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Abstract

Plateau bursting is typical of many electrically excitabédls, such as endocrine
cells that secrete hormones and some types of neurons tatesaeurotransmit-
ters. Although in many of these cell types the bursting pastare regulated by the
interplay between voltage-gated calcium channels anélcalsensitive potassium
channels, they can be very different. For example, in inssdicreting pancreatic
(-cells, plateau bursting is characterized by well-defingiles during the depo-
larized phase whereas in pituitary cells, bursting featfast, irregular, small am-
plitude spikes. The latter has been termed “pseudo-pldiaesiing” because the
spikes are transients around a depolarized steady stagr than stable oscilla-
tions in the fast subsystem. In this study we systematidaligstigate the bursting
patterns found in endocrine cell models. We show that tlasscbf voltage and
calcium gated conductance based models can be reducedpolyinemial model
of Hindmarsh and Rose (25). This reduction preserves tha praperties of the
biophysical class of models that we consider and allows &aited bifurcation
analysis of the full fast-slow system. Our analysis doesegtire decomposition
of the full system into fast and slow subsystems and reveafsepties of endocrine
bursting that are not captured by the standard fast-slolysiea

Key words. Excitable systems; Bifurcation theory; Bursting ostitlas; Spike
Adding; Endocrine Cells.
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I ntroduction

Plateau bursting is an intrinsic property of endocrinescely means of which
they achieve the rise in intracellular calcium concertrathecessary for secre-
tion (4, 5, 29, 48). It is mediated via the interaction of agk-gated calcium
(Ca?*) channels and various potassiuiid®( ) channels in the cell membrane.
Upon stimulation that generally leads to depolarizatidre membrane potential
becomes more positive, opening the voltage-gated™ channels. The result-
ing Ca2" influx into the cytosol triggers activation of calcium-siive potassium
(Kca ) channels, generating the outflowléf- ions that repolarizes the membrane
potential. This repolarization leads to closure of voltggéedCa®" channels and
subsequent decrease in the cytosolic calcium levéls*t];). This sequence of
events leads to oscillations in the intracellular calciunmezntration that are ac-
companied by plateau-bursting electrical activity. Suatignged electrical activ-
ity is an efficient way to increase intracellul@a?*, in contrast to brief neuron-
like single spikes. The increase[@fa®"]; stimulates the release of hormones from
secretory vesicles (4, 5, 29, 48). The plateau-burstingtridal activity is char-
acterized by periodic switches between an active (degeldyiphase accompa-
nied by increase ifCa?"]; and a silent (repolarized) phase during whi€ha?*];
decreases due 0a’" extrusion. Owing to the importance of this activity, nu-
merous modeling studies have been carried out of plateestity in a variety
of cell types, including pancreatig-cells (11, 12, 16, 22, 46, 51) and pituitary
cells (30, 40, 42, 45, 47). The models in these studies arergiinderived using
the Hodgkin-Huxley formalism (26) and generate burstingavéor by taking into
account the crosstalk between voltage-depen@eft channels an& ¢, channels
in combination with the slow dynamics of intracellular galn concentration.

An important feature of plateau bursters is that the fastespiluring the active
phase do not cross the baseline of the slow oscillation isiteet phase. There are
two types of plateau-bursting patterns that have been fountbdels. The classi-
cal square-wave (10, 36) (or fold-homoclinic (27)) burgtisitypical for pancreatic
(-cells and is characterized by well-defined spikes in thvegthase that corre-
spond to stable limit cycle solutions in the fast subsystésuoch models. The other
type of plateau bursting is typical of pituitary cells (3@, 412, 45, 47) which ex-
hibit small irregular spikes in the active phase. This patteis been called pseudo-
plateau bursting (40) because it is produced by transiesiiai®ns rather than
stable limit cycles, and has been classified mathematieallfold-subHopf (27).
Despite these differences, the bursting patterns obsénvexdocrine cell models
are both governed by the interplay between voltage-deperitie ™ channels and
Kca channels.

The focus of this paper is investigation of these two plafeansting patterns.
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We are interested in identifying fundamental propertieghid class of models
in terms of parameter(s) that control the behavior of theesgs We consider a
generic simplified biophysical model system (see Appendikfar details) based
on elements drawn from several published models (12, 42, ¥% show that
a model system of the above class can generate both typeateaplbursting,
depending on the balance between inward and outward csrréfe begin by
performing a classical fast-slow bifurcation analysis)(@6the generic model and
demonstrate how the transition between square-wave and@g#ateau bursting
takes place in the ‘frozen’ fast subsystem. We then go betfunthst-slow analysis
to examine bifurcations of the full bursting system withpest to the speed of
the slow variable. This is of particular interest for folab$iopf bursting, which
produces appropriate spiking patterns when the separafitime-scales is not
extreme.

In order to facilitate the computations and demonstrateggerality of the
results, we employ a polynomial reduction of Hindmarsh€roge (25). We
demonstrate that this model, although phenomenologicadliaghtes the qualita-
tive behavior of the biophysical system in the frozen cagkthan use it to study
systematically the full-system bifurcations that leaduesting and that control the
number of spikes per burst. We follow representative péiodbits of the full
ODE system with different numbers of spikes and find that tmaespatterns of
bifurcations govern both square-wave and pseudo-plateaodic solutions. Most
interestingly, we find for both classes of bursters that thtéepns differ depending
on the location of the full-system steady state, which liesadbranch of saddle
equilibria in the fast subsystem, relative to the homoclioibit of the fast sub-
system.

Fold-homoclinc bursting has been previously studied ahdrsthave similarly
pointed out the central role of bifurcations of the full smst (2, 39, 50). One
study (7) has demonstrated locally the emergence of sustimgioscillations from
homoclinic connections in the limi& — 0. None of these studies, however, has
treated the case of fold-subHopf bursting nor systeméaticalmpared it to fold-
homoclinic bursting.

Results

Generic Endocrine System

Since the pioneering work of Rinzel (36), it has become adstath approach
to study bursting oscillations using fast-slow analysie, by decomposing the
model into fast and (one-dimensional) slow subsystems aadlyzing the dy-
namics of the full system in the limit of the slow variableated as a bifurca-
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tion parameter. In the class of models (Appendix A.1) thatcawesider, the only
slow variable is the cytosolic calcium concentratiat), which indeed changes
much more slowly than the membrane potentid) \ and the channel gating vari-
ables. The separation of time scales in these models isotleatrby the pa-
rameterf,, which represents the fraction of fré€a’*];. Fast-slow analysis has
been widely used in theoretical studies of both square-veank pseudo-plateau
bursters (10, 12, 30, 36, 40, 42, 43, 45), assuming[fhaﬁ*]i is a slow variable.
These studies have shown that square-wave bursting magetharacterized by
a supercritical Hopf bifurcation in the fast subsystem, rghs in pseudo-plateau
bursters this bifurcation is subcritical. We illustratéstm Fig. 1 using the generic
endocrine model (Appendix A.1), where we vary the half-maxn activation;,
of the voltage-gated’a®" channels in order to change the type of the Hopf bifur-
cation of the fast subsystem (Egns. (4)—(5)). We also soperse the bursting
trajectories of the full system for each valuelgf, on the corresponding bifurca-
tion diagrams.

For Vi, = —22.5 mV, illustrated in Fig. 1(a), the generic model behaves like
a typical model for pancreatig@-cell square-wave bursting (10, 12, 36, 43). Note
that the simplified generic model corresponds to classioedting with cytoso-
lic Ca?* as the single slow variable, which is exemplified by the oagiChay-
Keizer model (16). More recerit-cell models incorporate effects 6fa?" in the
endoplasmic reticulum and ATP (12), but we neglect thesdeg lhave no ana-
log in models of pituitary bursting. As shown in Fig. 1(a)etfast subsystem is
bi-stable for a range of values of the control parametend is characterized by
a Z-shaped steady-state curve that folds at saddle-nodecdiiion points labeled
SN; and SN. The upper branch of this curve consists of stable foci thee ta-
bility as calcium increases via a supercritical Hopf biatron (HB). Between HB
and SN the upper branch points are unstable foci/nodes that becanidies at
SN;. The steady state gains stability again at,SMd beyond this point it is a
stable node. The Hopf bifurcation gives rise to a branch ablstperiodic orbits
that terminates in a homoclinic bifurcation (HC) with onetbé saddles on the
steady-state branch delimited by the two saddle-nodedaifions SN and SN.
Bursting also relies on the fact that theulicline of the full system Eqgns. (4)—(6)
(not shown in Fig. 1) intersects the Z-shaped steady-state of the fast subsys-
tem Egns. (4)—(5) somewhere in the middle branch. Thus, #rabrane potential
(Vi) in the full system periodically switches between silend aative phases due
to repeated intersections of the bursting trajectory aead-thulicline that force it
to change direction in the phase space.

For the caséd’,, = —27.5 mV shown in Fig. 1(b), the bifurcation curves
closely resemble those from several pituitary bursting eed30, 40, 42, 45).
Compared with the case fdr,, = —22.5 mV, we observe that thé mV left
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shift in theCa?* current activation curve preserves the Z-shaped steatly-ctirve
of the fast subsystem Eqns. (4)—(5) along with its stabpitgperties, but it has
shifted to the right. Furthermore, the Hopf bifurcation lné fast subsystem is now
subcritical, which results in a branch of unstable periamtigits that terminates at
HC. As can be seen from the trajectory of the full system E¢#)s-(6) shown
in Fig. 1(b), the transition in the type of the Hopf bifureatiresults in pseudo-
plateau rather than square-wave bursting, as the spikelsiart® a slow oscillatory
approach to the upper steady-state branch, not stabledioies. Such spikes
can only occur iffCa®"]; is not too slow. Specifically, the rate of increase of
[Ca®T]; cannot be much slower than the rate of approach of the solitidhe
upper steady state. Indeed, pseudo-plateau bursters smibuosting oscillations
when the slow variable is made too slow, if the trajectorylisabed in a stable
state on the upper branch of the Z-curve. When the slow Jariaffaster, however,
bursting is possible because the trajectory exits theaptiase before reaching the
stable steady-state. In the class of plateau-bursting Indlat we focus on, the
parameterf. that controls the separation of time scales typically rarfggm 103
to10~! (11, 12, 16, 30, 40, 42, 45-47), which is only moderately smal

For intermediate values &f,,, (not shown), the bifurcation diagram of the fast
subsystem Eqns. (4)—(5) deforms continuously via a (codsioa-two) degener-
ate Hopf bifurcation point, where HB changes from supeoaiitto subcritical. At
first, the branch of unstable periodic orbits turns arouralsstddle-node of period-
ics (SNP) bifurcation, which leads to a branch of stabletloycles that terminates
atHC. AsV;,, decreases and the Z-curve shifts to the right, the point 48 sthifts
to the right, but to a greater extent and, thus, moves clas8iNt and the middle
branch of the Z-curve. Hence, eventually the SNP and HC csicmultaneously,
after which the periodics never become stable.

The changes in the bifurcation diagrams in Fig. 1 reflectrsd\@ophysical ef-
fects of the left shift of th&”a?* current activation curve, which alters the balance
betweenCa?* andK* currents in the inward direction. This means that nirg
current is needed to repolarize the bursts, so that the vecshifts to the right.
The shift of the HB reflects an enlarged region of conductilmthy in which ex-
cessive inward current prevents spiking and results in aldéped plateau. Note
that the loss of true spiking increases tHe** concentration because the mean
membrane potential is higher without the hyperpolarizedrispike interval. The
model thus suggests that the levels of intracellular calaoncentration[Ca®"];)
during pseudo-plateau bursting should be significantlatgrethan during square-
wave bursting (Fig. 1), in accord with published experiraédata showing simul-
taneous recordings of voltag&;() and cytosolic calcium concentratiofCa?*];)
in pancreatics-cells (see Fig. 2 in (5)) and pituitary cells (see Fig. 5 iB)(dnd
Fig. 1 in (45)). According to these studies, calcium levelpancreatics-cells
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oscillate between 0.15M and 0.35uM, whereas in pituitary cell$Ca’]; can
exceed 1uM during bursts.

The Polynomial Model

We complement the classical fast-slow analysis with a bition analysis of the
full system. Such a full-system analysis provides a difiergew of the bursting

solution as a periodic orbit with a complicated internalistare. This approach is
necessary to detect chaos, which, as shown by Terman (4#pris robust when
the slow variable is not very slow and thus is more likely taobeerved in experi-
ments. In order to investigate systematically the fullegsbifurcation structure of
endocrine models we construct a polynomial plateau-mgstodel by building

into it the common dynamical features found in a number gbphysical modeling

studies (2, 11, 12, 30, 34, 40, 42, 43, 45, 46).

Equations and Assumptions

The polynomial model is a modified Hindmarsh-Rose type mtlwith param-
eters chosen such that the bifurcation diagram of the fdstystem is similar to
that of Eqns. (4)—(5), that is, the upper steady-state brambibits a single Hopf
bifurcation; compare also (39). The equations have thergefaem

Ccll_f = f(xvyv Z)v (1)
Ccll_gt/ = ¢g(.’IJ,y), (2)
% = eh(x,2), (©))

where f(z,y, 2), g(z,y) and h(x, z) for (z,y,2) € R3 are sufficiently smooth
functions andp ande are rate constants that govern the separation of time scales
The variablez(t) represents the membrane potential and the other two vesiabl
y(t) andz(t) stand for the gating dynamics of th&{ ) channels and the dynam-
ics of cytosolicCa?", respectively. We require the right-hand sides to satiséy t
following conditions:

C1 The functionf(z,y, z) = —s (—a x> 4+ x?) — y — bz is a cubic function that
guarantees an N-shapeehulicline. Sincer(t) acts in place of the membrane
potential (Eqn. (4) in Appendix A.1), the tersm 23 represents the contribu-
tion of theCa?* inward current—z2 — y represents the contribution of the
outward voltage sensitivE™ currents; and-b z stands for the contribution
of the outward calcium-sensitive potassium current.
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C2

C3

C4

C5

Co6

Cc7

The functiong(x,y) = 2% — y is a quadratic function that gives a parabolic
y-nullcline and replaces the delayed rectifier activatiamekics (Eqgn. (5) in
Appendix A.1). It depends only on the membrane potentialignitherefore,
decoupled from the third Eqgn. (3).

The functionh(z, z) = say x + by — k z is linear inz andz and represents
Ca?* dynamics, with the terns a; = + by replacing the source of calcium
through voltage-gated calciufa®* channels and-k z standing for the de-
cay term in Eqn. (6).

The time-scale paramtegsande are such that andy vary on a faster time
scale tharx. Although strictly speaking in the biophysical system Eqd3—
(6) there are three different intrinsic times scales¥fgr, n ande, it has usu-
ally been assumed th&f, andn are fast variables compareddo This is a
reasonable assumption given that the time scale of chan@e’ihconcentra-
tions is several orders of magnitude smaller thignandn. Therefore, in the
polynomial model we takeé = 1 and considet a small positive parameter.

The parameters, b > 0 in the fast subsystem Eqns. (1)—(2) of the polynomial
model are chosen, without loss of generality (W.L.O.G ghsthhat for a range

of values ofz > 0 there are three equilibrium points¢,y¢), i = 1,2,3,
given by the points of intersection of the andy-nuliclines. Furthermore, we
require that these equilibria are of the following tyges, y{) is a stable fo-
cus,(z$5,y5) is a saddle, anfk§, y5) is a stable node. These conditions ensure
that the fast subsystem Eqns. (1)—(2) of the polynomial oalea Z-shaped
steady-state curve defined by = 22 andz = (sa2® — (s + 1) 2?) /b} that
guarantees a region of bistability for a range of values of0 (Fig. 2).

The parametera;,b; < 0 andk > 0 in the (one-dimensional) slow sub-
system Eqn. (3) of the polynomial model are chosen W.L.Ou@h shat the
z-nullcline {z = (say x + b1) /k}, intersects the Z-shaped steady-state curve
{y = z? andz = (saz® — (s + 1) 2?) /b} of the fast subsystem Eqns. (1)—
(2) somewhere in the middle branch, which is of saddle typg. . This
intersection point corresponds to a degenerate branchifagcdition of the

full system Eqgns. (1)—(3) at= 0 and it determines the location and stability
of the equilibriumFP = (xpp, yrp, zrp) Of the full system that persists for

e > 0; see Appendix A.2 for detalils.

Plateau bursting also relies on the existence of a Hopfdafion in the fast
subsystem (Egns. (1)—(2)); we assume that this Hopf bifiarcds unique.
The parameteg < 0 in the polynomial model Egns. (1)—(3) plays the same
role asV;,, in the generic endocrine model Eqns. (4)—(6); it controéstyipe
of bursting by converting the Hopf bifurcation (HB) of thesfasubsystem
from supercritical to subcritical (Fig. 2). The type of HBdstermined by
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the sign of a first Lyapunov coefficient evaluated at the aaitequilibrium
(zuB,yuB) = (s, xQHB), and in our case (28) it is given by:

Sign [ll (wHB)] = Sigl’l |:F/// + %:5;“)]
= sign [65@ + (25(3axHB_1%);I{_B2gS(gawHB_l))] |

whereF(z) = —s(—az® + 2?) — bz andG(x) = 2. The values of < 0
that we consider are chosen W.L.O.G. such that this transdccurs in the
region of bistability with respect to (Fig. 2).

In the following analysis we fix all the parameters in the mMadeept fore, s
andb;. The parameter controls the speed of the slow variabl@nd is our main
bifurcation parameter corresponding foin the generic endocrine model. The
parameters controls the location and type of HB in the fast subsystemichvis
also related to the position of the HC, in analogy with theetfthat decreasing,,,
has on the behavior of the generic endocrine system (FigNdfe that, similar to
Vi, , the parameter also appears in the slow)equation of the polynomial model.
The parametes; determines the location of the equilibridfi® = (xpp, yrp, zrp)
of the full system, which exists for atland is given by the intersection of the
nullcline and the Z-shaped steady-state curve of the fastystem Eqns. (1)—(2);
the locus of FP affects the bifurcations of the full systerm&d1)—(3) that occur
whene is varied. Without loss of generality and according to ctinds C1-C7
we choose the rest of the system parameters ta be0.5, b = 1, a; = —0.1 and
k=0.2.

We plot in Fig. 2 the bifurcation diagram of the polynomiastfaubsystem
Egns. (1)—(2) using the slow variableas bifurcation parameter; panel (a) shows
the bifurcation diagram fog = —1.61 and panel (b) fos = —2.6, which cor-
respond to square-wave and pseudo-plateau burstingcteshe A comparison
between Figs. 1 and 2 demonstrates that the polynomial mmededduces quali-
tatively the dynamics of the generic endocrine model. intib the biophysical
system, the transition from supercritical to subcriticalgfibifurcations in the fast
subsystem of the phenomenological model Egns. (1)—(3)smpanied by a right
shift of the Z-shaped steady-state curve that, conseguentlers a larger range of
z-values during plateau bursting in the full system. In batheds of Fig. 2 we also
plot the z-nullclines for values ob; where they intersect the Z-curve below, near,
and well above the homoclinic bifurcation (HC) of the fagbsystem.
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Bifurcation Analysis of the Full System

The equilibria and periodic orbits found in the polynomedfsubsystem Eqgns. (1)—
(2) can also be thought of as equilibria and periodic orbftshe full system
Eqns. (1)—(3), but they only exist far = 0 and the full system is degenerate
here. Therefore, we cannot expect that all equilibria amibgdie orbits persist
for ¢ > 0. In fact, only one of the equilibria survives, namely theastg state
FP = (zpp,yrp, zrp) On the Z-shaped curve at which thenulicline intersects
the bifurcation diagram of the fast subsystem. Clearlyhis intersection lies on
the lower branch of stable equilibria or on the upper branathghat the corre-
sponding equilibrium in the fast subsystem is stable therful system does not
support any bursting or spiking solutions. Indeed, for ¢hesses FP is a globally
stable equilibrium fore > 0 (Appendix A.2). However, if FP foe = 0 corre-
sponds to an unstable equilibrium of the fast subsystem, dh@mall perturbation
e > 0 may give rise to a periodic orbit of the full system, whichresponds to a
bursting or spiking orbit (7, 44). Unfortunately, this tmg@nly gives predictions
for0 <e< 1.

We perform a numerical continuation study of the full systegns. (1)—(3)
and study how the periodic orbits of the full system are oigh for a much
larger range o€ > 0. We consider both square-wave and pseudo-plateau byrsting
for s = —1.61 ands = —2.6, respectively (Figs. 3—-6). We find that the steady
state FP, which does not dependepgains stability at a®(1)-value ofe > 0in a
Hopf bifurcation (HB)). The emanating branch of periodic orbits of the full system
gives rise to a sequence of spike-adding bifurcations. Hbere of this sequence
is determined only by the location of FP relative to the holmacbifurcation HC
of the fast subsystem. In order to illustrate this, we wik ke parametei; to
shift the locus of FP below and above the HC (Fig. 2) and comthé respective
bifurcation diagrams of the full model Eqns. (1)—(3) for tbaypes of bursting.
While the bifurcations SN HB (labeled HB in Figs. 3-6), HC and SNof the
fast subsystem (Fig. 2) do not persist tor> 0, we will show later that HB
and SN for special values of; act as end points of a curve {a, b, )-space that
corresponds to Hopf bifurcations HBf the full system (see Fig. 10).

Route to Bursting via Spike-Adding Saddle-Node of Periodics Bifurcations.
We start our analysis of the bifurcation structure of thezpoial system Eqgns. (1)—
(3) by considering the cagg = —0.01, for which FP lies below HC. Figure 3
shows the bifurcation diagram of the full system fo= —1.61 and Fig. 4 for

s = —2.6. The bifurcation diagrams are presented in three-dimeasie, z, x)-
space withe as the bifurcation parameter plotted on a logarithmic sogbanels (a)
and on an (enlarged) linear scale in panels (b). We also Ipdobifurcation dia-
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grams of the fast subsystems Eqns. (1)—(2)efee 0. Since on the logarithmic
scale these would be pushed off-tec, we project them onto thez, z)-plane at
an arbitrary fixed value of = 1077,

The unique equilibrium FP of the full system Eqgns. (1)—(3hick has real
eigenvalues\; < 0 < Ay andA3 = 0 ate = 0, becomes a hyperbolic saddle
and A3 > 0 for e > 0 small (Appendix A.2). Ax increases, FP becomes sta-
ble in a Hopf bifurcation (HB). The Hopf bifurcation HB is subcritical both for
s = —1.61 (Fig. 3) ands = —2.6 (Fig. 4) and gives rise to a branch of unsta-
ble periodic orbits that becomes stable in a saddle-nodernidgics (SNF). The
branch of stable periodic orbits corresponds to tonic sgilof large amplitude,
unlike the tonic spiking typically seen if-cell models as th€a?" pump rate is
increased (36, 44) or the conductance<ef, channels is decreased (15, 31). This
branch can be considered as bursts with one spike. Samiagiajectories
of the full system are superimposed on the bifurcation @iaxgr in Figs. 3(b) and
4(b). The first one (from the right) in both figures is a twokspperiodic orbit. As
e decreases, the branch of one-spike periodic orbits losgsemains stability in
saddle-node of periodics (SNP) bifurcations and during finocess it transforms
from a one-spike into a two-spike periodic orbit. The tréinsi happens over a
very narrow range of, to the right of SNR, during which the stable one-spike pe-
riodic orbit coexists with a stable two-spike periodic orlAs ¢ decreases further
the series of SNP bifurcations repeats, delimiting smalfet smaller portions of
the branch, each of which corresponds to a bursting solwtitmone more spike
(Figs. 3 and 4). Using the software package AUTO (17), we vabte to follow
this branch down te of order10—3. Figures 3(b) and 4(b) illustrate the accumu-
lation of the SNP bifurcations asdecreases for square-wave £ —1.61) and
pseudo-plateaus(= —2.6) bursting, respectively. The bifurcation diagrams for
square-wave and pseudo-plateau bursting are very sinmthibath exhibit a se-
guence of SNP bifurcations creatingspike solutions for increasingly largeras
e decreases. In the limit— 0 the number of spikes of the stable bursting solutions
goes to infinity, while the stability region of each indivawrbit goes to zero. This
phenomenon can be regarded as a spike-adding cascade4250).3

Figures 3 and 4 suggest that the full system exhibits a spilkiag cascade
mediated by SNP bifurcations if the equilibrium point FP loé full system lies
below the homoclinic bifurcation HC of the fast subsystemefe= 0 (Figs. 2(a)
and (b) withb; = —0.01).

Route to Bursting via Spike-Adding Isolas. We continue our analysis of the
bifurcation structure of the polynomial model Eqns. (1)}4¥ considering the
casesh; = —0.045, s = —1.61 andb; = —0.21, s = —2.6, for which FP lies
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above HC (Figs. 5 and 6, respectively). As before, we aias the bifurcation
parameter and plot the bifurcation diagrams of the fullaysin (¢, z, x)-space on
a logarithmic scale in panels (a) and on an (enlarged) liseale in panels (b).
The bifurcation diagrams of the fast subsystems Eqns.Z}1jef e = 0 are plotted
as well; for the logarithmic-scale pictures in Figs. 5(adl &(a) they are projected
onto the(z, z)-plane at the arbitrary values of= 10~

Our choices forb; and s illustrate the two possibilities for positioning the
unique equilibrium FP of the full system Eqgns. (1)—(3). Bor= —0.045 and
s = —1.61 the z-nullicline intersects the bifurcation diagram of the fadisy/stem
above HC, but below SN Forb; = —0.21 ands = —2.6, on the other hand,
this intersection lies in between $Mind HB;; compare Figs. 2(a) and (b). As
before, if FP lies in between HC and $Nt has real eigenvalues; < 0 < A; and
A3 = 0 ate = 0 and becomes a hyperbolic saddle and> 0 for ¢ > 0 small
(Appendix A.2). However, if FP lies in between $End HB,, the eigenvalues
from the fast subsystem are unstable; they are real for e ¢toSN and form a
complex conjugate pair for FP close to IHBn this case\; < 0 and FP is again a
hyperbolic saddle with two unstable eigenvaluesefor 0 small (Appendix A.2).

We find that the bifurcation diagram of the full system is tigically equiva-
lent for these two choices of FP above HC, but rather diffieireim the case where
FP lies below HC. Note that, locally near= 0, there is no difference in whether
FP lies below or above HC; asincreases FP becomes a hyperbolic saddle with
two unstable eigenvalues and it gains stability in a Hopditoiiition (HB,). How-
ever, in contrast to Figs. 3 and 4, the Hopf bifurcationsHBnow supercritical and
gives rise to a branch of stable periodic orbits that comrdpto large-amplitude
tonic spiking. As before, we superimpose sample spikingdtaries of the full
system on the bifurcation diagrams in Figs. 5(b) and 6(b) ametxample of a
stable one-spike periodic orbit is shown in Fig. 6(b), where —2.6.

Both fors = —1.61 ands = —2.6 the branch of one-spike periodic orbits
loses stability in a supercritical period-doubling bifation (PD). The emanating
branch of stable period-doubled orbits corresponds tospike periodic orbits,
examples of which are superimposed on the bifurcation diagrin Figs. 5(b)
and 6(b). The two-spike periodic orbit loses stability iroder period-doubling
bifurcation (PD) that gives rise to a period-doubled two-spike orbit; annepde
of such a periodic orbit is shown in Fig. 5(b) and we can clesek that it does not
correspond to a standard bursting solution. The periodigoutwo-spike orbit is
stable for a much smaller rangedrand it also loses stability in a period-doubling
bifurcation, starting a period-doubling cascade (not sijowe will refer to these
and further period-doubled-spike orbits as secondary bursting solutions and we
do not pursue further investigation of these types of pediodbling cascades.

Instead, we focus on the spike-adding cascade that ocaar#f &P lies above
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HC. In this case, the spike-adding cascade is organizedlnsisA family of sta-
ble n-spike periodic orbits is born in an SNP bifurcation andeakecreases, it
undergoes period-doubling bifurcations to secondarytimgrsolutions. We found
these isolas by generating seed solutions using numeniegration of Eqns. (1)—
(3) for decreasing fixed values efand continuing them in AUTO (17). Figures 5
and 6 show isolas af-spike periodic orbits for, = 3,...,9andn = 3,...,12,
respectively, along with examples of bursting trajectosigth increasing numbers
of spikes. We observe that the isolas create gaps betwdgr stapike periodic
orbits for moderately small values afbut they overlap asdecreases creating nar-
row intervals with coexisting stable- and(n + 1)-spike periodic orbits. However,
the stable portions of the isolas become smaller Bxreases resulting in smaller
regions in parameter space where each stadgpike periodic orbits exist.

Figures 5 and 6 suggest that the full system exhibits a silkig cascade
mediated by period-doubling bifurcations and isolas ifeleilibrium point FP of
the full system lies above the homoclinic bifurcation HClod fast subsystem for
e = 0 (Figs. 2(a) and (b) witth; = —0.045 andb; = —0.21, respectively). In
particular, it does not seem to matter whether FP lies beloabove the saddle-
node bifurcation SNof the fast subsystem fer= 0 as long as the corresponding
equilibrium of the fast subsystem is unstable.

Chaotic Bursting Solutions  When the route to bursting is mediated via spike-
adding SNP bifurcations (FP well below HC), periodic burgtis accompanied
by bistability and chaotic alternation between regulaiand (n + 1)-spike peri-
odic orbits. This has previously been shown for fold-hormclbursting (43),
and an example of irregular, presumably chaotic, altesnalietween two- and
three-spike solutions is illustrated for fold-subHopf ¢tirg in Fig. 7(a). In con-
trast, when bursting arises via spike-adding isolas (FP almve HC), bursting
can be chaotic due to the overlapping of isolas in regimegevperiod-doubling
cascades exist. These give rise to chaotic alternatiomgeketregulan-spike pe-
riodic orbits and secondary bursting solutions. As antitat®on of such behavior,
we plot in Fig. 7(b) a time series of the polynomial model ie thid-homoclinic
case, showing a spontaneous transition from period-ddutle-spike solutions to
three-spike bursting.

Mixed Routeto Bursting. When FP lies close to the HC fer= 0, the periodic
solutions branches are of mixed type. As an illustration emputed the bifurca-
tion diagrams of the full system Eqgns. (1)—(3) both for theesaof fold-homoclinic
bursting, withs = —1.61 andb; = —0.023 (Fig. 2(a)), and of fold-subHopf burst-
ing, with s = —2.6 andb; = —0.066 (Fig. 2(b)).
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The fold-homoclinic case is shown in Fig. 8(a) and correslgdio a situation
where FP lies just below the HC fer= 0. In contrast to Fig. 3, the Hopf bifur-
cation HB; is supercritical and gives rise to a branch of stable onkespériodic
orbits that ends at a period-doubling bifurcation (.DFor these relatively large
values ofe, the bifurcation diagram resembles that of Fig. 5: a brarfcétable
two-spike periodic orbits emanates from Pthat loses stability in another period-
doubling bifurcation (PB), which gives rise to secondary bursting solutions. In a
narrow e-interval these secondary bursting solutions coexist wibranch of sta-
ble three-spike periodic orbits. As for Fig. 5, we did nottlier investigate the
period-doubling cascade of secondary bursting solutibasyather concentrated
on the spike adding. The branch of three-spike periodict®iiagentacurve)
in Fig. 8(a) does not lie on an isola, in contrast to Fig. 5. thesse smaller val-
ues ofe the bifurcation diagram resembles that of Fig. 3, as expediestead of
individual isolas, continuation of the three-spike peitodrbits leads to a single
connected branch of-spike periodic orbits that consists of increasing numbérs
spikes as decreases. We were able to follow this branch down to valtiesob
orderO(1073).

The fold-subHopf case is shown in Fig. 8(b) and corresponds situation
where FP lies slightly above HC fer= 0. Here, HB; is also supercritical and the
stable branch of one-spike periodic orbits again losedlisyah a period-doubling
bifurcation (PD). However, the emanating branch of stable$pike periodic or-
bits undergoes a sequence of SNP bifurcations corresmpridia spike-adding
cascade and the entire family of periodic orbits in the fyitem forms a single
connected branch. As before we were only able to follow treném down to
values ofe of orderO(1073).

The above computations indicate that there is an integegtamsition between
the two routes to bursting in both classes of models as FB&sdsom one side of
HC to the other. Detailed investigation of this transitisrigft for future investiga-
tion, because it requires numerical exploration in a regiovery small values of
where our computations break down.

Behaviour in thelimit of small e.

We have studied the case of= 0 (fast subsystem bifurcations) and the cascade
of periodic orbit bifurcations as decreases from large values, but it is evident
that there are important phenomena in the region of smtiat our numerical
continuations have not addressed. As mentioned earliemale(44) and Belykh

et al. (7) provide a theory for analyzing what type of periodrbit of the full
system arises from very small perturbatians- 0, but the theory in (7, 44) only
applies to the case where FP is located just below or abovid@ate = 0. We
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discuss here how their theory ties in with our numerical ytizt a much larger
range ofe, including other locations for FP.

Thelimit of small e for square-wave bursting Let us first consider square-wave
(fold-homoclinic) bursting, which is Scenario 3 in (7). ean (44) considered this
case already in 1992, but we will follow Belykh et al. (7). PHes just below the
HC (the cas€ < 0 in (7)), then there exists a bursting solution for- 0 small
enough. In the limit — 0 this bursting solution accumulates on a periodic orbit
with infinitely many spikes and the range of the slow varigbla our case) covers
the interval between the lower saddle-node bifurcation 8hd the HC (7). The
continuations shown in Figs. 3 and 8(a) indicate that thedeed exists a single
connected branch of-spike periodic orbits as — 0. While the continuation
in ¢ only reaches values of ordér(10~3), direct numerical simulations indicate
that bursting solutions persist and that their numbers idespand their periods
increase to infinity in the limit ot = 0. Note that the theory in (7) is only valid
for FP just below the HC, but our numerical study indicatest the bifurcation
structure for) < € < 1 remains the same also for FP closer to,SN

If FP lies just above the HC then Belykh et al. (7) predict thistence of an
interval 0 < ¢ < 1 where continuous (tonic) spiking exists. This tonic spikia
a periodic orbit with an amplitude that is close to the horimiclorbit at HC for
e = 0 and it is different from the branch of large-amplitude tosypiking solutions
that we found emanating from the Hopf bifurcation H& largee. The periodic
orbit for 0 < ¢ <« 1 may lose stability in a period-doubling bifurcation, but it
definitely does not persist beyond an SNP bifurcation thateslicted to occur for
some value < 1. Belykh et al. go on to explain that bursting oscillationgyon
occur after a homoclinic bifurcation of the full system, winéhe one-dimensional
stable manifold of FP is contained in its two-dimensionadtable manifold. This
homoclinic bifurcation happens at a valueedhat lies before the SNP bifurcation
where the periodic orbit corresponding to tonic spikingusugnteed to disappear
if it has not lost stability already.

The theory again only applies when FP lies just above HC. tticodar, for
fixed small0 < ¢ <« 1, both Terman (44) and Belykh et al. (7) predict that a
continuous variation from FP above the HC to FP below the HM(ir case this
means increasing the paramebeg) leads to a transition from continuous spiking
to bursting via a regime with chaotic dynamics. If we conéimaoving FP further
away above the HC, we expect that continuous spiking pser&istincreasingly
larger values of) < ¢ < 1. The periodic orbit that corresponds to tonic spiking
emanates from a closed curveeat= 0 that is some sort of average of a small
family of the stable periodic orbits in the fast subsysterhgre the range of the
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family depends on where thenulicline intersects this family; see (39). Note that
this argument also holds in the range fgrsuch that FP lies in between HEBnd
SN; ate = 0.

Unfortunately, in our numerical study we were unable to fimel bifurcations
that are predicted by the theory. Starting the continudtiom the family of one-
spike periodic orbits that emanates from 448 relatively large:, we found a route
to bursting that is mediated via spike-adding isolas (F)g.MNote that the isolas
overlap as decreases, which creates the possibility for chaotic matiith an un-
predictable number of spikes within each burst (50). Thelfaai stablen-spike
periodic orbits in each isola is born in an SNP bifurcatioa ataximal value o
and loses stability in a period-doubling bifurcation forresmallek-value. How-
ever, this structure does not match the order of the bifimeatexpected for the
stable tonic spiking that is predicted to exist fox ¢ < 1. Therefore, we con-
jecture that the homoclinic bifurcation of FP at a value ¢ < 1 gives rise to the
family of isolas. The precise value efor which this homoclinic bifurcation in the
full system occurs depends on the distance between FP arttlage = 0. Inter-
estingly, in the casg, = —0.045, s = —1.61 (Fig. 5) the limiting homoclinic orbit
appears to have the same amplitude as the homoclinic ortiiedast subsystem,
but this also appears to be the case for the families of ulespayiodic orbits in
Fig. 8(a), where FP lies below the HC. Hence, our numericalysis inconclusive
here.

The limit of small ¢ for pseudo-plateau bursting The analysis for the range
0 < e < 1 for pseudo-plateau (fold-subHopf) bursting has not beered®seudo-
plateau bursting in the biophysical sense (small transipikies) relies on the fact
that € is only moderately small, but the fold-subHopf structuresjsts for very
small epsilon. For such very small valuesepthe case of fold-subHopf bursting
compares to Scenario 1 in (7), that is, fok ¢ < 1 the solutions are relaxation
oscillations determined by the branches of stable eqialitior Scenario 1 the two
branches of stable equilibria end at the saddle-node hifiares SN and SN, but
in our case the upper equilibrium branch loses stabilitgaaly at the subcritical
Hopf bifurcation HB. Hence, we expect the scenario of slow passage through a
Hopf bifurcation (3) and the bursting solutions fok € < 1 resemble relaxation
oscillations with many small-amplitude oscillations dgithe active phase that
first decrease and subsequently increase in amplitude.

We point out that the theory fér < ¢ < 1 in the case of fold-subHopf bursting
is the same for FP below or above the HC, and it equally doesatier whetheb,
is such that FP lies in between HIBnd SN ate = 0. Hence, for very smal one
expects that the spike-adding cascades organized by b&tbBNcations (Fig. 4)
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and isolas (Fig. 6) transform to a topologically equivalbiitircation structure.

Considering the case where the bifurcation diagram is oethtype (Fig. 8(b)), it

seems likely that the bursting solutions eventually fornmgle connected branch
of periodic orbits with a spike-adding cascade organize@Ny bifurcations as
e decreases. This raises the question whether this couldaldte case for fold-

homoclinic bursting, despite the fact that for that caseo#sdmatter whether FP
lies above or below the HC. Again, our numerical study is imotasive here and a
detailed investigation is left for future work.

Nevertheless, we can get a glimpse into the region Withe < 1 via selected
numerical integrations in time. Inspection of the slow abhe ¢) oscillations
for fold-subHopf bursting indeed suggests persistenceof gscillations with
periods going to infinity. The delayed passage through thgf Biéurcation HB, is
characterized by the fact that the maximundies at the same distance from the
z-value of HB, as its minimum. If HB lies too close to SNthen the maximum of
z equals thez-value of SN. Figure 9(a) illustrates this for the polynomial model
with s = —2.6, by = —0.01 ande = 10~*. Note also that the pseudo spikes of
the z-variable during the active phase have nearly disappearguledicted, with
only vestigial spikes at the beginning and end of the platéaur some values of
e andby, the pseudo-plateau bursting appears to be chaotic, &rlgibiepolarized
plateaus with variable and unpredictable duration. Thaihe&minimum of: lies at
SNy, but its maxima lie between HBand SN. An example is shown in Fig. 9(b)
with s = —2.6, by = —0.12 ande = 0.001.

The Hopf bifurcation of the full system In all the examples that we showed of
the bifurcation diagam of the full system Eqns. (1)—(3), Hopf bifurcation HB

of the equilibrium FP happens at a relatively large value. ¢fowever, depending

on the choice forb;, which moves the location of FP on the Z-shaped steady-
state curve at = 0 relative to the HC of the fast subsystem, H&n occur for
arbitrarily small0 < ¢ <« 1. Figure 10 presents a two-parameter bifurcation
diagram of the Hopf point HBin dependence oty ande. The curves for both

s = —1.61 ands = —2.6 are shown.

If we increaseb; to 0 (this means going down in Fig. 10), starting from £HB
atb; = —0.01 where FP lies below the HC at= 0 for both choices o (Figs. 3
and 4), the Hopf bifurcation curve ends at the saddle-nddedaition SN ate = 0.

As discussed in Appendix A.2, the point St e = 0 corresponds to a singular
Hopf bifurcation of the full system, which persists fox ¢ < 1, where it occurs
at a value ob; for which FP liesO(e) close to (but past) the left knee of the Z-
shaped steady-state curve. The occurrence of a singuldridifopcation has been
shown previously for the original Hindmarsh-Rose systeB) (@ (2, Fig. 12) as
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well as in (39); see also (24). Note that KB only a singular Hopf bifurcation
for0 < e < 1and—1 <« b; < 0, but the exact transition from an ordinary to
a singular Hopf bifurcation is not defined. When FP corregisao a saddle very
close to SN ate = 0, itis unstable fob < € < 1, but its two unstable eigenvalues
are complex conjugate and lie extremely close to the imagiaes. Hence, only a
very small increase inalready stabilizes FP as the singular Hopf bifurcation,HB
occurs. The singular Hopf bifurcation gives rise to a sraatlplitude periodic orbit
that transforms very quickly asvaries over an exponentially small interval; if 5B
is supercritical ¢ will be decreasing, but if HBis subcritical the branch will turn
around at an SNP bifurcation that happens exponentiallseciédter HB. For the
fold-homoclinic case, the periodic orbit transforms intoraspike bursting orbit
wheren is extremely large foe small. For the fold-subHopf case, the periodic
oribt transforms into a relaxation oscillation. These enxgrttially small transitions
involve so-called canard orbits, where the periodic orbdatain segments that
follow the saddle-branch of the Z-shaped steady-stateeq(24).

If we decreasé; from b; = —0.01, we find that the Hopf curve for both
s = —1.61 ands = —2.6 initially increases ire, but then decreases again until
it ends ate = 0. However, the Hopf curve is not monotonic &p. Initially, the
equilibrium FP moves up the middle brancheat 0 and past SNonto the upper
branch of unstable equilibria until it reaches H&t a value okt > 0. However,
the Hopf curve continues for decreasiagvhen we trace FP past HBonto the
stable segment of the upper branch of the Z-shaped curve.désreases further,
the Hopf curve reaches a minimum bp (which corresponds to a maximum in
Fig. 10) and then returns to the value tgfthat corresponds to HBase — 0.
Hence, for a small range &f when FP is located close to but to the left of HB
on the stable segment of the upper steady-state branch, ¢kists a small range
of values0 < ¢ <« 1 for which FP loses stability and the attractor is a small-
amplitude periodic orbit; the end points of this small intdrare (ordinary) Hopf
bifurcation points. However, when FP is unstable, only onefHbifurcation exists
for 0 < € <« 1, which stabilizes FP asincreases.

Note that in the fold-homoclinic case HBs supercritical, while in the fold-
subHopf case it is subcritical. Furthermore, HiB subcritical when FP at = 0
lies near SN (see Fig. 3), but it is supercritical when FPeat= 0 lies near SN
(see Fig. 6). Hence, there must be at least one degeneraféiflopation on the
blue curve = —1.61) corresponding to the fold-homoclinic case, and at least
two degenerate Hopf bifurcations on trea curve s = —2.6) corresponding to
the fold-subHopf case in Fig. 10.



Endocrine bursting 18

Discussion

Given the importance of the rapid ionic activities in endioercells that set the
levels of[Ca®T]; (5, 8, 48, 49) and are instrumental for the regulation of e
exocytosis, it is of interest to identify the key mechanigyogerning them.

We consider two general classes of models for endocringibgyssquare-
wave bursting models (fold-homaoclinic) and pseudo-platearsting models (fold-
subHopf). It is important, in particular, to understand Himilarities and dif-
ferences between square-wave and pseudo-plateau bubstiagise they can be
regarded as a form of plasticity of the intrinsic membranepprties and thus
could have a profound effect on their function. We have presthere a generic
Hodgkin-Huxley type model that captures the main featufes mumber of pre-
viously published models, which pointed to a possible pHiggical locus for the
difference between the classes and also a simplified poliaianodel, which em-
phasized the general dynamic features of the two classagstebs and was more
convenient for the challenging numerical continuationsied out here.

Physiological implications. Although we have focused on the mathematical ef-
fects of varying the parametef. (corresponding ta in the simplified polyno-
mial model), it represents the fraction of free cytosdlie’>* and accounts for the
buffering capacity of cells. Smaller values ff slow down the rise irCa** and

in turn the activation of th&, channels. As shown here, the cells exhibit bursts
with maore spikes and, hence, longer depolarized plateabis agrees with a re-
cent study (37) that combined modeling and experiments ¢av ghat cytosolic
calcium buffering capacity can tightly modulate neuronghgj patterns and de-
termine whether bursting or spiking is generated. The rarigerameter values
(f. > 1073, e > 10~3) we were able to explore numerically is comparable to that
found in most previously published models (ranging frbon> to 10~1) (11, 12,

16, 30, 40, 42, 45-47) and also observed in cells (1, 6, 9, 2032, 35, 38, 52).
Calcium buffering capacity is not only variable among cels$ can change under
different physiological conditions, such as the developtalestage. In a recent
study in hippocampal granule cells, younger cells had aqpmrately three times
smallerCa?*-binding ratio (41) than older cells. We note that the uniigisiow
Ca’*t oscillations in pancreatig-cells (periods from tens of seconds to several
minutes) are likely not the result of very small binding oabiut rather reflect the
slow dynamics of metabolism and/or 6&>* in the endoplasmic reticulum (12).

A key difference between the two types of bursters is thastlikes disappear
in the fold-subHopf case g% or e goes to 0. It may thus be possible to distinguish
the two types experimentally by reduciagia addition of exogenou€a?* buffer
as in (37). This also sheds new light on a question raiseddgdnly observation
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that square-wave bursters are like relaxation oscillatétis spikes superimposed
on the upper state. Namely, if cells need a plateau to f@is&"];, why do they
not just have a plateau instead of spikes? One possibilithas cells have to
build the plateau out of ion channel interactions, and tHayeel rectifier is too
slow to cancel out the spikes and produce a pure plateau. diticag given the
naturally occurring range of, (1073-10"1), Ca?* is too fast compared to the
rate of attraction to the upper state to eliminate the spik¥ih the earlier fold-
homoclinic models, this was not so apparent because the apilplitude does not
vary with f.. In this sense, one can view fold-subHopf as a case thatsercto a
plateau and in fact results in higher calcium, at least whediated by a shift in
Ving -

Full-system bifurcation analysis and spike adding. In this paper we have ex-
amined both the square-wave and pseudo-plateau bursgimge® in terms of bi-
furcations of the full polynomial system over a relativedyde range of. Similar
analyses for small fixed and varying other parameters have been carried out pre-
viously for fold-homoclinic bursting (2, 7, 50), but we hatreated fold-subHopf
bursting for the first time. We considered the two togethahayg form a class of
closely related biological systems.

We showed the emergence of bursting from a primordial largetitude spik-
ing solution that undergoes a complicated cascade of hifiorts in the full system
as the parameterdecreases (Figs. 3—6). A classic period-doubling casdzate t
gives rise to two-, four- and higher-periodic orbits andspirmably chaotic orbits
spawns a cascade of spike-adding bifurcations that gesesasequence of new
period-2,3,4,5,.n, attractors, for some finite number ase decreases. The latter
correspond to bursting trajectories with the respectiveilmer of spikes. The in-
crease in the number of spikescadecreases has the geometric interpretation that,
as the slow-variable component (theoordinate of the polynomial model) of the
bursting orbits of the full system slows down, the trajegtgpends more and more
time moving along the direction in phase space.

Previous studies have examined spike adding for fold-hdimodursting (2,
34, 43, 44, 50). Here, Figs. 4, 6 and 8(b) show that spike gduiyppens similarly
ase is reduced in the case of fold-subHopf bursting. We showedddition, for
both types of bursters that the form of the transition depemd where the full-
system steady state FPeat 0 is located relative to the fast-subsystem HC. When
FP ate = 0 lies well below the HC (a case that has been considered fdr fol
homoclinic bursters in (2, 34, 43, 44, 50)), the periodicnictais connected and
the addition of each spike is marked by a pair of SNP bifuoreti(Fig. 4). In
contrast, when FP at= 0 lies well above the HC, the periodic branch is disjoint,
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with isolas and period-doubling bifurcations for each neike (Fig. 6).

Further, as shown in Fig. 8, where FPeat= 0 and the HC are very close,
the spike-adding transition appears to be of mixed typetially, ase decreases
the usual period-doubling cascade occurs that charaesettie transition mediated
via isolas. However, we find no individual isolas for 3,4;8pike solutions but
a connected complicated periodic branch/isola that caraprihese solutions and
features saddle-node of periodics rather than periodiatmubifurcations. This
suggests that there is a continuous transition betweemtheechanisms of spike
adding. Detailed analysis of this transition is left foruté investigations as it re-
quires analysis of the smaHlimit where our numerical computations break down.

Whereas the spike-adding cascades are similar for foldelabinic and fold-
subHopf bursters, the two differ in their behaviorseas- 0. As shown previ-
ously (7, 44), when FP at= 0 lies above the HC, fold-homoclinic bursting must
give way to small-amplitude continous spikingeas- 0. In contrast, fold-subHopf
bursters continues to exhibit large-amplitude oscillaias long as FP at= 0 lies
to the right of HB. Also, in the fold-subHopf case, the number of spikes inseea
to infinity ase — 0 and their amplitude decreases to 0O because the rate of secrea
of the slow variable { or Ca?*) becomes much smaller than the rate of attraction
to the branch of stable equilibria of the fast subsystemmmnadting in plateaus
with no spikes (Fig. 9(a)).

As in previous studies (34, 43, 44, 50), we also find bi-sitgtiletween regular
bursting solutions with different numbers of spikes as vaslimulti-stability due
to period-doubling cascades leading to chaos in the futegysAs is the case for
spike adding, the behavior differs depending on whethertrP=a 0 lies above
or below HC. For example, in the case where spike adding idateztivia iso-
las (Figs. 5 and 6), regular bursting solutions with difféareumbers of spikes do
not coexist. However, there are more complicated secorfulasting trajectories
that do coexist with the regular bursting orbits and appresnaotic alternation
between such solutions can also be seen (Fig. 7(b)). Inagintvhen the spike
adding appears through SNP bifurcations (Figs. 3 and 4 e small ranges for
e where both regular- and(n + 1)-spike bursting solutions; = 1,2, 3, ...N, are
stable and again apparently chaotic alternation betwegmsalutions is observed
(Fig. 7(a)). These results agree well with previous workad-homoclinic burst-
ing (2, 7, 14, 31, 32, 34, 39, 43, 44, 50) and are here exteraénld-subHopf
bursters, which show the same behavior with respect toabilgy and multi-
stability.

Previous studies of spike adding have been done for thehimhdeclinic case
by studying 1D Poincaré return maps or specially consti@D maps (2, 14, 31,
32, 34, 39, 44, 50), in contrast to our approach of continpiagodic orbits of the
full ODE system. Several studies have also constructeddaifion diagrams of the
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full system of ODEs (2, 14, 18). Such studies have pointedhearnportance of
spike-adding transitions for the genesis of bursting fromp$e continuous spiking
solutions. Most studies have used a primary bifurcatiomipater that translates
the slow-variable nullclineCa?t pump rate or the conductance I§f., channels
have been popular choices, motivated by the ability of tipesameters to convert
bursting to small-amplitude continuous spiking in the flsgiphysical model of
fold-homoclinic bursting (16).

Taking these studies together with ours, we can identifgettdistinct transi-
tions between bursting and spiking in the fold-homoclirese. Wherz is small,
there is a transition from bursting to small-amplitude spjkas FP a¢é = 0 crosses
the HC from below. In the limit a8 — 0, the transition occurs precisely when
FP coincides with the saddle equilibrium that correspondhe HC (7, 44), but
bursting can persist when> 0 for a range of FP loci above the HC. This is the
second transition: when FP at= 0 lies above the HC, spiking converts to burst-
ing ase increases from 0, passing through a complicated chaotitadasalong
the way that includes plateaus of arbitrary and fluctuatingation (44). Finally,
ase becomes larger, the number of spikes per burst decreasehing a region
of large-amplitude spiking (the third transition) beforgcitlations end in a Hopf
bifurcation (HB; in Figs. 3—6 and 8). Those spiking solutions can be thoughsof
infinite trains of bursts with one spike, in contrast to thealramplitude spiking
above, which can be thought of as single bursts with an iefimitmber of spikes.
Of the above transitions, only the third occurs in fold-sobHbursting due to the
lack of stable limit cycles in the fast subsystem.

Future directions. Our analysis is complementary to the study of Belykh et
al. (7), who did a local analysis for small namely, we consider the behavior
at largee. Fold-homoclinic bursting was addressed in their Scendrand, as
suggested above, fold-subHopf bursting has some singlautiv their Scenario 1,
though the latter is a pure relaxation oscillator with no Haifurcation in the fast
subsystem (HBin our nomenclature).

We have identified one route to transform fold-homoclinicfatd-subHopf
bursting, namely, translation of the activation curve @f@h>" current; there may
be other parameters that can achieve this. Changing theictamte of voltage-
gatedK™ channels oK, channels, such as the BK channel, which is voltage-
as well asCa?"-sensitive, can also shift the slow manifolds, change saikeli-
tude, and change the location and nature of the fast-smsysopf bifurcations in
endocrine cell models. BK blockade and natural variatioBlfchannel density
were shown to affect the period of apparent pseudo-plateastifg in pituitary
somatotrophs (45), and BK blockade was shown to convertrappaursting to
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large amplitude spiking (47). Similar effects are seen bying the time con-
stant of voltage-gateH* channels or the conductance of voltage-depen@eit
channels (unpublished observations). None of these chdragebeen seen to con-
vert fold-subHopf to fold-homoclinic bursting or vice varghough it is possible
that they could do so in combination with other parametengbka. A promising
framework in which to investigate these questions is th&alubitsky et al. (23),
where local unfoldings of singularities in the fast subsgsbifurcations were used
to classify types of bursting.
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A Modesand Methods

A.1 Generic Endocrine Model

The equations for the generic Hodgkin-Huxley-type model ar

dVim
Cm? = _(ICa+IK+IKCa)’ (4)
dn noo(vm) —-n
it ok W A A 5
dt Tn ’ ©
dc
= = —Jelalca(Vi) +hpaicacc), (6)

where(', is the membrane capacitancg;is the activation time constant for the
delayed rectifier channet;,, is the steady state function for the activation variable
n; Cm = 107° x Age IS the membrane capacitangg;is the fraction of free to total
cytosolic Ca®"; o = 107 (2 x 9.65 x A.q1) ' is a factor that converts current to
flux, where A = ™ x dgell is the area of the cell, anlpyica is the plasma
membraneCa®t ATPase pump rate. Sinegepresent the fre€a?* concentration

in the cytosol the corresponding fluxes in Eq. (6) are muéipby the fractionf,

of free to total cytosolicCa®". The currents included in the model equations are:

ICa(Vm) = JcCa mgo(vm) (Vm - VCa)a (7)

IK(Vm,n) = gKn (Vm — VK) s (8)
Ikc,(Vimn, €)= gKea Sool€) (Vin — VK) . )
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The steady state activation functions are:

-1
Moo(Vin) = <1+exp<@>) , (10)
-1
noe (Vi) = <1+exp<V“s‘Vm)> , (1)
4
So0(C) 043_7%1- (12)

Values of all parameters used in the model simulations aengn Table A.1.

TABLE A.1

Parameter values of the Generic Pituitary Model

kEpnca 20s! fe 0.01
deen 10 m IK(Ca) 0.2nS
%% —65 mV JCa 0.81 nS
Vea 0mv IK 2.25nS
Vi, —27.5mV Vi 0mv
Sm 12 mV Sn 8mV
ks 1.25uM Th 0.03s!

A.2 Linear Stability Analysisof the Polynomial M odel

According to ConditiorC6, the polynomial model Eqgns. (1)—(3) has a unique equi-
librium FP = (zpp,yrp, 2zrp) that exists for alle > 0. The location of FP is
determined by the point where thenulicline intersects the Z-shaped steady-state
curve of the fast subsystem Egns. (1)—(2) at 0 and can be controlled by a single
parameter. A convenient choice is the paraméteas shown in Fig. 2. Hence,
we assume that = 0.5, b = 1, a3 = —0.1, andk = 0.2 are fixed ands andb;
may vary. By setting the right-hand sides of Egns. (1)—(3),tee find that FP is
determined by the only real rootp of the polynomial equation

skax® —k(s+1)a2*> +sa bx+b b=0. (13)
The other coordinates of FP are given by

saxpp — rfp (s+1) _ saiarp +b
b k )

2
yrp = Tpp, and zpp =
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Note that for fixed values af, b, a1, andk the equilibrium FP depends arandb;
but not one. However, its stability does depend eKi39). The Jacobian matrix of
Eqns. (1)—(3) is given by

of of of

or Oy 0z

J = @ @ 0
or Oy

€ @ 0 € @

ox 0z

The stability of FP is determined by the eigenvalued @valuated at FP. Hence,
the eigenvalues are the roots of the characteristic polyadom

oo _9f
P(\) = (A—e%) det gz A gz —
ox oy
_of _of
e% det )\_% 62

B oh Oh Of dg
s PO\ = <)\—68—> det()\I—Jf)—ea—x$<)\—a—y>, (14)

z

whereJy is the Jacobian matrix of the fast subsystem Eqns. (1)-&yated at FP.

For fixeda = 0.5, b = 1, a; = —0.1, andk = 0.2 the characteristic polynomial
Eqn. (14) is given by
PA) = (A+02¢) [(A+1) (A +2szpp — L5szhp) + 22pp] (15)

+eap s (A +1).

We are primarily interested in the stability of FP fbk ¢ < 1 when FP is located
on the unstable segments of the Z-shaped steady-statedafithefast subsystem,
that is, on the saddle segment with < 0 < X, that lies in between the two
knees marked by saddle-node bifurcations (labeled & SN in Fig. 2) or on
the segment of the upper branch wkh A2 > 0 that lies after the Hopf bifurcation
(labeled HB in Fig. 2).

Note that the full system Eqns. (1)—(3) is degenerate at 0, because the
Jacobian matrid is then always singular. In the limit= 0 Eqgn. (14) reduces to

P(\) = —A det (A — J¢),
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so that the eigenvalues of FP converge to the two eigenvalug®f J¢ and the
eigenvalue\; = 0 ase — 0. At e = 0, the characteristic polynomid&()\) has two
zero eigenvalues when FP lies onSfdlso\; = 0) or SN, (alsoX; = 0), and a
pair of purely imaginary eigenvalueg = )\, along with A3 = 0 when FP lies on
HB;.

If FP lies on the lower branch, before $Nhen it is stable fo < ¢ <« 1,
that is,\3 < 0. As we decreask, so that FP moves around the knee past,3he
eigenvalues\s < 0 and\3 < 0 become complex conjugate and move through the
imaginary axis, after which they become real again and\; > 0 (39). Hence, a
Hopf bifurcation occurs that involves eigenvalues of bbeafast f2) and the slow
(A\3) equations. This is a singular Hopf bifurcation (13, 24).eTd¢haracteristic
polynomial Eqgn. (14) for FP at SN which corresponds té; = 0 and FP=
(0,0,0) in Fig. 2 for boths = —1.61 ands = —2.6, becomes

POA)=OA+1)(A\2+0.2eX+e€ay s),

and the eigenvalues ak¢ = —1andAy3 = —0.1¢£+0.1ve? — 100€a; s. There-
fore, providedk > 0 is sufficiently small )\, 3 are complex conjugate with negative
real parts. Thus, the singular Hopf bifurcation does nofpleapexactly when FP
lies on SN, but when FP moves slightly past $nto the saddle-segment of the
Z-shaped steady-state curve. Indeed, the theory prethatsthe singular Hopf
bifurcation liesO(¢) close to the point where FP passes through the knee (24).

As we continue to decreagg and trace FP along the saddle-segment of the
Z-shaped steady-state curve, the eigenvalues of FRjaxe0 < A\, and A3 > 0.
Note that as FP reaches the homoclinic bifurcation point RECstumA; + Ao of
the eigenvalues that converge to those of the fast subsyeteim— 0 is negative
for s = —1.61 and positive fors = —2.6. This is consistent with the type of
the Hopf bifurcation in the fast subsystem, which is suptcat in the case of
fold-homoclinic bursting { = —1.61) and subcritical in the case of fold-subHopf
(s = —2.6).

When FP moves around the right knee past Siie typically expects another
singular Hopf bifurcation (39). However, we fixed= 0.5, b = 1, a; = —0.1,
andk = 0.2 such that there is only one Hopf bifurcation on the upper dnaof
the Z-shaped steady-state curve. This means that theleguiif the fast subsys-
tem are unstable on both sides of SNFor b; such that FP is locate@(e) away
from SN; on the middle branch of the Z-shaped curve, the eigenvalllE® @re
A1 < 0 < A2 andAs > 0, while for FP located)(¢) away from SN on the upper
branch of the Z-shaped curve, its eigenvalues)ares > 0 and A3 < 0. Hence,
in our case, it is not possible to get a singular Hopf bifuorat Numerical calcu-
lations fors = —2.6 ande = 10~ seem to indicate that; and A3 pass through
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zero simultaneously, though generically, one would expedtthey do so via two
subsequent saddle-node bifurcations. However, none dditfemvalues ever be-
come zerodet J # 0) whene > 0 and eithers = —2.6 or s = —1.61; indeed, the

degeneracy at SNheeds further investigation, but this is beyond the scophisf

paper.

Whenb; is such that FP lies in between KIBnd SN then FP is a saddle with
two unstable eigenvalues{ < 0 for 0 < € < 1). Asb; decreases from a value
with FP located close to SNthe eigenvalues; and )\, that correspond to the fast
subsystem coalesce on the real axis and become complexgatmjwith positive
real parts. This marks a transition from saddle-node tolsa@ddus equilibrium.
Finally, another Hopf bifurcation occurs as FP passes tirddB,, but this is not
a singular Hopf bifurcation because it involves only eigdaes corresponding to
the fast subsystem.

A.3 Computational method

The models simulations were done with the software packd@AXT (19). The
bifurcation analysis was performed with AUTO (17).
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Figure Legends

Figure 1. Bifurcation diagrams of the fast subsystem in the generoerine
model (Appendix A.1) showing the bifurcations associatét square-wave
(fold-homoclinic) bursting (panel) and pseudo-plateau (fold-subHopf) burst-
ing (panelb). (a) Vi, = —22.5 mV; (b) Vi, = —27.5 mV; HB — Hopf
bifurcation; SN — saddle-node bifurcation; SNP — saddldenof period-
ics; HC — homoclinic bifurcation point. Dashed lines denwtstability.
Sample bursting trajectories are superimposed on thechifion diagrams
for each of the models.

Figure 2. Bifurcation diagrams of the fast subsystem in the polynbrmmadel
Eqgns. (1)-(2) showing the bifurcations associated withtthasition from
square-wave (fold-homoclinic) to pseudo-plateau (faltsopf) bursting as
well as thez-nulicline for three different values of the parameieand with
@ s = —1.6, or (b) s = —2.6; HB — Hopf bifurcation; SN — saddle-
node bifurcation; HC — homoclinic bifurcation point. Dashiées denote
instability.

Figure 3. (a) Three-dimensional viewt( z, =) of the one-parameter bifurcation
diagram with respect te of the full polynomial model Egns. (1)—(3) in the
case of square-wave bursting £ —1.6, by = —0.01); HB — Hopf bifur-
cation; SNP — saddle-node of periodics; FP — fixed point; HC emb-
clinic bifurcation point. Dashed lines denote instabijlifp) Sample burst-
ing trajectories with increasing number of spikes, i.ecrdasing values of
e = 0.009; 0.005; 0.004; 0.0035; 0.0027; 0.0024; 0.002 are superim-
posed on the bifurcation diagram.

Figure 4. (a) Bifurcation diagram of the full polynomial model Eqn)-(3) with
respect ta in the case of pseudo-plateau burstiagH —2.6, by = —0.01);
HB — Hopf bifurcation; SNP — saddle-node of periodics; FP —efixoint;
PD — period-doubling bifurcation; HC — homoclinic bifurgat point.
Dashed lines denote instability; (b) Sample bursting ttajées with increas-
ing number of spikes, i.e., decreasing valuesef0.08; 0.06; 0.035; 0.023
are superimposed on the bifurcation diagram.

Figure 5. (a) Bifurcation of the full polynomial model Egns. (1)—(3) the case
of square-wave burstings (= —1.6, by = —0.05); HB — Hopf bifurca-
tion; PD — period-doubling bifurcation; FP — fixed point; HC hemo-
clinic bifurcation point. Dashed lines denote instabijlifp) Sample burst-
ing trajectories with increasing number of spikes, i.ecrdasing values of
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e = 0.07; 0.04; 0.03; 0.024; 0.018; 0.015; 0.014; 0.012 are superim-
posed on the bifurcation diagram.

Figure6. (a) Bifurcation diagram of the full polynomial model Eqn&)<(3) in
the case of pseudo-plateau bursting<{ —2.6, by = —0.21); HB — Hopf
bifurcation; PD — period-doubling bifurcation; FP — fixedipp SNP —
saddle-node of periodics; HC — homoclinic bifurcation fioiDashed lines
denote instability; (b) Sample bursting trajectories witbreasing number
of spikes, i.e., decreasing valueseof 1.105; 0.9; 0.6; 0.4; 0.25; 0.15
are superimposed on the bifurcation diagram.

Figure7. Simulations of the polynomial model showing the apparentigotic
spike-adding transition in the pseudo-plateau burstirggnre in the case
when (a) FP is well below the HG (= —2.6, by = —0.01); and (b) when
FP is well above the HCs(= —2.6, b; = —0.21).

Figure 8. Bifurcation diagrams of the full polynomial model Eqns.4@) in the
cases of (a) square-wave burstings —1.6, by = —0.024); and (b) pseudo-
plateau burstings(= —2.6, by = —0.066); HB — Hopf bifurcation; PD —
period-doubling bifurcation; FP — fixed point; SNP — saddtde of peri-
odics; HC — homoclinic bifurcation point. Dashed lines dieniostability.

Figure 9. Simulations showing the behavior in the pseudo-plateastimgrregime
for smalle in the cases (a) when FP is well below the HCX —2.6, b; =
—0.01, e = 0.0001); and (b) when FP is above the HC but below $N=
—2.6,b1 = —0.12, ¢ = 0.001).

Figure 10. Three-dimensional viewe( z, —b1) of the two-parameter bifurcation
diagram of the full polynomial model with respectd@ndb; showing the
loci of HB, for s = —1.6 (blue) ands = —2.6 (red); HB — Hopf bifur-
cation; SN — saddle-node bifurcation. The vertical, dadives show the
z-values of the hopf bifurcation HBof the fast subsystenz € 0).
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