small biases and MSE estimate errors. The computational cost of
clustering is exponentially increasing with the number of clusters,
and the accuracy of noise estimate increases slowly if the number
of clusters is greater than a certain value. The influence of the num-
ber of clusters on MSE estimate distortion is beyond the scope of
this paper, and will not be discussed here. Alternatively, the relation
between the accuracy of IQA and the number of clusters is exam-
ined in Section 5.

4. NR SSIM

As quantization noise in spatial domain accords with Gaussian
distribution, it is possible to simplify SSIM to evaluate the impact
of compression distortion on HVS. Because nSpatial in (1) is zero-
mean Gaussian variable, we get

lC ¼ lD ð17Þ

where lC and lD are the means of original gray scale image and its
compressed copy, respectively. The variance of the original image is
calculated as

r2
C ¼ r2

D þ r2
n �

1
N2 � 1

XN2

i¼1

2Di � ni ð18Þ

where N is the block size in horizontal or vertical direction, i.e. N = 8
in JPEG. Because quantization noise is irrelative to the content of the

quantized image, the third term 1
N2�1

PN2

i¼12Di � ni approaches zero.
As a result, Eq. (5) is simplified as

SSIMsim ¼
2r2

D þ C2

2r2
D þ r2

n þ C2
ð19Þ

where r2
D can be directly calculated from the decoded image. After

simplification, the difficulty to estimate SSIM in NR condition lies in
estimating r2

n. DCT is a bi-orthogonal transform where Parseval the-
orem holds. Therefore, we calculate r2

n in DCT domain as it is
straightforward. Experimental results show that the proposed
quantization noise estimation on nonzero DCT coefficients is more
reliable than that on zero DCT coefficients, and meet the require-
ment for most NR IQA applications. Therefore, we focus on the lat-
ter, i.e. noise variance estimation of zero-value DCT region.

If there are m blocks Xk in the cluster ~X, its cluster center is
defined as

Xcenter ¼
P

k;Xk2~XwkXkP
k;Xk2~Xwk

ð20Þ

wk is the credibility that Xk belongs to ~X, which is related to the
inverse of the distance between Xk and the cluster center of ~X. Xcenter

is a vector with abundant frequency components, whose variance is
denoted as r2

center . DCT transform, quantization and inverse quanti-
zation with the quantization scale of the tested image are applied
on Xcenter to generate its compressed copy. This copy is then decom-
posed into two parts: the zero-value and the nonzero-value region.
Uniform-distributed model is applied on nonzero-value area to esti-
mate its noise variance r2

center-nonzero, and the noise variance estimate
of the zero-value part will be r2

center-zero ¼ r2
center � r2

center-nonzero, which
serves as the general characteristic for noise estimation on the non-
zero-value region with similar DCT distribution.

To estimate the compression noise of a compressed block, we
firstly calculate the noise on nonzero DCT coefficients following a



Fig. 3. Flow chart of the proposed IQA.

Table 1
Performance comparison of image quality assessment models on LIVE database.

CC SROCC MAE RMSE

MSSIM 0.977 0.974 5.014 7.782
The proposed measure 0.980 0.960 4.839 7.685

Table 2
Performance comparison of image quality assessment models on TID2008 database.

CC SROCC MAE RMSE

MS_SSIM (FR) 0.916 0.899 0.507 0.685
VIF (FR) 0.955 0.917 0.333 0.507
The proposed measure (NR) 0.929 0.892 0.479 0.630
BLIINDS-II (NR) 0.873 0.835 0.533 0.772
DIIVINE (NR) 0.865 0.831 0.529 0.781
BRISQUE (NR) 0.894 0.868 0.521 0.764
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uniform probabilistic model, and then add this estimate to its
r2

center-zero to form the noise estimate r2
n in (19).

Fig. 3 illustrates the flow chart of the proposed IQA. In the train-
ing stage, some images are compressed with a QP to produce the
degraded copies, and their PSNRs are calculated. These compressed
copies are then classified into some clusters, and their centroids
are regarded as representative image of the group and then
requantized. Let PSNRmean be the mean of true PSNRs in the cluster.
Based on the uniform distribution model, we estimate its quantiza-
tion noise on nonzero DCT coefficients. The difference between
PSNRmean and noise estimate is regarded as the noise estimate
compensation, which corresponds to the quantization noise on
the zero region of decoded DCT coefficients. As for testing, the
decoded image is classified to the nearest group to find its estimate
compensation, which is added on the rough noise estimate of non-
zero area to produce the refined noise estimate r2

n in (19).

5. Simulation

We use LIVE [17] and TID2008 [18] databases to verify the per-
formance of the proposed algorithm. In these two databases,
images compressed with JPEG standard are used for testing, as
each of them has an associated mean opinion score (MOS) and dif-
ference mean opinion score (DMOS) to represent its subjective
quality.

5.1. Experimental implementation

The experiments are composed of three steps: training for
quantization noise estimate; calculating NR SSIM and fitting it with
subjective scores. To avoid the reported results being affected by
known features, images in these three steps are completely not
overlapped with each others. To demonstrate the robustness of
the proposed algorithm, all experiments are repeated for 20 times.
As shown in Table 1, the results of each experiment are highly cor-
related, which are located within narrow ranges as CC e [0.969,
0.987], SROCC e [0.93, 0.98], MAE e [4.1, 5.1], RMSE e [6.2, 7.5].
More comparisons are shown in Table 2.

To distill the common knowledge of quantization noise, we ran-
domly select ten images from the databases, and compress them
with different quality score (QS) = 10, 20, 30, 40, 50, 60, 70, 80,
90, 100. The 8 � 8 blocks with the same QS are clustered, and the
noise statistics of clusters are calculated. The statistics are used
to calculate NR SSIM, which are fitted subsequently. After applying
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logistic nonlinear operation, the NR SSIM value is fitted with sub-
jective values, e.g. MOS or DMOS, to produce the fitting function.
Finally, the NR SSIM of the tested image is fed into the fitting func-
tion to compute its NR IQA. For simplification, we use coarser QS in
training to get the cluster centroids and the corresponding
r2

center-zeros used for NR SSIM. If the QS of the tested image does
not exactly match the QS in training, the parameters r2

center and
r2

center-zero of the training with the nearest QS will be used at the
stage of NR SSIM.
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Fig. 4. Performance of the proposed algorithm vs. cluster number.
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5.2. The effect of cluster number

The clustering performance affects the accuracy of MSE estima-
tion, as well as objective quality assessment. Our IQA algorithm is
independent with clustering method, thus we use a standard one
(i.e. FCM) in this paper. We observe the influence of cluster number
on the proposed algorithm in Fig. 4. The median linear correlation
coefficient (CC) between the proposed NR IQA and the true DMOS
is calculated to measure their correlation. A higher value of CC
indicates a higher correlation with human opinion, and its maxi-
mum value is 1. This part of experiment is tested on LIVE database.
It is shown that the performance of the proposed algorithm
improves with cluster number increasing, but this improvement
saturates when cluster number is larger than 100. Considering
the computational cost, the number of clusters is set as 200 here
to balance the performance improvement and the implementation
speed.

5.3. Performance comparison

The proposed NR IQA is modified from SSIM, hence these two
matrices are firstly compared in Table 1 to testify the efficacy of
the proposed modification. This experiment is constructed on LIVE
database. The correlation coefficient (CC), Spearman rank-order
correlation coefficient (SROCC), Mean absolute prediction error
(MAE) and Root mean square prediction error (RMSE) after nonlin-
ear regression are used as criteria, where CC indicates the predic-
tion accuracy and SROCC measures the prediction monotonicity.
It is shown that the proposed algorithm achieves comparable per-
formance to the MSSIM, even in the condition that original images
are unavailable.
(c)

(d)

0 20 40 60 80 100
0

1

2

3

4

5

6

7
MOS vs. the BRISQUE measure on Tid2008 data set

BRISQUE

M
O

S

Data pairs of true and estimate values
Fitting curve of data pairs
95% confidence range
of the red curve

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
MOS vs. the proposed  measure on Tid2008 data set

The proposed measure

M
O

S

Data pairs of true and estimate values
Fitting curve of data pairs
95% confidence range
of the red curve

es. (a) MS_SSIM; (b) VIF; (c) BRISQUE; and (d) proposed metric.



C. Wang et al. / J. Vis. Commun. Image R. 28 (2015) 53–59 59
We further compare the performance of the proposed algorithm
with some IQA algorithms, including two FR and three NR metrics.
The compared FR IQA indices include multi-scale structural simi-
larity index (MS_SSIM) [19] and visual information fidelity (VIF)
[4], which are the most popular indices due to their good perfor-
mance and simplicity. The referred NR indexes are BLIINDS-II
[22], DIIVINE [23], dubbed blind/referenceless image spatial qual-
ity evaluator (BRISQUE) [11]. BLIINDS-II, DIIVINE, BRISQUE are
compared because they are the up to date ones and their advanta-
ges over other benchmarks have been proven [11].

To verify the robustness of IQA algorithms, we use different
data in training and testing, i.e. the prior knowledge is distilled
from LIVE database and IQA is done on images in TID2008 data-
base. IQA results are tabulated in Table 2. Among all IQA algo-
rithms, MS_SSIM and VIF are FR algorithms, and do not depend
on image statistical information. NR IQA is more difficult than FR
ones, because they do not have original images as reference. The
performance of the proposed algorithm is comparable to that of
MS_SSIM to prove its robustness. Among all the NR algorithms,
the proposed algorithm is the best one. It performs constantly bet-
ter than BRISQUE on the aspects of CC, SROCC, MAE and RMSE, and
these improvements are over 5% in most cases. BRISQUE is better
than BLIINDS-II and DIIVINE, and its CC and SROCC reduce about
3%, because BRISQUE features are relatively high and is easily per-
turbed by image content.

The scatter plot of MOS versus metric prediction by different
methods is shown in Fig. 5. The data is indicated as blue circle;
the logistic function for data fitting is given by the red curve;
95% confidence range of the red curve is plotted by the blue lines
of dashes. It shows that VIF performs the best and the proposed
method is slightly better than MS_SSIM in its narrower range of
double standard deviations. BRISQUE does not produce satisfactory
results because some of its scatters are located far away from the
red fitting curve, as shown in Fig. 5(c). In brief, Fig. 5 gives a similar
conclusion as Table 2.
5.4. Computational Cost

The calculation of MS_SSIM and VIF is fast, as classification is
not required. BRISQUE only uses small number of features (18
per scale and 2 scales) to represent an image, hence it is also faster
than the proposed algorithm. Most of the computational cost of the
proposed algorithm lies in block classification. For classification,
differences of the tested block and the cluster center are examined,
which requires 64 additions for each comparison. Therefore, its
computational cost will be considerable if the tested image con-
tains many blocks.

The complexity of various IQA metrics is compared, in terms of
the processing time (in seconds) on TID2008. The IQA algorithms
are implemented by MATLAB on a single-core CPU at 2.2 GHz with
2 GB RAM. It is shown that the proposed algorithm takes the lon-
gest processing time, i.e. about 9 seconds for an image. However,
the processing time can be significantly reduced by three ways:
(1) setting a small cluster number; (2) shortening the length of
description vector for cluster center, because most high frequency
DCT coefficients are quantized to zeros; and (3) using parallel com-
putation for multiple comparisons within a cycle, e.g., a single
Instruction and multiple data (SIMD) for 32 bits addition by an
Instruction. It is expected that the implementation speed of the
proposed algorithm will accelerate 10 times by these strategies.
6. Conclusion

In this paper, we firstly overview SSIM and the probabilistic
model of quantization noise, and then propose a learning-based
algorithm to accurately estimate the noise amplitude, which is
used for the modified SSIM. The experimental results validate the
efficiency of the proposed metrics over state-of-the-art NR IQA
algorithms, such as BRISQUE. The proposed algorithm can be used
to monitor video objective quality or to control the re-quantization
in trans-coding.
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