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Abstract

Plateau bursting is typical of many electrically excitablecells, such as endocrine
cells that secrete hormones and some types of neurons that secrete neurotransmit-
ters. Although in many of these cell types the bursting patterns are regulated by the
interplay between voltage-gated calcium channels and calcium-sensitive potassium
channels, they can be very different. For example, in insulin-secreting pancreatic
β-cells, plateau bursting is characterized by well-defined spikes during the depo-
larized phase whereas in pituitary cells, bursting features fast, irregular, small am-
plitude spikes. The latter has been termed “pseudo-plateaubursting” because the
spikes are transients around a depolarized steady state rather than stable oscilla-
tions in the fast subsystem. In this study we systematicallyinvestigate the bursting
patterns found in endocrine cell models. We show that this class of voltage and
calcium gated conductance based models can be reduced to thepolynomial model
of Hindmarsh and Rose (25). This reduction preserves the main properties of the
biophysical class of models that we consider and allows for detailed bifurcation
analysis of the full fast-slow system. Our analysis does notrequire decomposition
of the full system into fast and slow subsystems and reveals properties of endocrine
bursting that are not captured by the standard fast-slow analysis.

Key words: Excitable systems; Bifurcation theory; Bursting oscillations; Spike
Adding; Endocrine Cells.
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Introduction

Plateau bursting is an intrinsic property of endocrine cells by means of which
they achieve the rise in intracellular calcium concentration necessary for secre-
tion (4, 5, 29, 48). It is mediated via the interaction of voltage-gated calcium
(Ca2+) channels and various potassium (K+ ) channels in the cell membrane.
Upon stimulation that generally leads to depolarization, the membrane potential
becomes more positive, opening the voltage-gatedCa2+ channels. The result-
ing Ca2+ influx into the cytosol triggers activation of calcium-sensitive potassium
(KCa ) channels, generating the outflow ofK+ ions that repolarizes the membrane
potential. This repolarization leads to closure of voltage-gatedCa2+ channels and
subsequent decrease in the cytosolic calcium levels ([Ca2+]i). This sequence of
events leads to oscillations in the intracellular calcium concentration that are ac-
companied by plateau-bursting electrical activity. Such prolonged electrical activ-
ity is an efficient way to increase intracellularCa2+, in contrast to brief neuron-
like single spikes. The increase of[Ca2+]i stimulates the release of hormones from
secretory vesicles (4, 5, 29, 48). The plateau-bursting electrical activity is char-
acterized by periodic switches between an active (depolarized) phase accompa-
nied by increase in[Ca2+]i and a silent (repolarized) phase during which[Ca2+]i
decreases due toCa2+ extrusion. Owing to the importance of this activity, nu-
merous modeling studies have been carried out of plateau-bursting in a variety
of cell types, including pancreaticβ-cells (11, 12, 16, 22, 46, 51) and pituitary
cells (30, 40, 42, 45, 47). The models in these studies are generally derived using
the Hodgkin-Huxley formalism (26) and generate bursting behavior by taking into
account the crosstalk between voltage-dependentCa2+ channels andKCa channels
in combination with the slow dynamics of intracellular calcium concentration.

An important feature of plateau bursters is that the fast spikes during the active
phase do not cross the baseline of the slow oscillation in thesilent phase. There are
two types of plateau-bursting patterns that have been foundin models. The classi-
cal square-wave (10, 36) (or fold-homoclinic (27)) bursting is typical for pancreatic
β-cells and is characterized by well-defined spikes in the active phase that corre-
spond to stable limit cycle solutions in the fast subsystem of such models. The other
type of plateau bursting is typical of pituitary cells (30, 40, 42, 45, 47) which ex-
hibit small irregular spikes in the active phase. This pattern has been called pseudo-
plateau bursting (40) because it is produced by transient oscillations rather than
stable limit cycles, and has been classified mathematicallyas fold-subHopf (27).
Despite these differences, the bursting patterns observedin endocrine cell models
are both governed by the interplay between voltage-dependent Ca2+ channels and
KCa channels.

The focus of this paper is investigation of these two plateau-bursting patterns.
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We are interested in identifying fundamental properties ofthis class of models
in terms of parameter(s) that control the behavior of the system. We consider a
generic simplified biophysical model system (see Appendix A.1 for details) based
on elements drawn from several published models (12, 42, 45). We show that
a model system of the above class can generate both types of plateau bursting,
depending on the balance between inward and outward currents. We begin by
performing a classical fast-slow bifurcation analysis (36) of the generic model and
demonstrate how the transition between square-wave and pseudo-plateau bursting
takes place in the ‘frozen’ fast subsystem. We then go beyondthe fast-slow analysis
to examine bifurcations of the full bursting system with respect to the speed of
the slow variable. This is of particular interest for fold-subHopf bursting, which
produces appropriate spiking patterns when the separationof time-scales is not
extreme.

In order to facilitate the computations and demonstrate thegenerality of the
results, we employ a polynomial reduction of Hindmarsh-Rose type (25). We
demonstrate that this model, although phenomenological, duplicates the qualita-
tive behavior of the biophysical system in the frozen case and then use it to study
systematically the full-system bifurcations that lead to bursting and that control the
number of spikes per burst. We follow representative periodic orbits of the full
ODE system with different numbers of spikes and find that the same patterns of
bifurcations govern both square-wave and pseudo-plateau periodic solutions. Most
interestingly, we find for both classes of bursters that the patterns differ depending
on the location of the full-system steady state, which lies on a branch of saddle
equilibria in the fast subsystem, relative to the homoclinic orbit of the fast sub-
system.

Fold-homoclinc bursting has been previously studied and others have similarly
pointed out the central role of bifurcations of the full system (2, 39, 50). One
study (7) has demonstrated locally the emergence of such bursting oscillations from
homoclinic connections in the limitǫ → 0. None of these studies, however, has
treated the case of fold-subHopf bursting nor systematically compared it to fold-
homoclinic bursting.

Results

Generic Endocrine System

Since the pioneering work of Rinzel (36), it has become a standard approach
to study bursting oscillations using fast-slow analysis, i.e. by decomposing the
model into fast and (one-dimensional) slow subsystems and analyzing the dy-
namics of the full system in the limit of the slow variable treated as a bifurca-
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tion parameter. In the class of models (Appendix A.1) that weconsider, the only
slow variable is the cytosolic calcium concentration (c), which indeed changes
much more slowly than the membrane potential (Vm) and the channel gating vari-
ables. The separation of time scales in these models is controlled by the pa-
rameterfc, which represents the fraction of free[Ca2+]i. Fast-slow analysis has
been widely used in theoretical studies of both square-waveand pseudo-plateau
bursters (10, 12, 30, 36, 40, 42, 43, 45), assuming that[Ca2+]i is a slow variable.
These studies have shown that square-wave bursting models are characterized by
a supercritical Hopf bifurcation in the fast subsystem, whereas in pseudo-plateau
bursters this bifurcation is subcritical. We illustrate this in Fig. 1 using the generic
endocrine model (Appendix A.1), where we vary the half-maximum activationVmL

of the voltage-gatedCa2+ channels in order to change the type of the Hopf bifur-
cation of the fast subsystem (Eqns. (4)–(5)). We also superimpose the bursting
trajectories of the full system for each value ofVmL

on the corresponding bifurca-
tion diagrams.

For VmL
= −22.5 mV, illustrated in Fig. 1(a), the generic model behaves like

a typical model for pancreaticβ-cell square-wave bursting (10, 12, 36, 43). Note
that the simplified generic model corresponds to classical bursting with cytoso-
lic Ca2+ as the single slow variable, which is exemplified by the original Chay-
Keizer model (16). More recentβ-cell models incorporate effects ofCa2+ in the
endoplasmic reticulum and ATP (12), but we neglect these as they have no ana-
log in models of pituitary bursting. As shown in Fig. 1(a), the fast subsystem is
bi-stable for a range of values of the control parameterc, and is characterized by
a Z-shaped steady-state curve that folds at saddle-node bifurcation points labeled
SN1 and SN2. The upper branch of this curve consists of stable foci that lose sta-
bility as calcium increases via a supercritical Hopf bifurcation (HB). Between HB
and SN1 the upper branch points are unstable foci/nodes that becomesaddles at
SN1. The steady state gains stability again at SN2 and beyond this point it is a
stable node. The Hopf bifurcation gives rise to a branch of stable periodic orbits
that terminates in a homoclinic bifurcation (HC) with one ofthe saddles on the
steady-state branch delimited by the two saddle-node bifurcations SN1 and SN2.
Bursting also relies on the fact that thec-nullcline of the full system Eqns. (4)–(6)
(not shown in Fig. 1) intersects the Z-shaped steady-state curve of the fast subsys-
tem Eqns. (4)–(5) somewhere in the middle branch. Thus, the membrane potential
(Vm) in the full system periodically switches between silent and active phases due
to repeated intersections of the bursting trajectory and the c-nullcline that force it
to change direction in the phase space.

For the caseVmL
= −27.5 mV shown in Fig. 1(b), the bifurcation curves

closely resemble those from several pituitary bursting models (30, 40, 42, 45).
Compared with the case forVmL

= −22.5 mV, we observe that the5 mV left
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shift in theCa2+ current activation curve preserves the Z-shaped steady-state curve
of the fast subsystem Eqns. (4)–(5) along with its stabilityproperties, but it has
shifted to the right. Furthermore, the Hopf bifurcation of the fast subsystem is now
subcritical, which results in a branch of unstable periodicorbits that terminates at
HC. As can be seen from the trajectory of the full system Eqns.(4)–(6) shown
in Fig. 1(b), the transition in the type of the Hopf bifurcation results in pseudo-
plateau rather than square-wave bursting, as the spikes aredue to a slow oscillatory
approach to the upper steady-state branch, not stable limitcycles. Such spikes
can only occur if[Ca2+]i is not too slow. Specifically, the rate of increase of
[Ca2+]i cannot be much slower than the rate of approach of the solution to the
upper steady state. Indeed, pseudo-plateau bursters can lose bursting oscillations
when the slow variable is made too slow, if the trajectory is absorbed in a stable
state on the upper branch of the Z-curve. When the slow variable is faster, however,
bursting is possible because the trajectory exits the active phase before reaching the
stable steady-state. In the class of plateau-bursting models that we focus on, the
parameterfc that controls the separation of time scales typically ranges from10−3

to 10−1 (11, 12, 16, 30, 40, 42, 45–47), which is only moderately small.
For intermediate values ofVmL

(not shown), the bifurcation diagram of the fast
subsystem Eqns. (4)–(5) deforms continuously via a (codimension-two) degener-
ate Hopf bifurcation point, where HB changes from supercritical to subcritical. At
first, the branch of unstable periodic orbits turns around ata saddle-node of period-
ics (SNP) bifurcation, which leads to a branch of stable limit cycles that terminates
at HC. AsVmL

decreases and the Z-curve shifts to the right, the point HB also shifts
to the right, but to a greater extent and, thus, moves closer to SN1 and the middle
branch of the Z-curve. Hence, eventually the SNP and HC occursimultaneously,
after which the periodics never become stable.

The changes in the bifurcation diagrams in Fig. 1 reflect several biophysical ef-
fects of the left shift of theCa2+ current activation curve, which alters the balance
betweenCa2+ andK+ currents in the inward direction. This means that moreKCa

current is needed to repolarize the bursts, so that the Z-curve shifts to the right.
The shift of the HB reflects an enlarged region of conduction block, in which ex-
cessive inward current prevents spiking and results in a depolarized plateau. Note
that the loss of true spiking increases theCa2+ concentration because the mean
membrane potential is higher without the hyperpolarized inter-spike interval. The
model thus suggests that the levels of intracellular calcium concentration ([Ca2+]i)
during pseudo-plateau bursting should be significantly greater than during square-
wave bursting (Fig. 1), in accord with published experimental data showing simul-
taneous recordings of voltage (Vm) and cytosolic calcium concentration ([Ca2+]i)
in pancreaticβ-cells (see Fig. 2 in (5)) and pituitary cells (see Fig. 5 in (48) and
Fig. 1 in (45)). According to these studies, calcium levels in pancreaticβ-cells
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oscillate between 0.15µM and 0.35µM, whereas in pituitary cells[Ca2+]i can
exceed 1µM during bursts.

The Polynomial Model

We complement the classical fast-slow analysis with a bifurcation analysis of the
full system. Such a full-system analysis provides a different view of the bursting
solution as a periodic orbit with a complicated internal structure. This approach is
necessary to detect chaos, which, as shown by Terman (44), ismore robust when
the slow variable is not very slow and thus is more likely to beobserved in experi-
ments. In order to investigate systematically the full system bifurcation structure of
endocrine models we construct a polynomial plateau-bursting model by building
into it the common dynamical features found in a number of biophysical modeling
studies (2, 11, 12, 30, 34, 40, 42, 43, 45, 46).

Equations and Assumptions

The polynomial model is a modified Hindmarsh-Rose type model(25) with param-
eters chosen such that the bifurcation diagram of the fast subsystem is similar to
that of Eqns. (4)–(5), that is, the upper steady-state branch exhibits a single Hopf
bifurcation; compare also (39). The equations have the general form

dx

dt
= f(x, y, z), (1)

dy

dt
= φg(x, y), (2)

dz

dt
= ǫh(x, z), (3)

wheref(x, y, z), g(x, y) andh(x, z) for (x, y, z) ∈ R
3 are sufficiently smooth

functions andφ andǫ are rate constants that govern the separation of time scales.
The variablex(t) represents the membrane potential and the other two variables
y(t) andz(t) stand for the gating dynamics of the (K+ ) channels and the dynam-
ics of cytosolicCa2+, respectively. We require the right-hand sides to satisfy the
following conditions:

C1 The functionf(x, y, z) = −s (−ax3 + x2)− y − b z is a cubic function that
guarantees an N-shapedx-nullcline. Sincex(t) acts in place of the membrane
potential (Eqn. (4) in Appendix A.1), the terms a x3 represents the contribu-
tion of theCa2+ inward current;−x2 − y represents the contribution of the
outward voltage sensitiveK+ currents; and−b z stands for the contribution
of the outward calcium-sensitive potassium current.
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C2 The functiong(x, y) = x2 − y is a quadratic function that gives a parabolic
y-nullcline and replaces the delayed rectifier activation kinetics (Eqn. (5) in
Appendix A.1). It depends only on the membrane potential andis, therefore,
decoupled from the third Eqn. (3).

C3 The functionh(x, z) = s a1 x + b1 − k z is linear inx andz and represents
Ca2+ dynamics, with the terms a1 x + b1 replacing the source of calcium
through voltage-gated calciumCa2+ channels and−k z standing for the de-
cay term in Eqn. (6).

C4 The time-scale paramtersφ andǫ are such thatx andy vary on a faster time
scale thanz. Although strictly speaking in the biophysical system Eqns. (4)–
(6) there are three different intrinsic times scales forVm, n andc, it has usu-
ally been assumed thatVm andn are fast variables compared toc. This is a
reasonable assumption given that the time scale of change inCa2+ concentra-
tions is several orders of magnitude smaller thanVm andn. Therefore, in the
polynomial model we takeφ = 1 and considerǫ a small positive parameter.

C5 The parametersa, b ≥ 0 in the fast subsystem Eqns. (1)–(2) of the polynomial
model are chosen, without loss of generality (W.L.O.G.), such that for a range
of values ofz ≥ 0 there are three equilibrium points(xe

i , y
e
i ), i = 1, 2, 3,

given by the points of intersection of thex- andy-nullclines. Furthermore, we
require that these equilibria are of the following type:(xe

1, y
e
1) is a stable fo-

cus,(xe
2, y

e
2) is a saddle, and(xe

3, y
e
3) is a stable node. These conditions ensure

that the fast subsystem Eqns. (1)–(2) of the polynomial model has a Z-shaped
steady-state curve defined by{y = x2 andz =

(

s a x3 − (s + 1)x2
)

/b} that
guarantees a region of bistability for a range of values ofz ≥ 0 (Fig. 2).

C6 The parametersa1, b1 ≤ 0 andk ≥ 0 in the (one-dimensional) slow sub-
system Eqn. (3) of the polynomial model are chosen W.L.O.G. such that the
z-nullcline{z = (s a1 x + b1) /k}, intersects the Z-shaped steady-state curve
{y = x2 andz =

(

s a x3 − (s + 1)x2
)

/b} of the fast subsystem Eqns. (1)–
(2) somewhere in the middle branch, which is of saddle type (Fig. 2). This
intersection point corresponds to a degenerate branching bifurcation of the
full system Eqns. (1)–(3) atǫ = 0 and it determines the location and stability
of the equilibriumFP = (xFP, yFP, zFP) of the full system that persists for
ǫ > 0; see Appendix A.2 for details.

C7 Plateau bursting also relies on the existence of a Hopf bifurcation in the fast
subsystem (Eqns. (1)–(2)); we assume that this Hopf bifurcation is unique.
The parameters < 0 in the polynomial model Eqns. (1)–(3) plays the same
role asVmL

in the generic endocrine model Eqns. (4)–(6); it controls the type
of bursting by converting the Hopf bifurcation (HB) of the fast subsystem
from supercritical to subcritical (Fig. 2). The type of HB isdetermined by
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the sign of a first Lyapunov coefficient evaluated at the critical equilibrium
(xHB, yHB) = (xHB, x2

HB), and in our case (28) it is given by:

sign [l1(xHB)] = sign
[

F ′′′ + F ′′(F ′′
−G′′)

(G′−φ)

]

= sign
[

6 s a + (2 s (3 a xHB−1))2−2 (2 s (3 a xHB−1))
2 xHB−1

]

,

whereF (x) = −s (−ax3 + x2) − b z andG(x) = x2. The values ofs < 0
that we consider are chosen W.L.O.G. such that this transition occurs in the
region of bistability with respect toz (Fig. 2).

In the following analysis we fix all the parameters in the model except forǫ, s
andb1. The parameterǫ controls the speed of the slow variablez and is our main
bifurcation parameter corresponding tofc in the generic endocrine model. The
parameters controls the location and type of HB in the fast subsystem, which is
also related to the position of the HC, in analogy with the effect that decreasingVmL

has on the behavior of the generic endocrine system (Fig. 1).Note that, similar to
VmL

, the parameters also appears in the slow (z) equation of the polynomial model.
The parameterb1 determines the location of the equilibriumFP = (xFP, yFP, zFP)
of the full system, which exists for allǫ and is given by the intersection of thez-
nullcline and the Z-shaped steady-state curve of the fast subsystem Eqns. (1)–(2);
the locus of FP affects the bifurcations of the full system Eqns. (1)–(3) that occur
whenǫ is varied. Without loss of generality and according to conditions C1–C7
we choose the rest of the system parameters to be:a = 0.5, b = 1, a1 = −0.1 and
k = 0.2.

We plot in Fig. 2 the bifurcation diagram of the polynomial fast subsystem
Eqns. (1)–(2) using the slow variablez as bifurcation parameter; panel (a) shows
the bifurcation diagram fors = −1.61 and panel (b) fors = −2.6, which cor-
respond to square-wave and pseudo-plateau bursting, respectively. A comparison
between Figs. 1 and 2 demonstrates that the polynomial modelreproduces quali-
tatively the dynamics of the generic endocrine model. Similar to the biophysical
system, the transition from supercritical to subcritical Hopf bifurcations in the fast
subsystem of the phenomenological model Eqns. (1)–(3) is accompanied by a right
shift of the Z-shaped steady-state curve that, consequently, covers a larger range of
z-values during plateau bursting in the full system. In both panels of Fig. 2 we also
plot thez-nullclines for values ofb1 where they intersect the Z-curve below, near,
and well above the homoclinic bifurcation (HC) of the fast subsystem.



Endocrine bursting 9

Bifurcation Analysis of the Full System

The equilibria and periodic orbits found in the polynomial fast subsystem Eqns. (1)–
(2) can also be thought of as equilibria and periodic orbits of the full system
Eqns. (1)–(3), but they only exist forǫ = 0 and the full system is degenerate
here. Therefore, we cannot expect that all equilibria and periodic orbits persist
for ǫ > 0. In fact, only one of the equilibria survives, namely the steady state
FP = (xFP, yFP, zFP) on the Z-shaped curve at which thez-nullcline intersects
the bifurcation diagram of the fast subsystem. Clearly, if this intersection lies on
the lower branch of stable equilibria or on the upper branch such that the corre-
sponding equilibrium in the fast subsystem is stable then the full system does not
support any bursting or spiking solutions. Indeed, for these cases FP is a globally
stable equilibrium forǫ > 0 (Appendix A.2). However, if FP forǫ = 0 corre-
sponds to an unstable equilibrium of the fast subsystem, then a small perturbation
ǫ > 0 may give rise to a periodic orbit of the full system, which corresponds to a
bursting or spiking orbit (7, 44). Unfortunately, this theory only gives predictions
for 0 < ǫ ≪ 1.

We perform a numerical continuation study of the full systemEqns. (1)–(3)
and study how the periodic orbits of the full system are organized for a much
larger range ofǫ > 0. We consider both square-wave and pseudo-plateau bursting,
for s = −1.61 ands = −2.6, respectively (Figs. 3–6). We find that the steady
state FP, which does not depend onǫ, gains stability at anO(1)-value ofǫ > 0 in a
Hopf bifurcation (HB2). The emanating branch of periodic orbits of the full system
gives rise to a sequence of spike-adding bifurcations. The nature of this sequence
is determined only by the location of FP relative to the homoclinic bifurcation HC
of the fast subsystem. In order to illustrate this, we will use the parameterb1 to
shift the locus of FP below and above the HC (Fig. 2) and compute the respective
bifurcation diagrams of the full model Eqns. (1)–(3) for both types of bursting.
While the bifurcations SN1, HB (labeled HB1 in Figs. 3–6), HC and SN2 of the
fast subsystem (Fig. 2) do not persist forǫ > 0, we will show later that HB1
and SN2 for special values ofb1 act as end points of a curve in(ǫ, b1)-space that
corresponds to Hopf bifurcations HB2 of the full system (see Fig. 10).

Route to Bursting via Spike-Adding Saddle-Node of Periodics Bifurcations.
We start our analysis of the bifurcation structure of the polynomial system Eqns. (1)–
(3) by considering the caseb1 = −0.01, for which FP lies below HC. Figure 3
shows the bifurcation diagram of the full system fors = −1.61 and Fig. 4 for
s = −2.6. The bifurcation diagrams are presented in three-dimensional (ǫ, z, x)-
space withǫ as the bifurcation parameter plotted on a logarithmic scalein panels (a)
and on an (enlarged) linear scale in panels (b). We also plot the bifurcation dia-
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grams of the fast subsystems Eqns. (1)–(2) forǫ = 0. Since on the logarithmic
scale these would be pushed off to−∞, we project them onto the(z, x)-plane at
an arbitrary fixed value ofǫ = 10−7.

The unique equilibrium FP of the full system Eqns. (1)–(3), which has real
eigenvaluesλ1 < 0 < λ2 andλ3 = 0 at ǫ = 0, becomes a hyperbolic saddle
andλ3 > 0 for ǫ > 0 small (Appendix A.2). Asǫ increases, FP becomes sta-
ble in a Hopf bifurcation (HB2). The Hopf bifurcation HB2 is subcritical both for
s = −1.61 (Fig. 3) ands = −2.6 (Fig. 4) and gives rise to a branch of unsta-
ble periodic orbits that becomes stable in a saddle-node of periodics (SNP1). The
branch of stable periodic orbits corresponds to tonic spiking of large amplitude,
unlike the tonic spiking typically seen inβ-cell models as theCa2+ pump rate is
increased (36, 44) or the conductance ofKCa channels is decreased (15, 31). This
branch can be considered as bursts with one spike. Sample spiking trajectories
of the full system are superimposed on the bifurcation diagrams in Figs. 3(b) and
4(b). The first one (from the right) in both figures is a two-spike periodic orbit. As
ǫ decreases, the branch of one-spike periodic orbits loses and regains stability in
saddle-node of periodics (SNP) bifurcations and during this process it transforms
from a one-spike into a two-spike periodic orbit. The transition happens over a
very narrow range ofǫ, to the right of SNP2, during which the stable one-spike pe-
riodic orbit coexists with a stable two-spike periodic orbit. As ǫ decreases further
the series of SNP bifurcations repeats, delimiting smallerand smaller portions of
the branch, each of which corresponds to a bursting solutionwith one more spike
(Figs. 3 and 4). Using the software package AUTO (17), we wereable to follow
this branch down toǫ of order10−3. Figures 3(b) and 4(b) illustrate the accumu-
lation of the SNP bifurcations asǫ decreases for square-wave (s = −1.61) and
pseudo-plateau (s = −2.6) bursting, respectively. The bifurcation diagrams for
square-wave and pseudo-plateau bursting are very similar and both exhibit a se-
quence of SNP bifurcations creatingn-spike solutions for increasingly largern as
ǫ decreases. In the limitǫ → 0 the number of spikes of the stable bursting solutions
goes to infinity, while the stability region of each individual orbit goes to zero. This
phenomenon can be regarded as a spike-adding cascade (2, 7, 34, 50).

Figures 3 and 4 suggest that the full system exhibits a spike-adding cascade
mediated by SNP bifurcations if the equilibrium point FP of the full system lies
below the homoclinic bifurcation HC of the fast subsystem for ǫ = 0 (Figs. 2(a)
and (b) withb1 = −0.01).

Route to Bursting via Spike-Adding Isolas. We continue our analysis of the
bifurcation structure of the polynomial model Eqns. (1)–(3) by considering the
casesb1 = −0.045, s = −1.61 andb1 = −0.21, s = −2.6, for which FP lies
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above HC (Figs. 5 and 6, respectively). As before, we useǫ as the bifurcation
parameter and plot the bifurcation diagrams of the full system in(ǫ, z, x)-space on
a logarithmic scale in panels (a) and on an (enlarged) linearscale in panels (b).
The bifurcation diagrams of the fast subsystems Eqns. (1)–(2) for ǫ = 0 are plotted
as well; for the logarithmic-scale pictures in Figs. 5(a) and 6(a) they are projected
onto the(z, x)-plane at the arbitrary values ofǫ = 10−4.

Our choices forb1 and s illustrate the two possibilities for positioning the
unique equilibrium FP of the full system Eqns. (1)–(3). Forb1 = −0.045 and
s = −1.61 thez-nullcline intersects the bifurcation diagram of the fast subsystem
above HC, but below SN1. For b1 = −0.21 ands = −2.6, on the other hand,
this intersection lies in between SN1 and HB1; compare Figs. 2(a) and (b). As
before, if FP lies in between HC and SN1, it has real eigenvaluesλ1 < 0 < λ2 and
λ3 = 0 at ǫ = 0 and becomes a hyperbolic saddle andλ3 > 0 for ǫ > 0 small
(Appendix A.2). However, if FP lies in between SN1 and HB1, the eigenvalues
from the fast subsystem are unstable; they are real for FP close to SN1 and form a
complex conjugate pair for FP close to HB1. In this caseλ3 < 0 and FP is again a
hyperbolic saddle with two unstable eigenvalues forǫ > 0 small (Appendix A.2).

We find that the bifurcation diagram of the full system is topologically equiva-
lent for these two choices of FP above HC, but rather different from the case where
FP lies below HC. Note that, locally nearǫ = 0, there is no difference in whether
FP lies below or above HC; asǫ increases FP becomes a hyperbolic saddle with
two unstable eigenvalues and it gains stability in a Hopf bifurcation (HB2). How-
ever, in contrast to Figs. 3 and 4, the Hopf bifurcation HB2 is now supercritical and
gives rise to a branch of stable periodic orbits that correspond to large-amplitude
tonic spiking. As before, we superimpose sample spiking trajectories of the full
system on the bifurcation diagrams in Figs. 5(b) and 6(b) andan example of a
stable one-spike periodic orbit is shown in Fig. 6(b), wheres = −2.6.

Both for s = −1.61 and s = −2.6 the branch of one-spike periodic orbits
loses stability in a supercritical period-doubling bifurcation (PD1). The emanating
branch of stable period-doubled orbits corresponds to two-spike periodic orbits,
examples of which are superimposed on the bifurcation diagrams in Figs. 5(b)
and 6(b). The two-spike periodic orbit loses stability in another period-doubling
bifurcation (PD2) that gives rise to a period-doubled two-spike orbit; an example
of such a periodic orbit is shown in Fig. 5(b) and we can clearly see that it does not
correspond to a standard bursting solution. The period-doubled two-spike orbit is
stable for a much smaller range inǫ and it also loses stability in a period-doubling
bifurcation, starting a period-doubling cascade (not shown). We will refer to these
and further period-doubledn-spike orbits as secondary bursting solutions and we
do not pursue further investigation of these types of period-doubling cascades.

Instead, we focus on the spike-adding cascade that occurs also if FP lies above
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HC. In this case, the spike-adding cascade is organized by isolas. A family of sta-
ble n-spike periodic orbits is born in an SNP bifurcation and, asǫ decreases, it
undergoes period-doubling bifurcations to secondary bursting solutions. We found
these isolas by generating seed solutions using numerical integration of Eqns. (1)–
(3) for decreasing fixed values ofǫ and continuing them in AUTO (17). Figures 5
and 6 show isolas ofn-spike periodic orbits forn = 3, . . . , 9 andn = 3, . . . , 12,
respectively, along with examples of bursting trajectories with increasing numbers
of spikes. We observe that the isolas create gaps between stable n-spike periodic
orbits for moderately small values ofǫ, but they overlap asǫ decreases creating nar-
row intervals with coexisting stablen- and(n+1)-spike periodic orbits. However,
the stable portions of the isolas become smaller asn increases resulting in smaller
regions in parameter space where each stablen-spike periodic orbits exist.

Figures 5 and 6 suggest that the full system exhibits a spike-adding cascade
mediated by period-doubling bifurcations and isolas if theequilibrium point FP of
the full system lies above the homoclinic bifurcation HC of the fast subsystem for
ǫ = 0 (Figs. 2(a) and (b) withb1 = −0.045 andb1 = −0.21, respectively). In
particular, it does not seem to matter whether FP lies below or above the saddle-
node bifurcation SN1 of the fast subsystem forǫ = 0 as long as the corresponding
equilibrium of the fast subsystem is unstable.

Chaotic Bursting Solutions When the route to bursting is mediated via spike-
adding SNP bifurcations (FP well below HC), periodic bursting is accompanied
by bistability and chaotic alternation between regularn- and(n + 1)-spike peri-
odic orbits. This has previously been shown for fold-homoclinic bursting (43),
and an example of irregular, presumably chaotic, alternation between two- and
three-spike solutions is illustrated for fold-subHopf bursting in Fig. 7(a). In con-
trast, when bursting arises via spike-adding isolas (FP well above HC), bursting
can be chaotic due to the overlapping of isolas in regimes where period-doubling
cascades exist. These give rise to chaotic alternations between regularn-spike pe-
riodic orbits and secondary bursting solutions. As an illustration of such behavior,
we plot in Fig. 7(b) a time series of the polynomial model in the fold-homoclinic
case, showing a spontaneous transition from period-doubled two-spike solutions to
three-spike bursting.

Mixed Route to Bursting. When FP lies close to the HC forǫ = 0, the periodic
solutions branches are of mixed type. As an illustration we computed the bifurca-
tion diagrams of the full system Eqns. (1)–(3) both for the cases of fold-homoclinic
bursting, withs = −1.61 andb1 = −0.023 (Fig. 2(a)), and of fold-subHopf burst-
ing, with s = −2.6 andb1 = −0.066 (Fig. 2(b)).
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The fold-homoclinic case is shown in Fig. 8(a) and corresponds to a situation
where FP lies just below the HC forǫ = 0. In contrast to Fig. 3, the Hopf bifur-
cation HB2 is supercritical and gives rise to a branch of stable one-spike periodic
orbits that ends at a period-doubling bifurcation (PD1). For these relatively large
values ofǫ, the bifurcation diagram resembles that of Fig. 5: a branch of stable
two-spike periodic orbits emanates from PD1 that loses stability in another period-
doubling bifurcation (PD2), which gives rise to secondary bursting solutions. In a
narrowǫ-interval these secondary bursting solutions coexist witha branch of sta-
ble three-spike periodic orbits. As for Fig. 5, we did not further investigate the
period-doubling cascade of secondary bursting solutions,but rather concentrated
on the spike adding. The branch of three-spike periodic orbits (magentacurve)
in Fig. 8(a) does not lie on an isola, in contrast to Fig. 5. Forthese smaller val-
ues ofǫ the bifurcation diagram resembles that of Fig. 3, as expected. Instead of
individual isolas, continuation of the three-spike periodic orbits leads to a single
connected branch ofn-spike periodic orbits that consists of increasing numbersof
spikes asǫ decreases. We were able to follow this branch down to values of ǫ of
orderO(10−3).

The fold-subHopf case is shown in Fig. 8(b) and corresponds to a situation
where FP lies slightly above HC forǫ = 0. Here, HB2 is also supercritical and the
stable branch of one-spike periodic orbits again loses stability in a period-doubling
bifurcation (PD). However, the emanating branch of stable two-spike periodic or-
bits undergoes a sequence of SNP bifurcations corresponding to a spike-adding
cascade and the entire family of periodic orbits in the full system forms a single
connected branch. As before we were only able to follow the branch down to
values ofǫ of orderO(10−3).

The above computations indicate that there is an interesting transition between
the two routes to bursting in both classes of models as FP crosses from one side of
HC to the other. Detailed investigation of this transition is left for future investiga-
tion, because it requires numerical exploration in a regionof very small values ofǫ
where our computations break down.

Behaviour in the limit of small ǫ.

We have studied the case ofǫ = 0 (fast subsystem bifurcations) and the cascade
of periodic orbit bifurcations asǫ decreases from large values, but it is evident
that there are important phenomena in the region of smallǫ that our numerical
continuations have not addressed. As mentioned earlier, Terman (44) and Belykh
et al. (7) provide a theory for analyzing what type of periodic orbit of the full
system arises from very small perturbationsǫ > 0, but the theory in (7, 44) only
applies to the case where FP is located just below or above theHC at ǫ = 0. We
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discuss here how their theory ties in with our numerical study for a much larger
range ofǫ, including other locations for FP.

The limit of small ǫ for square-wave bursting Let us first consider square-wave
(fold-homoclinic) bursting, which is Scenario 3 in (7). Terman (44) considered this
case already in 1992, but we will follow Belykh et al. (7). If FP lies just below the
HC (the casel < 0 in (7)), then there exists a bursting solution forǫ > 0 small
enough. In the limitǫ → 0 this bursting solution accumulates on a periodic orbit
with infinitely many spikes and the range of the slow variable(z in our case) covers
the interval between the lower saddle-node bifurcation SN2 and the HC (7). The
continuations shown in Figs. 3 and 8(a) indicate that there indeed exists a single
connected branch ofn-spike periodic orbits asǫ → 0. While the continuation
in ǫ only reaches values of orderO(10−3), direct numerical simulations indicate
that bursting solutions persist and that their numbers of spikes and their periods
increase to infinity in the limit ofǫ = 0. Note that the theory in (7) is only valid
for FP just below the HC, but our numerical study indicates that the bifurcation
structure for0 < ǫ ≪ 1 remains the same also for FP closer to SN2.

If FP lies just above the HC then Belykh et al. (7) predict the existence of an
interval0 < ǫ ≪ 1 where continuous (tonic) spiking exists. This tonic spiking is
a periodic orbit with an amplitude that is close to the homoclinic orbit at HC for
ǫ = 0 and it is different from the branch of large-amplitude tonicspiking solutions
that we found emanating from the Hopf bifurcation HB2 at largeǫ. The periodic
orbit for 0 < ǫ ≪ 1 may lose stability in a period-doubling bifurcation, but it
definitely does not persist beyond an SNP bifurcation that ispredicted to occur for
some valueǫ ≪ 1. Belykh et al. go on to explain that bursting oscillations only
occur after a homoclinic bifurcation of the full system, where the one-dimensional
stable manifold of FP is contained in its two-dimensional unstable manifold. This
homoclinic bifurcation happens at a value ofǫ that lies before the SNP bifurcation
where the periodic orbit corresponding to tonic spiking is guaranteed to disappear
if it has not lost stability already.

The theory again only applies when FP lies just above HC. In particular, for
fixed small0 < ǫ ≪ 1, both Terman (44) and Belykh et al. (7) predict that a
continuous variation from FP above the HC to FP below the HC (in our case this
means increasing the parameterb1) leads to a transition from continuous spiking
to bursting via a regime with chaotic dynamics. If we continue moving FP further
away above the HC, we expect that continuous spiking persists for increasingly
larger values of0 < ǫ ≪ 1. The periodic orbit that corresponds to tonic spiking
emanates from a closed curve atǫ = 0 that is some sort of average of a small
family of the stable periodic orbits in the fast subsystem, where the range of the
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family depends on where thez-nullcline intersects this family; see (39). Note that
this argument also holds in the range forb1 such that FP lies in between HB1 and
SN1 at ǫ = 0.

Unfortunately, in our numerical study we were unable to find the bifurcations
that are predicted by the theory. Starting the continuationfrom the family of one-
spike periodic orbits that emanates from HB2 at relatively largeǫ, we found a route
to bursting that is mediated via spike-adding isolas (Fig. 5). Note that the isolas
overlap asǫ decreases, which creates the possibility for chaotic motion with an un-
predictable number of spikes within each burst (50). The family of stablen-spike
periodic orbits in each isola is born in an SNP bifurcation ata maximal value ofǫ
and loses stability in a period-doubling bifurcation for some smallerǫ-value. How-
ever, this structure does not match the order of the bifurcations expected for the
stable tonic spiking that is predicted to exist for0 < ǫ ≪ 1. Therefore, we con-
jecture that the homoclinic bifurcation of FP at a value0 < ǫ ≪ 1 gives rise to the
family of isolas. The precise value ofǫ for which this homoclinic bifurcation in the
full system occurs depends on the distance between FP and theHC atǫ = 0. Inter-
estingly, in the caseb1 = −0.045, s = −1.61 (Fig. 5) the limiting homoclinic orbit
appears to have the same amplitude as the homoclinic orbit ofthe fast subsystem,
but this also appears to be the case for the families of unstable periodic orbits in
Fig. 8(a), where FP lies below the HC. Hence, our numerical study is inconclusive
here.

The limit of small ǫ for pseudo-plateau bursting The analysis for the range
0 < ǫ ≪ 1 for pseudo-plateau (fold-subHopf) bursting has not been done. Pseudo-
plateau bursting in the biophysical sense (small transientspikes) relies on the fact
that ǫ is only moderately small, but the fold-subHopf structure persists for very
small epsilon. For such very small values ofǫ, the case of fold-subHopf bursting
compares to Scenario 1 in (7), that is, for0 < ǫ ≪ 1 the solutions are relaxation
oscillations determined by the branches of stable equilibria; for Scenario 1 the two
branches of stable equilibria end at the saddle-node bifurcations SN1 and SN2, but
in our case the upper equilibrium branch loses stability already at the subcritical
Hopf bifurcation HB1. Hence, we expect the scenario of slow passage through a
Hopf bifurcation (3) and the bursting solutions for0 < ǫ ≪ 1 resemble relaxation
oscillations with many small-amplitude oscillations during the active phase that
first decrease and subsequently increase in amplitude.

We point out that the theory for0 < ǫ ≪ 1 in the case of fold-subHopf bursting
is the same for FP below or above the HC, and it equally does notmatter whetherb1

is such that FP lies in between HB1 and SN1 at ǫ = 0. Hence, for very smallǫ one
expects that the spike-adding cascades organized by both SNP bifurcations (Fig. 4)
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and isolas (Fig. 6) transform to a topologically equivalentbifurcation structure.
Considering the case where the bifurcation diagram is of mixed type (Fig. 8(b)), it
seems likely that the bursting solutions eventually form a single connected branch
of periodic orbits with a spike-adding cascade organized bySNP bifurcations as
ǫ decreases. This raises the question whether this could alsobe the case for fold-
homoclinic bursting, despite the fact that for that case it does matter whether FP
lies above or below the HC. Again, our numerical study is inconclusive here and a
detailed investigation is left for future work.

Nevertheless, we can get a glimpse into the region with0 < ǫ ≪ 1 via selected
numerical integrations in time. Inspection of the slow variable (z) oscillations
for fold-subHopf bursting indeed suggests persistence of slow oscillations with
periods going to infinity. The delayed passage through the Hopf bifurcation HB1 is
characterized by the fact that the maximum ofz lies at the same distance from the
z-value of HB1 as its minimum. If HB1 lies too close to SN1 then the maximum of
z equals thez-value of SN1. Figure 9(a) illustrates this for the polynomial model
with s = −2.6, b1 = −0.01 andǫ = 10−4. Note also that the pseudo spikes of
thex-variable during the active phase have nearly disappeared as predicted, with
only vestigial spikes at the beginning and end of the plateau. For some values of
ǫ andb1, the pseudo-plateau bursting appears to be chaotic, exhibiting depolarized
plateaus with variable and unpredictable duration. That is, the minimum ofz lies at
SN2, but its maxima lie between HB1 and SN1. An example is shown in Fig. 9(b)
with s = −2.6, b1 = −0.12 andǫ = 0.001.

The Hopf bifurcation of the full system In all the examples that we showed of
the bifurcation diagam of the full system Eqns. (1)–(3), theHopf bifurcation HB2
of the equilibrium FP happens at a relatively large value ofǫ. However, depending
on the choice forb1, which moves the location of FP on the Z-shaped steady-
state curve atǫ = 0 relative to the HC of the fast subsystem, HB2 can occur for
arbitrarily small0 < ǫ ≪ 1. Figure 10 presents a two-parameter bifurcation
diagram of the Hopf point HB2 in dependence onb1 andǫ. The curves for both
s = −1.61 ands = −2.6 are shown.

If we increaseb1 to 0 (this means going down in Fig. 10), starting from HB2

at b1 = −0.01 where FP lies below the HC atǫ = 0 for both choices ofs (Figs. 3
and 4), the Hopf bifurcation curve ends at the saddle-node bifurcation SN2 atǫ = 0.
As discussed in Appendix A.2, the point SN2 at ǫ = 0 corresponds to a singular
Hopf bifurcation of the full system, which persists for0 < ǫ ≪ 1, where it occurs
at a value ofb1 for which FP liesO(ǫ) close to (but past) the left knee of the Z-
shaped steady-state curve. The occurrence of a singular Hopf bifurcation has been
shown previously for the original Hindmarsh-Rose system (25) in (2, Fig. 12) as
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well as in (39); see also (24). Note that HB2 is only a singular Hopf bifurcation
for 0 < ǫ ≪ 1 and−1 ≪ b1 ≤ 0, but the exact transition from an ordinary to
a singular Hopf bifurcation is not defined. When FP corresponds to a saddle very
close to SN2 atǫ = 0, it is unstable for0 < ǫ ≪ 1, but its two unstable eigenvalues
are complex conjugate and lie extremely close to the imaginary axis. Hence, only a
very small increase inǫ already stabilizes FP as the singular Hopf bifurcation HB2

occurs. The singular Hopf bifurcation gives rise to a small-amplitude periodic orbit
that transforms very quickly asǫ varies over an exponentially small interval; if HB2

is supercritical,ǫ will be decreasing, but if HB2 is subcritical the branch will turn
around at an SNP bifurcation that happens exponentially close after HB2. For the
fold-homoclinic case, the periodic orbit transforms into an n-spike bursting orbit
wheren is extremely large forǫ small. For the fold-subHopf case, the periodic
oribt transforms into a relaxation oscillation. These exponentially small transitions
involve so-called canard orbits, where the periodic orbitscontain segments that
follow the saddle-branch of the Z-shaped steady-state curve (24).

If we decreaseb1 from b1 = −0.01, we find that the Hopf curve for both
s = −1.61 ands = −2.6 initially increases inǫ, but then decreases again until
it ends atǫ = 0. However, the Hopf curve is not monotonic inb1. Initially, the
equilibrium FP moves up the middle branch atǫ = 0 and past SN1 onto the upper
branch of unstable equilibria until it reaches HB1 at a value ofǫ > 0. However,
the Hopf curve continues for decreasingǫ when we trace FP past HB1 onto the
stable segment of the upper branch of the Z-shaped curve. Asǫ decreases further,
the Hopf curve reaches a minimum inb1 (which corresponds to a maximum in
Fig. 10) and then returns to the value ofb1 that corresponds to HB1 as ǫ → 0.
Hence, for a small range ofb1 when FP is located close to but to the left of HB1

on the stable segment of the upper steady-state branch, there exists a small range
of values0 < ǫ ≪ 1 for which FP loses stability and the attractor is a small-
amplitude periodic orbit; the end points of this small interval are (ordinary) Hopf
bifurcation points. However, when FP is unstable, only one Hopf bifurcation exists
for 0 < ǫ ≪ 1, which stabilizes FP asǫ increases.

Note that in the fold-homoclinic case HB1 is supercritical, while in the fold-
subHopf case it is subcritical. Furthermore, HB2 is subcritical when FP atǫ = 0
lies near SN2 (see Fig. 3), but it is supercritical when FP atǫ = 0 lies near SN1
(see Fig. 6). Hence, there must be at least one degenerate Hopf bifurcation on the
blue curve (s = −1.61) corresponding to the fold-homoclinic case, and at least
two degenerate Hopf bifurcations on thered curve (s = −2.6) corresponding to
the fold-subHopf case in Fig. 10.
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Discussion

Given the importance of the rapid ionic activities in endocrine cells that set the
levels of[Ca2+]i (5, 8, 48, 49) and are instrumental for the regulation of hormone
exocytosis, it is of interest to identify the key mechanismsgoverning them.

We consider two general classes of models for endocrine bursting, square-
wave bursting models (fold-homoclinic) and pseudo-plateau bursting models (fold-
subHopf). It is important, in particular, to understand thesimilarities and dif-
ferences between square-wave and pseudo-plateau burstingbecause they can be
regarded as a form of plasticity of the intrinsic membrane properties and thus
could have a profound effect on their function. We have presented here a generic
Hodgkin-Huxley type model that captures the main features of a number of pre-
viously published models, which pointed to a possible physiological locus for the
difference between the classes and also a simplified polynomial model, which em-
phasized the general dynamic features of the two classes of bursters and was more
convenient for the challenging numerical continuations carried out here.

Physiological implications. Although we have focused on the mathematical ef-
fects of varying the parameterfc (corresponding toǫ in the simplified polyno-
mial model), it represents the fraction of free cytosolicCa2+ and accounts for the
buffering capacity of cells. Smaller values offc slow down the rise inCa2+ and
in turn the activation of theKCa channels. As shown here, the cells exhibit bursts
with more spikes and, hence, longer depolarized plateaus. This agrees with a re-
cent study (37) that combined modeling and experiments to show that cytosolic
calcium buffering capacity can tightly modulate neuronal firing patterns and de-
termine whether bursting or spiking is generated. The rangeof parameter values
(fc ≥ 10−3, ǫ ≥ 10−3) we were able to explore numerically is comparable to that
found in most previously published models (ranging from10−3 to 10−1) (11, 12,
16, 30, 40, 42, 45–47) and also observed in cells (1, 6, 9, 20, 21, 33, 35, 38, 52).
Calcium buffering capacity is not only variable among cellsbut can change under
different physiological conditions, such as the developmental stage. In a recent
study in hippocampal granule cells, younger cells had approximately three times
smallerCa2+-binding ratio (41) than older cells. We note that the unusually slow
Ca2+ oscillations in pancreaticβ-cells (periods from tens of seconds to several
minutes) are likely not the result of very small binding ratio but rather reflect the
slow dynamics of metabolism and/or ofCa2+ in the endoplasmic reticulum (12).

A key difference between the two types of bursters is that thespikes disappear
in the fold-subHopf case asfc or ǫ goes to 0. It may thus be possible to distinguish
the two types experimentally by reducingǫ via addition of exogenousCa2+ buffer
as in (37). This also sheds new light on a question raised by the early observation
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that square-wave bursters are like relaxation oscillatorswith spikes superimposed
on the upper state. Namely, if cells need a plateau to raise[Ca2+]i, why do they
not just have a plateau instead of spikes? One possibility isthat cells have to
build the plateau out of ion channel interactions, and the delayed rectifier is too
slow to cancel out the spikes and produce a pure plateau. In addition, given the
naturally occurring range offc (10−3–10−1), Ca2+ is too fast compared to the
rate of attraction to the upper state to eliminate the spikes. With the earlier fold-
homoclinic models, this was not so apparent because the spike amplitude does not
vary with fc. In this sense, one can view fold-subHopf as a case that is closer to a
plateau and in fact results in higher calcium, at least when mediated by a shift in
VmL

.

Full-system bifurcation analysis and spike adding. In this paper we have ex-
amined both the square-wave and pseudo-plateau bursting regimes in terms of bi-
furcations of the full polynomial system over a relatively large range ofǫ. Similar
analyses for small fixedǫ and varying other parameters have been carried out pre-
viously for fold-homoclinic bursting (2, 7, 50), but we havetreated fold-subHopf
bursting for the first time. We considered the two together asthey form a class of
closely related biological systems.

We showed the emergence of bursting from a primordial large-amplitude spik-
ing solution that undergoes a complicated cascade of bifurcations in the full system
as the parameterǫ decreases (Figs. 3–6). A classic period-doubling cascade that
gives rise to two-, four- and higher-periodic orbits and presumably chaotic orbits
spawns a cascade of spike-adding bifurcations that generates a sequence of new
period-2,3,4,5,...,n attractors, for some finite numbern, asǫ decreases. The latter
correspond to bursting trajectories with the respective number of spikes. The in-
crease in the number of spikes asǫ decreases has the geometric interpretation that,
as the slow-variable component (thez-coordinate of the polynomial model) of the
bursting orbits of the full system slows down, the trajectory spends more and more
time moving along thez direction in phase space.

Previous studies have examined spike adding for fold-homoclinic bursting (2,
34, 43, 44, 50). Here, Figs. 4, 6 and 8(b) show that spike adding happens similarly
asǫ is reduced in the case of fold-subHopf bursting. We showed, in addition, for
both types of bursters that the form of the transition depends on where the full-
system steady state FP atǫ = 0 is located relative to the fast-subsystem HC. When
FP atǫ = 0 lies well below the HC (a case that has been considered for fold-
homoclinic bursters in (2, 34, 43, 44, 50)), the periodic branch is connected and
the addition of each spike is marked by a pair of SNP bifurcations (Fig. 4). In
contrast, when FP atǫ = 0 lies well above the HC, the periodic branch is disjoint,
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with isolas and period-doubling bifurcations for each new spike (Fig. 6).
Further, as shown in Fig. 8, where FP atǫ = 0 and the HC are very close,

the spike-adding transition appears to be of mixed type. Initially, as ǫ decreases
the usual period-doubling cascade occurs that characterizes the transition mediated
via isolas. However, we find no individual isolas for 3,4,5,..-spike solutions but
a connected complicated periodic branch/isola that comprises these solutions and
features saddle-node of periodics rather than period-doubling bifurcations. This
suggests that there is a continuous transition between the two mechanisms of spike
adding. Detailed analysis of this transition is left for future investigations as it re-
quires analysis of the smallǫ-limit where our numerical computations break down.

Whereas the spike-adding cascades are similar for fold-homoclinic and fold-
subHopf bursters, the two differ in their behaviors asǫ → 0. As shown previ-
ously (7, 44), when FP atǫ = 0 lies above the HC, fold-homoclinic bursting must
give way to small-amplitude continous spiking asǫ → 0. In contrast, fold-subHopf
bursters continues to exhibit large-amplitude oscillations as long as FP atǫ = 0 lies
to the right of HB1. Also, in the fold-subHopf case, the number of spikes increases
to infinity asǫ → 0 and their amplitude decreases to 0 because the rate of increase
of the slow variable (z or Ca2+) becomes much smaller than the rate of attraction
to the branch of stable equilibria of the fast subsystem, culminating in plateaus
with no spikes (Fig. 9(a)).

As in previous studies (34, 43, 44, 50), we also find bi-stability between regular
bursting solutions with different numbers of spikes as wellas multi-stability due
to period-doubling cascades leading to chaos in the full system. As is the case for
spike adding, the behavior differs depending on whether FP at ǫ = 0 lies above
or below HC. For example, in the case where spike adding is mediated via iso-
las (Figs. 5 and 6), regular bursting solutions with different numbers of spikes do
not coexist. However, there are more complicated secondarybursting trajectories
that do coexist with the regular bursting orbits and apparently chaotic alternation
between such solutions can also be seen (Fig. 7(b)). In contrast, when the spike
adding appears through SNP bifurcations (Figs. 3 and 4), there are small ranges for
ǫ where both regularn- and(n + 1)-spike bursting solutions,n = 1, 2, 3, ...N , are
stable and again apparently chaotic alternation between such solutions is observed
(Fig. 7(a)). These results agree well with previous work on fold-homoclinic burst-
ing (2, 7, 14, 31, 32, 34, 39, 43, 44, 50) and are here extended to fold-subHopf
bursters, which show the same behavior with respect to bi-stability and multi-
stability.

Previous studies of spike adding have been done for the fold-homoclinic case
by studying 1D Poincaré return maps or specially constructed 2D maps (2, 14, 31,
32, 34, 39, 44, 50), in contrast to our approach of continuingperiodic orbits of the
full ODE system. Several studies have also constructed bifurcation diagrams of the
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full system of ODEs (2, 14, 18). Such studies have pointed to the importance of
spike-adding transitions for the genesis of bursting from simple continuous spiking
solutions. Most studies have used a primary bifurcation parameter that translates
the slow-variable nullcline;Ca2+ pump rate or the conductance ofKCa channels
have been popular choices, motivated by the ability of theseparameters to convert
bursting to small-amplitude continuous spiking in the firstbiophysical model of
fold-homoclinic bursting (16).

Taking these studies together with ours, we can identify three distinct transi-
tions between bursting and spiking in the fold-homoclinic case. Whenǫ is small,
there is a transition from bursting to small-amplitude spiking as FP atǫ = 0 crosses
the HC from below. In the limit asǫ → 0, the transition occurs precisely when
FP coincides with the saddle equilibrium that corresponds to the HC (7, 44), but
bursting can persist whenǫ > 0 for a range of FP loci above the HC. This is the
second transition: when FP atǫ = 0 lies above the HC, spiking converts to burst-
ing asǫ increases from 0, passing through a complicated chaotic cascade along
the way that includes plateaus of arbitrary and fluctuating duration (44). Finally,
asǫ becomes larger, the number of spikes per burst decreases, reaching a region
of large-amplitude spiking (the third transition) before oscillations end in a Hopf
bifurcation (HB2 in Figs. 3–6 and 8). Those spiking solutions can be thought ofas
infinite trains of bursts with one spike, in contrast to the small-amplitude spiking
above, which can be thought of as single bursts with an infinite number of spikes.
Of the above transitions, only the third occurs in fold-subHopf bursting due to the
lack of stable limit cycles in the fast subsystem.

Future directions. Our analysis is complementary to the study of Belykh et
al. (7), who did a local analysis for smallǫ; namely, we consider the behavior
at largeǫ. Fold-homoclinic bursting was addressed in their Scenario3 and, as
suggested above, fold-subHopf bursting has some similarities to their Scenario 1,
though the latter is a pure relaxation oscillator with no Hopf bifurcation in the fast
subsystem (HB1 in our nomenclature).

We have identified one route to transform fold-homoclinic tofold-subHopf
bursting, namely, translation of the activation curve of theCa2+ current; there may
be other parameters that can achieve this. Changing the conductance of voltage-
gatedK+ channels orKCa channels, such as the BK channel, which is voltage-
as well asCa2+-sensitive, can also shift the slow manifolds, change spikeampli-
tude, and change the location and nature of the fast-subsystem Hopf bifurcations in
endocrine cell models. BK blockade and natural variation ofBK channel density
were shown to affect the period of apparent pseudo-plateau bursting in pituitary
somatotrophs (45), and BK blockade was shown to convert apparent bursting to
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large amplitude spiking (47). Similar effects are seen by varying the time con-
stant of voltage-gatedK+ channels or the conductance of voltage-dependentCa2+

channels (unpublished observations). None of these changes has been seen to con-
vert fold-subHopf to fold-homoclinic bursting or vice versa, though it is possible
that they could do so in combination with other parameter changes. A promising
framework in which to investigate these questions is that ofGolubitsky et al. (23),
where local unfoldings of singularities in the fast subsystem bifurcations were used
to classify types of bursting.
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A Models and Methods

A.1 Generic Endocrine Model

The equations for the generic Hodgkin-Huxley-type model are:

Cm
dVm

dt
= −(ICa + IK + IKCa

), (4)

dn

dt
=

n∞(Vm) − n

τn
, (5)

dc

dt
= −fc (α ICa(Vm) + kPMCA c), (6)

whereCm is the membrane capacitance;τn is the activation time constant for the
delayed rectifier channel;n∞ is the steady state function for the activation variable
n; Cm = 10−5×Acell is the membrane capacitance;fc is the fraction of free to total
cytosolicCa2+; α = 105 (2 × 9.65 × Acell)

−1 is a factor that converts current to
flux, whereAcell = π × d2

cell is the area of the cell; andkPMCA is the plasma
membraneCa2+ ATPase pump rate. Sincec represent the freeCa2+ concentration
in the cytosol the corresponding fluxes in Eq. (6) are multiplied by the fractionfc

of free to total cytosolicCa2+. The currents included in the model equations are:

ICa(Vm) = gCa m2
∞

(Vm) (Vm − VCa) , (7)

IK(Vm, n) = gK n (Vm − VK) , (8)

IKCa
(Vm, c) = gKCa

s∞(c) (Vm − VK) . (9)
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The steady state activation functions are:

m∞(Vm) =

(

1 + exp

(

VmL
− Vm

sm

))

−1

, (10)

n∞(Vm) =

(

1 + exp

(

Vn − Vm

sn

))

−1

, (11)

s∞(c) =
c4

c4 + k4
s

. (12)

Values of all parameters used in the model simulations are given in Table A.1.

TABLE A.1
Parameter values of the Generic Pituitary Model

kPMCA 20 s−1 fc 0.01

dcell 10µm gK(Ca) 0.2 nS

VK −65 mV gCa 0.81 nS

VCa 0 mV gK 2.25 nS

VmL
−27.5 mV Vn 0 mV

sm 12 mV sn 8 mV

ks 1.25µM τn 0.03 s−1

A.2 Linear Stability Analysis of the Polynomial Model

According to ConditionC6, the polynomial model Eqns. (1)–(3) has a unique equi-
librium FP = (xFP, yFP, zFP) that exists for allǫ ≥ 0. The location of FP is
determined by the point where thez-nullcline intersects the Z-shaped steady-state
curve of the fast subsystem Eqns. (1)–(2) atǫ = 0 and can be controlled by a single
parameter. A convenient choice is the parameterb1 as shown in Fig. 2. Hence,
we assume thata = 0.5, b = 1, a1 = −0.1, andk = 0.2 are fixed ands andb1

may vary. By setting the right-hand sides of Eqns. (1)–(3) to0, we find that FP is
determined by the only real rootxFP of the polynomial equation

s k a x3 − k (s + 1)x2 + s a1 b x + b1 b = 0. (13)

The other coordinates of FP are given by

yFP = x2
FP, and zFP =

s a x3
FP − x2

FP (s + 1)

b
=

s a1 xFP + b1

k
.
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Note that for fixed values ofa, b, a1, andk the equilibrium FP depends ons andb1

but not onǫ. However, its stability does depend onǫ (39). The Jacobian matrix of
Eqns. (1)–(3) is given by

J =

















∂f

∂x

∂f

∂y

∂f

∂z
∂g

∂x

∂g

∂y
0

ǫ
∂h

∂x
0 ǫ

∂h

∂z

















.

The stability of FP is determined by the eigenvalues ofJ evaluated at FP. Hence,
the eigenvalues are the roots of the characteristic polynomial

P(λ) =

(

λ − ǫ
∂h

∂z

)

det









λ − ∂f

∂x
−∂f

∂y

−∂g

∂x
λ − ∂g

∂y









−

ǫ
∂h

∂x
det









−∂f

∂y
−∂f

∂z

λ − ∂g

∂y
0









⇔ P(λ) =

(

λ − ǫ
∂h

∂z

)

det (λ I − Jf ) − ǫ
∂h

∂x

∂f

∂z

(

λ − ∂g

∂y

)

, (14)

whereJf is the Jacobian matrix of the fast subsystem Eqns. (1)–(2) evaluated at FP.
For fixeda = 0.5, b = 1, a1 = −0.1, andk = 0.2 the characteristic polynomial
Eqn. (14) is given by

P(λ) = (λ + 0.2 ǫ)
[

(λ + 1) (λ + 2 s xFP − 1.5 s x2
FP) + 2xFP

]

+ǫ a1 s (λ + 1).
(15)

We are primarily interested in the stability of FP for0 < ǫ ≪ 1 when FP is located
on the unstable segments of the Z-shaped steady-state curveof the fast subsystem,
that is, on the saddle segment withλ1 < 0 < λ2 that lies in between the two
knees marked by saddle-node bifurcations (labeled SN1 and SN2 in Fig. 2) or on
the segment of the upper branch withλ1, λ2 > 0 that lies after the Hopf bifurcation
(labeled HB1 in Fig. 2).

Note that the full system Eqns. (1)–(3) is degenerate atǫ = 0, because the
Jacobian matrixJ is then always singular. In the limitǫ = 0 Eqn. (14) reduces to

P(λ) = −λ det (λ I − Jf ) ,
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so that the eigenvalues of FP converge to the two eigenvaluesλ1,2 of Jf and the
eigenvalueλ3 = 0 asǫ → 0. At ǫ = 0, the characteristic polynomialP(λ) has two
zero eigenvalues when FP lies on SN1 (alsoλ1 = 0) or SN2 (alsoλ2 = 0), and a
pair of purely imaginary eigenvaluesλ1 = λ̄2 along withλ3 = 0 when FP lies on
HB1.

If FP lies on the lower branch, before SN2, then it is stable for0 < ǫ ≪ 1,
that is,λ3 < 0. As we decreaseb1 so that FP moves around the knee past SN2, the
eigenvaluesλ2 < 0 andλ3 < 0 become complex conjugate and move through the
imaginary axis, after which they become real again andλ2, λ3 > 0 (39). Hence, a
Hopf bifurcation occurs that involves eigenvalues of both the fast (λ2) and the slow
(λ3) equations. This is a singular Hopf bifurcation (13, 24). The characteristic
polynomial Eqn. (14) for FP at SN2, which corresponds tob1 = 0 and FP=
(0, 0, 0) in Fig. 2 for boths = −1.61 ands = −2.6, becomes

P(λ) = (λ + 1) (λ2 + 0.2 ǫ λ + ǫ a1 s),

and the eigenvalues areλ1 = −1 andλ2,3 = −0.1 ǫ±0.1
√

ǫ2 − 100 ǫ a1 s. There-
fore, providedǫ > 0 is sufficiently small,λ2,3 are complex conjugate with negative
real parts. Thus, the singular Hopf bifurcation does not happen exactly when FP
lies on SN2, but when FP moves slightly past SN2 onto the saddle-segment of the
Z-shaped steady-state curve. Indeed, the theory predicts that the singular Hopf
bifurcation liesO(ǫ) close to the point where FP passes through the knee (24).

As we continue to decreaseb1 and trace FP along the saddle-segment of the
Z-shaped steady-state curve, the eigenvalues of FP areλ1 < 0 < λ2 andλ3 > 0.
Note that as FP reaches the homoclinic bifurcation point HC the sumλ1 + λ2 of
the eigenvalues that converge to those of the fast subsystemfor ǫ → 0 is negative
for s = −1.61 and positive fors = −2.6. This is consistent with the type of
the Hopf bifurcation in the fast subsystem, which is supercritical in the case of
fold-homoclinic bursting (s = −1.61) and subcritical in the case of fold-subHopf
(s = −2.6).

When FP moves around the right knee past SN1, one typically expects another
singular Hopf bifurcation (39). However, we fixeda = 0.5, b = 1, a1 = −0.1,
andk = 0.2 such that there is only one Hopf bifurcation on the upper branch of
the Z-shaped steady-state curve. This means that the equilibria of the fast subsys-
tem are unstable on both sides of SN1. For b1 such that FP is locatedO(ǫ) away
from SN1 on the middle branch of the Z-shaped curve, the eigenvalues of FP are
λ1 < 0 < λ2 andλ3 > 0, while for FP locatedO(ǫ) away from SN1 on the upper
branch of the Z-shaped curve, its eigenvalues areλ1, λ2 > 0 andλ3 < 0. Hence,
in our case, it is not possible to get a singular Hopf bifurcation. Numerical calcu-
lations fors = −2.6 andǫ = 10−6 seem to indicate thatλ1 andλ3 pass through
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zero simultaneously, though generically, one would expectthat they do so via two
subsequent saddle-node bifurcations. However, none of theeigenvalues ever be-
come zero (detJ 6= 0) whenǫ > 0 and eithers = −2.6 or s = −1.61; indeed, the
degeneracy at SN1 needs further investigation, but this is beyond the scope ofthis
paper.

Whenb1 is such that FP lies in between HB1 and SN1 then FP is a saddle with
two unstable eigenvalues (λ3 < 0 for 0 < ǫ ≪ 1). As b1 decreases from a value
with FP located close to SN1, the eigenvaluesλ1 andλ2 that correspond to the fast
subsystem coalesce on the real axis and become complex conjugate with positive
real parts. This marks a transition from saddle-node to saddle-focus equilibrium.
Finally, another Hopf bifurcation occurs as FP passes through HB1, but this is not
a singular Hopf bifurcation because it involves only eigenvalues corresponding to
the fast subsystem.

A.3 Computational method

The models simulations were done with the software package XPPAUT (19). The
bifurcation analysis was performed with AUTO (17).
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Figure Legends

Figure 1. Bifurcation diagrams of the fast subsystem in the generic endocrine
model (Appendix A.1) showing the bifurcations associated with square-wave
(fold-homoclinic) bursting (panela) and pseudo-plateau (fold-subHopf) burst-
ing (panelb). (a) VmL

= −22.5 mV; (b) VmL
= −27.5 mV; HB — Hopf

bifurcation; SN — saddle-node bifurcation; SNP — saddle-node of period-
ics; HC — homoclinic bifurcation point. Dashed lines denoteinstability.
Sample bursting trajectories are superimposed on the bifurcation diagrams
for each of the models.

Figure 2. Bifurcation diagrams of the fast subsystem in the polynomial model
Eqns. (1)–(2) showing the bifurcations associated with thetransition from
square-wave (fold-homoclinic) to pseudo-plateau (fold-subHopf) bursting as
well as thez-nullcline for three different values of the parameterb1 and with
(a) s = −1.6, or (b) s = −2.6; HB — Hopf bifurcation; SN — saddle-
node bifurcation; HC — homoclinic bifurcation point. Dashed lines denote
instability.

Figure 3. (a) Three-dimensional view (ǫ, z, x) of the one-parameter bifurcation
diagram with respect toǫ of the full polynomial model Eqns. (1)–(3) in the
case of square-wave bursting (s = −1.6, b1 = −0.01); HB — Hopf bifur-
cation; SNP — saddle-node of periodics; FP — fixed point; HC — homo-
clinic bifurcation point. Dashed lines denote instability; (b) Sample burst-
ing trajectories with increasing number of spikes, i.e., decreasing values of
ǫ = 0.009; 0.005; 0.004; 0.0035; 0.0027; 0.0024; 0.002 are superim-
posed on the bifurcation diagram.

Figure 4. (a) Bifurcation diagram of the full polynomial model Eqns. (1)–(3) with
respect toǫ in the case of pseudo-plateau bursting (s = −2.6, b1 = −0.01);
HB — Hopf bifurcation; SNP — saddle-node of periodics; FP — fixed point;
PD — period-doubling bifurcation; HC — homoclinic bifurcation point.
Dashed lines denote instability; (b) Sample bursting trajectories with increas-
ing number of spikes, i.e., decreasing values ofǫ = 0.08; 0.06; 0.035; 0.023
are superimposed on the bifurcation diagram.

Figure 5. (a) Bifurcation of the full polynomial model Eqns. (1)–(3) in the case
of square-wave bursting (s = −1.6, b1 = −0.05); HB — Hopf bifurca-
tion; PD — period-doubling bifurcation; FP — fixed point; HC —homo-
clinic bifurcation point. Dashed lines denote instability; (b) Sample burst-
ing trajectories with increasing number of spikes, i.e., decreasing values of
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ǫ = 0.07; 0.04; 0.03; 0.024; 0.018; 0.015; 0.014; 0.012 are superim-
posed on the bifurcation diagram.

Figure 6. (a) Bifurcation diagram of the full polynomial model Eqns. (1)–(3) in
the case of pseudo-plateau bursting (s = −2.6, b1 = −0.21); HB — Hopf
bifurcation; PD — period-doubling bifurcation; FP — fixed point; SNP —
saddle-node of periodics; HC — homoclinic bifurcation point. Dashed lines
denote instability; (b) Sample bursting trajectories withincreasing number
of spikes, i.e., decreasing values ofǫ = 1.105; 0.9; 0.6; 0.4; 0.25; 0.15
are superimposed on the bifurcation diagram.

Figure 7. Simulations of the polynomial model showing the apparentlychaotic
spike-adding transition in the pseudo-plateau bursting regime in the case
when (a) FP is well below the HC (s = −2.6, b1 = −0.01); and (b) when
FP is well above the HC (s = −2.6, b1 = −0.21).

Figure 8. Bifurcation diagrams of the full polynomial model Eqns. (1)–(3) in the
cases of (a) square-wave bursting (s = −1.6, b1 = −0.024); and (b) pseudo-
plateau bursting (s = −2.6, b1 = −0.066); HB — Hopf bifurcation; PD —
period-doubling bifurcation; FP — fixed point; SNP — saddle-node of peri-
odics; HC — homoclinic bifurcation point. Dashed lines denote instability.

Figure 9. Simulations showing the behavior in the pseudo-plateau bursting regime
for smallǫ in the cases (a) when FP is well below the HC (s = −2.6, b1 =
−0.01, ǫ = 0.0001); and (b) when FP is above the HC but below SN1 (s =
−2.6, b1 = −0.12, ǫ = 0.001).

Figure 10. Three-dimensional view (ǫ, z, −b1) of the two-parameter bifurcation
diagram of the full polynomial model with respect toǫ andb1 showing the
loci of HB2 for s = −1.6 (blue) ands = −2.6 (red); HB — Hopf bifur-
cation; SN — saddle-node bifurcation. The vertical, dashedlines show the
z-values of the hopf bifurcation HB1 of the fast subsystem (ǫ = 0).
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