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Abstract
Procedural tree models have been popular in computer graphics for their ability to generate a variety of output trees from a set
of input parameters and to simulate plant interaction with the environment for a realistic placement of trees in virtual scenes.
However, defining such models and their parameters is a difficult task. We propose an inverse modelling approach for stochastic
trees that takes polygonal tree models as input and estimates the parameters of a procedural model so that it produces trees
similar to the input. Our framework is based on a novel parametric model for tree generation and uses Monte Carlo Markov
Chains to find the optimal set of parameters. We demonstrate our approach on a variety of input models obtained from different
sources, such as interactive modelling systems, reconstructed scans of real trees and developmental models.
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1. Introduction

Plant modelling approaches can be categorized into three principal
classes: reconstructions from existing real world data, interactive
modelling methods and procedural or rule-based systems. The level
of realism of models produced by these methods is very high; how-
ever, many open problems still prevail.

Trees created using the reconstruction and interactive methods are
typically static and do not react to varying environments. In con-
trast, procedural methods generate a wide variety of plants that can
be sensitive to the environment and adapt their shape to changing
conditions. However, the controllability of procedural models is low
and is typically achieved by creating a set of input parameters, which
is often a cumbersome manual process. This problem becomes even
more severe with the increasing complexity of procedural models
needed today for the creation of large realistic scenes. This draw-
back of procedural modelling can be alleviated by solving the inverse
problem, i.e. by automatically computing the parameters of a proce-
dural model for a given tree. Once these parameters are determined,
the tree could be reconstructed and simultaneously enable all the ad-

vantages of procedural modelling for application to the production
process. Recently, various inverse modelling approaches have been
introduced. However, to the best of our knowledge, finding the pa-
rameters of a given stochastic procedural model of biological trees
has not been addressed by the computer graphics community. We
introduce a framework for stochastic inverse procedural modelling
of biological trees that offers three main contributions:

� a new compact parametric procedural model that describes a
wide variety of trees,

� an efficient similarity computation for the comparison of two
trees, and

� a method for the automatic determination of input parameters of
the procedural model for a given input tree.

As shown in Figure 1, the input of our framework is a single
3D polygonal tree model (or a set of such models). Our framework
reproduces the visual appearance of the input as closely as possible
using Monte Carlo Markov Chain (MCMC) optimization on the
input parameters.
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Figure 1: An input polygonal tree model (a) has been processed by our inverse procedural modelling system and the input parameters of
the developmental model have been estimated so that it can produce stochastically similar trees (b–d). The developmental model is able to
produce environmentally sensitive trees models (e).

The input is approximated by the resulting procedural model with
its set of input parameters. We demonstrate our framework on var-
ious tree models and show how their procedural representation can
be used to generate more trees of the same species, trees of different
ages or trees grown under different environmental conditions.

2. Related Work

Plant modelling has been the focus of computer graph-
ics research for a long time. Traditional methods are rule-
based systems [Hon71, PL90], particle systems [RB85],
environmental sensitive automata [Gre89] and space colonization
methods [PHL*09, RLP07].

In the last decade some effort has been devoted to the recon-
struction of real trees. Reche-Martinez et al. [RMMD04] use a
set of registered images to generate volumetric representations of
the tree canopy, and Neubert et al. [NFD07] work on loosely ar-
ranged inputs. In contrast to image-based methods, Livny et al.
[LPC*11] reconstruct trees from laser-scanned point sets (see also
[XGC07]).

Two recent approaches dynamically adjust tree models accord-
ing to their graph skeleton. The first approach proposed by Pirk
et al. [PNDN12] infers the early developmental stages from one
input exemplar and the second approach of Pirk et al. [PSK*12]
employs environmental sensitivity to static input trees and allows
the user to automatically change the tree topology under varying
environmental conditions. Both methods focus on an efficient pro-
cessing; the underlying developmental models only utilize a subset
of parameters required for a growth model and thus do not allow
generation of new tree models or adding branches. Their methods
do not allow for inferring all parameters that is required for a devel-
opmental model learning.

Sketch-based methods have been used to guide tree mod-
elling [OOI06, CNX*08] by using biologically motivated rules to
infer the 3D structure of a tree from 2D input [LRBP12]. Other
interactive methods allow the user to control the modelling process
by changing a set of parameters. One of the first user-aided meth-
ods is the work of Weber and Penn [WP95], and after it came the
Xfrog modelling system [LD99], in which rule-based and procedu-
ral modelling are combined to directly affect the model of a plant.

An overview of different modelling techniques has been presented
by [DL04].

The difficulty of controlling the rewriting process and the low in-
tuitiveness of the rule creation lead to works that focus on the prob-
lem of inverse procedural modelling. Ijiri et al. [IMIM08] propose
a system that constructs a procedural model from an arrangement
of 2D elements. Stava et al. [SBM10] use transformation spaces to
build procedural rules that describe an arbitrary vector image. An
extension of this approach to 3D is presented by [BWS10]. In both
of these works, convincing procedural models could be obtained
only for highly regular and symmetric inputs, but not for stochastic
data.

Finding a set of parameters that would generate a given input
of a procedural model is a complex task. The parameters can be
estimated using optimization techniques such as the MCMC sam-
pling [MRR*53]. This approach was used for finding the procedu-
ral representation of facades [RB06] or for directing the rewriting
process in procedural modelling [TLL*11]. Both methods rely on
a known procedural model with predefined parameter values that
were used to compute the best model fitting to the input data. Simi-
lar to our method is the approach of Vanegas et al. [VGDA*12] that
estimates input parameters of a procedural model. However, their
approach is aimed at interactive modelling of regular virtual cities
in order to provide high-level control and at matching stochastic
models. Moreover, Cournede et al. [CLM*11] present a method
that automatically detects parameters of stochastic procedural plant
models, but it relies on precise measurements of biomass distribu-
tion in real trees, which would be infeasible in computer graphics
applications.

3. Method Overview

To find the computer graphics procedural representation for different
input trees, we need a procedural model powerful enough to generate
a variety of trees species. It is difficult to reverse engineer an entire
model including its structural description but given an appropriate
parametric model many species can be expressed. This reduces our
problem to finding the right set of parameters for a given procedural
model that is able to generate trees resembling the input.

Our modelling framework (see Figure 2) uses either a single or
multiple geometric tree models such as LiDAR scans, Xfrog library
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Figure 2: Framework overview: input parameters of the procedu-
ral model are estimated via optimization and similarity measures
between the input and the generated model.

models, SpeedTree models or trees generated by Open L-systems.
The model is converted into a tree graph representation [GC98]
using an algorithm inspired by Au et al. [ATC*08].

We then use our procedural model that incorporates recent find-
ings in plant biology and computer graphics (see Section 4). The
input parameters for the model are determined by maximizing a sim-
ilarity measure that computes the visual and structural resemblance
of two trees (Section 5). This is done by MCMC-based optimiza-
tion that proposes new parameter values that gradually increase the
similarity of the generated trees and ends when the parameters can
no longer be significantly improved (Section 5.4).

4. Used Procedural Model

Trees have a wide range of shapes corresponding to various tree
species that can be represented by a developmental model with high
expressive power. Various developmental plant models exist, but
they often describe only a limited number of species.

We introduce a new parametric procedural model based on recent
advances in plant biology [CH06] and computer graphics [PHL09].
It uses a developmental formulation in which during each growth
cycle the tree grows shoots from active buds. The new shoots then
grow and create buds that can grow during the next cycle. The growth
of individual shoots and flushing of buds is controlled using a light-
based model described in [PSK*12]. Note that one growth cycle
does not necessarily correspond to 1 year because some species
undertake multiple growth cycles per year [CH06].

4.1. Parameters

Our model is controlled by a set of 24 parameters ϕ̄ describing
effects of internal and external factors on the tree shape. The pa-
rameters belong to three groups: (1) geometric, (2) environmental
and (3) parameters determining bud fate. The geometric parameters
define shapes of particular plant organs such as internode length or
phyllotaxis and they are important for the overall plant shape. The
actual branching structure and density is controlled by the bud fate
parameters. Lastly, environmental parameters are used to describe
interaction of a tree with its environment, for example with light
and gravity.

Apical Bud 

Lateral Buds 

ϕRAM 

ϕBAM 

ϕAAV 

Figure 3: Various parameters affect shoot growth: bending angle
ϕBAM , roll angle ϕRAM , and apical angle variance ϕAAV .

We have presented a moderately large parameter space for which
it is difficult to find the appropriate parameters for a target species
manually. Inverse modelling, with the help of a capable optimization
algorithm with efficient sampling of the parameter space, provides
an automatic solution.

Geometric parameters represent properties of different tree
species on tree geometry. A group of parameters determines the
phyllotaxy of a tree. They control number and relative orientation
of lateral buds along a shoot as shown in Figure 3 and in Table 1.
Additional parameters describe the variance of individual angular
variables that add randomness into the generated trees. The apical
bud is always located at the end of the shoot, and its orientation
with respect to the parent shoot is determined by a spherical an-
gle (θ, φ); {θ ∼ N (0, ϕAAV ), φ ∼ U(0, 2π )}, where N and U are
the normal and uniform distributions, respectively, and ϕAAV is
the apical angle variance parameter. Increasing its value adjusts
the branching structure as shown in Figure 4(a).

The shoot length is controlled by the growth rate (ϕGR) and the
internode base length (ϕIBL), which together determine the dis-
tance between two nodes containing lateral buds. The number of
internodes nIN generated by a single shoot is computed as rounded
growth rate nIN = �ϕGR�, and the length of a shoot is nINϕIBL.
The values of ϕGR and ϕIBL can change based on the location and
tree age. The initial internode length decreases with the increas-
ing tree age [OL96] and is expressed by internode length age
factor (ϕIL AF), which modifies the actual internode length be-
cause ϕ′

IBL = ϕIBLϕ
t
IL AF , where t is the age of the tree. The

age factor is usually smaller but close to one, which causes
the length of internodes to gradually decrease as the tree gets
older.

The growth rate of a shoot ϕGR is primarily affected by
the dominance of its parent branch, described by apical con-
trol (ϕAC) [CBH09]. If its value is high, shoots growing from dom-
inant branches grow faster than shoots growing from lateral ones,
resulting in a tall tree with a significant trunk. Trees with a low api-
cal control have a spherical crown as all branches grow with similar
speed (see Figure 4b). Apical control directly modifies the growth
rate

ϕ′
GR =

{
ϕGR/ϕ

ζk
AC if ϕAC > 1

ϕGR/ϕ
ζk−ζmax

AC otherwise.
(1)
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Table 1: Summary of all parameters of the growth model.

Parameters Name Description

ϕAAV Apical angle variance Variance of the angular difference between the growth direction
and the direction of the apical bud.

ϕNLB Number of lateral buds The number of lateral buds that are created per each node of a
growing shoot.

ϕBAM , ϕBAV Branching angle mean and variance The mean and variance of the angle between the direction of a
lateral bud and its parent shoot.

ϕRAM , ϕRAV Roll angle mean and variance The mean and variance of an angular difference orientation of
lateral buds between two internodes.

ϕAB D, ϕLB D Apical and lateral bud extinction rate The probability that a given bud will die during a single growth
cycle.

ϕLF A, ϕLF L Apical and lateral light factor The influence of light on the growth probability of a bud.
ϕAD BF , ϕAD DF , ϕAD AF Apical dominance base, distance, and age factors Control over the auxin production and transport within a tree.
ϕGR Growth rate The number of internodes generated on a single shoot during

one growth cycle.
ϕIBL, ϕIL AF Internode length and age factor The base length of a single internode and its relation to the tree

age.
ϕAC , ϕAC AF Apical control level and age factor The impact of the branch level on the growth rate ϕGR and its

relation to the tree age.
ϕPT , ϕGT Phototropism and Gravitropism The impact of the average direction of incoming light and

gravity on the growth direction of a shoot.
ϕPF Pruning factor The impact of the amount of incoming light on the shedding of

branches.
ϕLB PF Low branch pruning factor The height below which all lateral branches are pruned.
ϕGBS, ϕGBA Gravity-bending strength and angle factor The impact of gravity on branch structural bending and its

relation to branch thickness.
t Growth time Controls the age and size of the generated trees.

Figure 4: (a) The effect of increasing branching angle (from left to right); (b) a tree with high apical control (left) has a long trunk and
shorter side branches, whereas low apical control causes trees to have the typical spherical crown (right); (c) high apical dominance results
in less-frequent branching enabling certain branches to become dominant (left). A tree with low apical dominance tends to branch very often,
creating many equally dominant branches (right).

ζk is the level of the parent branch [BAS09]. More dominant
branches have lower levels. The value of apical control usually
decreases with increasing tree age, which allows the tree to form a
denser crown at the later stages of its growth [OL96]. We control
this time dependence with apical control age factor (ϕAC AF), which
modifies the original apical control as ϕ′

AC = ϕACϕt
AC AF .

The parameters from the previous part define the geometric prop-
erties of individual branch segments, but the internal tree structure
is primarily defined by the fate of its buds that is controlled by bud
fate parameters. A single shoot usually contains many buds, but not
all of them flush and grow during the growth cycle. Some may stay

dormant until the conditions are favourable, or they might die as a
result of biological or environmental factors. During each growth
cycle, we set the parameters ϕAB D and ϕLB D, which specify the
probability that a given apical (ϕAB D) or lateral (ϕLB D) bud died
before the growth cycle started. Living buds can either form a new
shoot or remain dormant as a function on illumination and the plant
hormones [Sri02]. We represent the influence of light on apical buds
with the apical light factor ϕLF A and on lateral buds with the lateral
light factor ϕLF L.

The fate of a bud depends on the hormone auxin, which is pro-
duced and transported towards the root when a bud starts growing

c© 2014 The Authors
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into a new shoot. A high level of auxin inhibits lateral buds from
flushing, effectively delaying the growth of side branches [CBH09].
This allows a tree to form more significant branches that hold smaller
lateral branches. If the level of auxin is low, the tree branches more
frequently, thus creating a regular structure with high density and
without dominant branches (see Figure 4c). In real trees auxin also
controls the growth rate that is considered constant in our model.

We encode such apical dominance in three parameters: ϕAD BF

is the apical dominance base factor corresponding to the amount
of auxin produced by a flushing bud. The concentration of auxin
decreases as it is transported towards the roots, described by api-
cal dominance distance factor ϕAD DF . Apical dominance often de-
creases with increasing tree age, represented as apical dominance
age factor ϕAD AF .

Apical dominance should not be confused with the apical con-
trol. Even though they are often used interchangeably, their cause
and their effect are different [CH06]. Apical control influences the
growth rate of a shoot, but apical dominance controls bud flushing.
Apical control is used together with the light factors to compute the
probability P (F (bi)) that a given bud bi will flush. For apical buds
the probability is

P (F (bi)) = I(bi)
ϕLF A, (2)

where I(bi) is the illumination of the bud. It is computed using the
light model [PSK*12].

Lateral buds grow new shoots with probability

P (F (bi)) = I(bi)
ϕLF L

exp

⎛
⎝−

∑
bj ∈�(bi )

δjϕAD BFϕt
AD AFϕ

d(bi ,bj )
AD DF

⎞
⎠ , (3)

where �(bi) is a set of all buds located above the given lateral bud,
and δj = 1 if the bud bj flushed and otherwise zero. The value of
d(bi , bj ) is the branch-wise distance (Section 5.2) between buds bi

and bj .

Environmental parameters define how the surrounding envi-
ronment affects the plant. Light and gravity directly influence the
growth direction of a shoot. In normal conditions, shoots grow in
the direction defined by their source bud, but the growing shoot can
bend towards or away from an impetus that is described by tropisms.
Phototropism (ϕPT ) is bending towards light, and gravitropism (ϕGT )
is bending away from the gravity. The bending is simulated using
the approach from Palubicki et al. [PHL*09], where the parameters
ϕPT and ϕGT represent the strength of bending.

An increasing pruning factor ϕPF causes more intense shedding
of shadowed branches. Many branches are also removed due to
human or animal intervention, etc. We simplify these influences by
using a single parameter called low-branch pruning factor (ϕLB PF).
It specifies the maximal height up to which all side branches are
pruned.

As a tree grows older, the branches bend down in a response
to increasing weight of their child branches. The sagging of older
branches is especially important for many coniferous and other

Figure 5: Growth of a tree generated with our developmental model
at ages (left to right): 5, 10, 15, 20, 25 and 30 years.

softwood species (Figure A1). We propose a simplified model that
simulates the bending at each node of the grown tree by using the
orientation of the bent branch and the total mass of its child branches
(see Appendix A).

4.2. Foliage

Instead of directly simulating the growth of foliage we use a pro-
cedural system from Livny et al. [LPC*11]. The leaves are located
along the terminal branches. A certain species is assigned manually
to a model and additional branchlets are generated that hold the
leaves. This results in a higher foliage density, which is favourable
for scanned models of real trees because they usually contain only
the main branches. We used a set of leaf templates for many decid-
uous and coniferous trees, including willow, mahogany, pine and
thuja species. The leaves are generated at the end of the growth
cycle.

4.3. Example trees

Figure 5 shows the development of a tree achieved by our procedural
model. The individual images were captured with a time difference
of 5 years. Figure 6 shows several examples that were generated
using our approach by directly setting the parameters (see Table 2).
The variety of shapes has been achieved by changing the parameter
values, and each tree was generated using a trial-and-error approach
because the parameter space is large, and expressing the designer
intention in this way is difficult.

5. Similarity Measure and Optimization

Having described our parametric model, we now want to focus on
how to find a set of parameters that maximizes the similarity measure
between the input data and the generated trees. Although possible,
we make no attempt to optimize the environmental parameters of the

c© 2014 The Authors
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Figure 6: Different species generated with the procedural model. The corresponding prameter values can be found in Table 2.

Table 2: Parameters for trees generated by the developmental model (see
Table 1).

Param F6a F6b F6c F6d F6e F6f

ϕAAV 38 0 10 5 2 12
ϕNLB 4 2 2 1 60 2
ϕBAM 38 41 51 45 3 43
ϕBAV 2 3 4 5 130 3
ϕRAM 91 87 100 130 10 80
ϕRAV 1 2 30 3 0 4
ϕAB D 0 0 0 0 0.018 0
ϕLB D 0.21 0.21 0.015 0.01 0.03 0.21
ϕLF A 0.39 0.37 0.36 0.5 0.21 0.36
ϕLF L 1.13 1.05 0.65 0.03 0.5 1.05
ϕAD BF 3.13 0.37 6.29 5.59 0.55 0.38
ϕAD DF 0.13 0.31 0.9 0.5 0.91 0.31
ϕAD AF 0.82 0.9 0.87 0.979 2.4 0.9
ϕGR 0.98 1.9 3.26 4.25 0.4 1.9
ϕIBL 1.02 0.49 0.4 0.55 0.97 0.51
ϕIL AF 0.97 0.98 0.96 0.95 5.5 0.98
ϕAC 2.4 0.27 6.2 5.5 0.92 0.25
ϕAC AF 0.85 0.90 0.9 0.91 0.05 0.70
ϕPT 0.29 0.15 0.42 0.05 0.15 0.15
ϕGT 0.61 0.17 0.43 -0.01 0.22 0.13
ϕPF 0.05 0.82 0.12 0.48 1.11 0.80
ϕLB PF 1.3 2.83 1.25 5.5 0.32 2.90
ϕGBS 0.73 0.195 0.94 0.09 0.12 0.19
ϕGBA 0.05 0.14 0.52 0.89 0.78 0.14
t 8 26 14 28 10 30

procedural model that are used for the synthesis of trees interacting
with the environment.

Various similarity measures have been used in computer graph-
ics and in biology. Some of them concentrate on the branch-
ing skeleton [FG00] whereas others focus on the foliage render-
ing [NPDD11]. In contrast, we introduce a new similarity distance
that incorporates shape, geometry and structure and evaluates the
visual and structural differences between two botanical tree models
τ1 and τ2. Our similarity distance is composed of three different
components that measure the differences between the two trees at
three different quantitative levels: (1) the shape distance dS(τ1, τ2)

Top View μuh

μlh 

hl 

hm 

hu rmin 
rmax 

μc

Figure 7: The tree crown is divided into three parts that are then
compared independently between two trees.

measures the difference between the overall shapes of the trees; (2)
the geometric distance dG(τ1, τ2) compares the global geometric
branching properties and (3) the structure-based distance dT (τ1, τ2)
detects local differences between individual branches based on their
position within the trees.

Pirk et al. [PNDN12] proposed a geometric approach for estima-
tion of tree parameters from polygonal models. Although estimating
some values directly from the model could speed up the optimiza-
tion, we observed that the optimization time is not a bottleneck
and decided to use full optimization of all parameters from the
scratch. Moreover, our optimization works with any input model
and is not limited to models compatible with approaches presented
by [PNDN12].

5.1. Shape distance

The shape distance function evaluates several descriptors that define
the shape, as illustrated in Figure 7. The height of the tree τ is
described by λS,h(τ ). The crown shape is affected by the distribution
of leaf branches along the vertical axis of the tree. To capture the
variances in this distribution, we divide the tree into three horizontal
slabs as shown in Figure 7.

To find the separating planes, we first compute the geomet-
ric mean of the crown μc that divides the entire crown into two

c© 2014 The Authors
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halves. The location of the separating planes is then defined by
the geometric means μuh and μlh of the upper and lower halves,
respectively.

For each slab, we compute a set of shape descriptors {λS,c} that
capture their height hi , the average radius in the horizontal principal
directions of the crown rmin and rmax, and their leaf-branch density,
where the leaf-branches are all terminal branches. Having two trees
τ1 and τ2, we first compute the differences δλS

between all descriptors
λS

δλS,i
= 1 − exp

(
−
(
λS,i(τ1) − λS,i(τ2)

)2

2σ 2
λS,i

)
, (4)

where σλS,i
is a normalization factor that ensures comparability of

different descriptors. Based on our experiments we set the normal-
ization factor to σλS,i

= 1
5 min

(
λS,i(τ1), λS,i(τ2)

)
, which resulted in

a fast convergence during the optimization process.

The shape distance is then computed as the Minkowski distance
of order p of the vector δ̄S to the origin. If p = 1, the distance is es-
sentially just an averaged sum of the differences, and with increasing
p, the weight of larger differences increases. From our experiments
we set p = 2.5, which gives a noticeably higher importance to large
differences without significantly degrading the impact of the lower
ones.

5.2. Geometric distance

The shape of two trees can be similar even if there are noticeable
differences in the geometric properties of their branching structures.
The geometric properties of a tree are defined by the statistics of the
geometry of its branches and by their relative orientation.

5.2.1. Branch geometry

Properties of branch geometry are computed from the tree graph.
Each branch is described by a set of properties {bi} (see Table 3)
that are computed from the geometric information of the branches,
as illustrated in Figure 8.

pS

pE

dSE

pidi

αi

(a) (b)

βs

ωs

pk=

Figure 8: Geometric properties of a single graph node.

We obtain geometric descriptors from the geometric properties
described in Table 3. All geometric properties, except the branch
length and thickness, are calculated by using sample points over the
tree. The descriptors are defined as the weighted mean and variance
of these samples.

The sample weight of the geometric attributes is computed using
the length and the thickness of the given branch and reflects the
different impacts of smaller and larger branches on the similarity
between the two trees. For angular properties (sibling and parent
angles), the weights are computed directly from the branch thickness
as either w′

T = bD or w′′
T = b2

D . The remaining branch properties are
weighted with w′

L = bDbL and w′′
L = b2

DbL. The weighting scheme
w′′ denotes the dominant variation that puts more focus on the main
branches, while the weights w′ capture characteristics of smaller
branches that form the foliage. By using two different weights for
each branch property, we compute two different sample means and
variances for every geometric attribute.

The sample means and sample variances are then used as geomet-
ric descriptors λG that are used to compute the geometric distance
dG using the Minkowski length, as shown in Equation 4.

5.3. Structural distance

The third form of metrics evaluates the difference between individ-
ual branches with respect to their position within the tree. Ferraro
and Godin [FG00] evaluate distance between two tree graphs as
a minimal cost of transforming all nodes of one tree graph into
nodes of the other (the so-called edit distance). The nodes could

Table 3: Geometric properties of a single node in the branch graph.

Sym. Name Description Formula

bL Length Total length of the branch.
∑k

i=1 di

bD Thickness Maximal thickness of the branch. max∀di
ti

bα Deformation Accumulated angular deflection.
∑k−1

i=1 αi

bT Straightness Ratio between the end-point distance and the real length of the branch. |d̄SE |
bL

bS Slope Angle between the direction of branch end points and the horizontal plane. ∠d̄SE

bAS Sibling angle Angle between the branch and its nearest sibling. βS

bAP Parent angle Angle between the branch and its parent branch. ωS

c© 2014 The Authors
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Figure 9: Edit distance: a sequence of assign, delete, and insert
operations that transform tree τ1 into tree τ2.

be transformed by χ : assign, insert and delete operators with a
cost γ defined by the geometric properties of the transformed nodes.
Operator assign maps one node from the source tree to a single
node of the target tree while operators insert and delete create
or erase a node from the target tree, respectively. The distance
between the two trees � is given by a sequence of operators S

that transform one tree into the other one at the minimal cost:
� = min∀S

∑
χi∈S γ (χi) (see an example in Figure 9). This method

works correctly when the distribution of nodes is uniform but it
quickly loses its accuracy when the geometric resolution between
the two tree graphs differs, i.e. when one model is modelled in much
coarser resolution than the other.

5.3.1. Split and merge operators

To address the problem of different geometric resolutions in struc-
tural tree distances [FG00], we propose new operators that compare
tree graphs with inconsistent and irregular topologies. We define
two new operators split and merge that replace the operators insert
and delete:

� Split: χS(t1, t2, t2,i) divides one node t1 from the first tree τ1 into
two nodes that are assigned to two nodes of the second tree:
t2 and its ith child node t2,i . All subtrees Tt2,j

with roots in all
remaining child nodes t2,j , {j 	= i} are then inserted into the first
tree.

� Merge: χM (t1, t1,i , t2) is the inverse operator of the split operator.
It merges a node t1 from the first tree with one of its child nodes
t1,i . The merged nodes are then assigned to a single node t2 from
the second tree. All remaining subtrees Tt1,j

rooted in child nodes
t1,j , {j 	= i} are deleted.

An example of the application of operators on a tree graph is in
Figure 10. Because both operators can be applied repeatedly, they
effectively connect chains of subsequent nodes.

5.3.2. Operator cost functions

From a structural point of view, the new operators provide no new
benefits because the same output can be achieved by a sequence of
insert, delete, and assign operations. However, each use of a split
or merge operator effectively changes the geometric properties of

(a) (b) (c) (d) 

Merge 

Split 

t1

t1,i

t2

t1

t2

t2, i

Figure 10: To map the left input tree to the right one (a), we first
apply the merge operator to fuse two nodes of the left tree and map
them onto a single node of the right tree (b). We then split one node
of the left tree to map the result to two nodes of the right tree (c). To
compute the cost of the split operation, we apply the node joint J to
the two nodes of the right tree and the resulting node is compared
to the original node of the left tree (d).

the transformed nodes. By changing the geometric properties, we
modify the cost of the implicit assign, insert and delete operations
that are performed during each split and merge step. The cost of the
split (γS) and merge (γM ) operators is

γS(t1, t2, t2,i) = γA(t1,J (t2, t2,i)) +
∑

∀t2,j ,j 	=i

∑
∀tk∈Tt2,j

γI (tk) (5)

γM (t1, t1,i , t2) = γA(J (t1, t1,i), t2) +
∑

∀t1,j ,j 	=i

∑
∀tk∈Tt1,j

γD(tk), (6)

where γA, γI and γD are the assigning, inserting, and deleting costs.
The operator J (ta, tb) is a so-called node join operator that fuses
two nodes ta and tb and creates a new node ta→b with combined
geometric properties of the original nodes (see Appendix B).

5.3.3. Edit distance

The distance between two tree graphs T1 and T2 is equal to the min-
imal cost of transforming one tree graph into the other. The cost of
such a sequence can be computed by a recursive algorithm [Zha96]
that evaluates the so-called edit distance dN (t1, t2) where t1 is the
root of T1 and t2 is the root of T2. Computing the edit distance
between unordered trees is generally an NP-complete problem, but
it can be solved in polynomial time when proper constraints are
defined [Zha96] (see Appendix B for a discussion of the constraints
used in our implementation).

To compute dN (t1, t2), we modified the algorithm. When either t1
or t2 is an empty node, we compute the edit distance using the orig-
inal approach, but the edit distance between two nonempty nodes t1
and t2 is now defined using the new operations split and merge

dN = min
(
γA(t1, t2) + dF (t1, t2),

dF (ε, t2) − max
∀t2,i

(
dN (t1,J (t2, t2,i)) − dN (ε, t2,i)

)
,

dF (t1, ε) − max
∀t1,i

(
dN (J (t1, t1,i), t2) − dN (t1,i , ε)

) )
,
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where dF (t1, t2) is the distance between two forests that are
created from subtrees of nodes t1 and t2 after the nodes have
been removed. We compute dF (t1, t2) by solving the mincost
max-flow problem on a bipartite graph as described by Zhang
[Zha96].

The structure-based distance dT (τ1, τ2) between trees τ1 and τ2

(and corresponding tree graphs T1, T2 with roots t1, t2) is

dT (τ1, τ2) = dN (t1, t2)

2 max (dN (t1, ε), dN (ε, t2))
. (7)

The final similarity measure DT (τ1, τ2) is the sum of shape-based,
geometry-based and structure-based distances with corresponding
weights wS, wG, wT ∈ [0..1], wS + wG + wT = 1. A value DT =
0 reflects the exact similarity and 1 no similarity at all. All our results
were generated for equal weights. Better results can be achieved if
the weights are selected by the user for a specific problem. For
example, if she is interested in the similarity of the tree crowns, the
shape-based weight wS can be increased while the remaining two
weights are decreased.

5.4. Optimization of parameters

A procedural model M is essentially a stochastic system, and each
tree τ generated by the model is a realization of this system that is
controlled by the parameters ϕ̄ and the time t : τM(ω) ∼ M(ϕ̄, t),
where ω{ω ∈ �M} is the state variable of M defined in the state
space �M. In general, there can be infinite number of trees that can
be generated by the system M, where the probability that a given
tree is generated is determined by some density function p(ω).

To find the model parameters that maximize the resemblance of
the generated model to the input tree, we maximize the similar-
ity measure by minimizing the distance function DT (τ1, τ2). The
optimization problem is then defined as

argmin
ϕ̄M,t

(∫
ω

DT

(
τ r , τM(ω)

)
p(ω) d�(M,ϕ̄M,t)

)
, (8)

where τ r is the reference input tree. The above formulation searches
the optimal parameter values ϕ̄ and the optimal growth time t that
minimizes the distance for all trees that can be generated by the
parametric model M. To compute the distance of all trees, we need
to integrate over all possible states ω that are allowed by the model
M with parameters ϕ̄ and time t .

The integral of the distance function over all possible generated
trees cannot be solved analytically, but its solution can be approx-
imated by the Monte Carlo numerical integration technique. The
approximated solution is then computed by randomly sampling the
state space �M, where each sample represents a single generated
tree τM. Since the random samples follow the probability density
function p(ω), the approximated optimization problem can be writ-
ten as

ϕ̄M, targmin

⎛
⎝∑

ωj

DT

(
τ r , τM(ωj )

)⎞⎠ , (9)
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Figure 11: Optimization of the tree distance.

where ωj are the random samples following the density p(ω) that
is specific for every model M(ϕ̄, t). The number of samples ωj

determines the accuracy of the approximated solution, as discussed
in Section 6.

Because the relation between the model parameters ϕ̄ and the
distance DT is unknown, we have to solve the optimization problem
from Equation (9) indirectly using one of the stochastic or heuristics
optimization methods. In our work we use the Simulated Annealing
algorithm that is based on stochastic sampling of the parameter
space using the Metropolis-Hastings sampling strategy [MRR*53].
The probability that a given parameter sample x̄i = {ϕ̄i , ti} is going
to be accepted is then

α =
(

p(x̄i)

p(x̄i−1)

) 1
ζi

, (10)

where x̄i−1 is the previous parameter sample and, according to Equa-
tion (9):

p(x̄) = exp

⎛
⎝−

∑
ωj

DT

(
τ r , τM(ωj )

)⎞⎠ . (11)

The value of ζi is the temperature specific for a given iteration i.
The Simulated Annealing algorithm starts with ζ0 set to a maximum
temperature ζmax and the temperature is then linearly decreased until
it reaches 0 for the last iteration ilast . For all our examples we used
values ζmax = 4 and ilast = 7500. The convergence of our method
for two results is shown in Figure 11.

6. Results

Here, we show the results of our method on input models from
various sources. The time required to process the input models is
summarized in Table 4. The optimization was performed by gen-

Table 4: Processing time for different tree models.

Figure 1 12 13(a) 13(b) 14 15 (left)

t(min) 85 43 53 12 270 45
Nodes 587 359 464 298 2307 521
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erating eight sample trees for each input model (see Equation (9))
that provided enough variation to sufficiently capture the shape of
the input trees.

6.1. Input models

6.1.1. Plant libraries

Plant libraries created by using interactive systems belong among
the most common sources of tree models. To capture this resource
we applied our method on trees that were obtained from the Xfrog
library [DL04]. Because of the nature of direct modelling tech-
niques, the trees often contain repetitive regular small branches that
cannot be represented exactly by a stochastic model. Although the
structure of the smaller branches might not be recreated properly,
it was possible to faithfully model the overall appearance of these
inputs, as shown in Figure 12.

6.1.2. Scanned tree data

An important class of models consists of polygonal models of real
trees that were reconstructed from scanned data [LYO10, LPC11].
They represent mostly young trees with relatively sparse branching
structures; otherwise they could not have been effectively scanned.
The input data typically contain only a few most significant branches
because the smaller ones were difficult to retrieve. Although the
missing data poses a problem to inverse procedural modelling, we
were able to capture the shapes and structures of many of the anal-
ysed models, as seen in Figures 1 and 13.

6.1.3. Developmental models

Tree models can be also created using developmental rule-based
systems that are also used in biology. We have tested an Open L-
system approach by Měch and Prusinkiewicz [MP96]. Although the
Open L-system description is developmental and uses internally a
set of rules with input parameters, our system was able to find a set
of parameters that generates models with high similarity using our
developmental model, as shown in Figure 14.

6.1.4. Environmental interaction

An important property of our framework is that the trees are
represented as a growth model with a set of parameters. This
allows the tree to develop while interacting with the surround-
ing environment, as shown in Figure 15. When trees are re-
constructed while standing in close proximity, the competition
for light prunes the colliding branches as shown on the middle
tree. If a tree grows close to an obstacle, any shadow cast by
the obstacle will cause significant shape alterations. This adds
an important developmental property to otherwise static input
models.

6.2. Limitations

Our technique has been successfully applied to obtain a proce-
dural representation of many input geometric trees. Nevertheless,
our method can be thought of as an example-based approach,
and it fails to produce good results when the input data does not
provide sufficient information, such as missing branches or in-
correct topology. These problems could be resolved, at least par-
tially, if the distance functions are modified to provide explicit in-
formation according to the specific characteristics of such input
data.

The analysis of trees from model libraries revealed other
issues. The inverse method was unable to accurately capture
the regular nature of some input trees. To solve this prob-
lem, it would be necessary to add a support for these branch-
ing patterns into the developmental model. However, such reg-
ularity can make the reusability of resulting procedural models
problematic.

Since our procedural model is stochastic it can generate a wide
variety of trees for a given set of parameters. However, it cannot
reproduce the input model exactly. Furthermore, the inverse proce-
dural approach is tied to our model. Our set of parameters allows
generation of a large amount of output trees. However, there may be
a tree species that is not captured by our procedural model. If such
a case arises, it would be necessary to extend the procedural model
accordingly.

Figure 12: A model from the Xfrog library. Left: The input model and three reconstructions. Right: The skeletal structure of the same models.
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Figure 13: Two models obtained from scanned data. Mahogany (a) and Ficus Virens (b).

Figure 14: A model generated using Open L-systems (left) has been reconstructed using our inverse approach (right).
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Figure 15: Environmental interaction: Left: An input model was reconstructed, and its three instances are grown together. Middle: Competition
for light prunes the branches that collide, resulting in a significantly different geometry that was not captured by the input; Right: Two
reconstructed trees automatically adapt their shapes to obstacles.

7. Conclusion and Future Work

We have introduced an approach to inverse procedural modelling of
trees. Our approach uses an ad hoc developmental model that cap-
tures a wide variety of tree species. Our inverse procedural frame-
work automatically detects the parameters that generate a tree by
maximizing similarities between the input trees and generated tree.
We have shown that our approach can be used to obtain the pro-
cedural representation of various tree species using inputs ranging
from developmental models using L-systems, to scanned and recon-
structed data, and even to hand-modelled trees from plant libraries.

Because the underlying procedural model is stochastic, for a given
set of parameters it generates a set of similar trees. Because of this
property, the inverse system cannot precisely reproduce the same
structure of the input tree. To achieve this, we would need to control
the stochastic growth of the procedural model so that all random
parameters generated during application of the rules were replaced
by fixed values. This is essentially another optimization problem,
and it was addressed in a similar context by Talton et al. [TLL11].
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Appendix A: Computing the Bending of a Branch

To compute the bending of a branch (see Figure A1) at node p0

with an orientation h̄, we first compute the bending force fb on node
p0 as

fb = ϕGBSmc

∣∣(c̄ − p̄0) h̄H

∣∣ (1 − |h̄ḡ|) ,
where p̄0 is the location of the node p0, mc is the mass of supported
branches with its centre at point c̄, vector h̄H is the horizontal portion
of the normalized branch direction h̄, and ḡ is the direction of gravity.

h

hH

p

mc

c

g

p0

Figure A1: Heavy branches can bend down because of the weight.

Lastly, ϕGBS denotes the gravity-bending strength. The actual effect
of the bending force on the orientation of the branch depends on
the thickness at the given node p0 and on the accumulated bending
angle β (t−1)(p0) that the branch has already been subjected to until
time t .

The thickness d(p0) is used to compute the maximal bending
angle of a single branch as

βmax(p0) = π

2
ϕGBAd(p0),

where ϕGBA is a parameter called gravity bending angle factor.

The new bending angle β(p0) applied to the branch is

β(p0) = max

(
0, βmax exp

(
− |fb|

βmax

)
− β (t−1)

)
,

and the new accumulated bending angle β (t)(p0) is then

β (t)(p0) = β (t−1)(bk) + β(p0).

With the increasing accumulated bending, subsequent bending be-
comes more difficult. Also, as the tree grows older, the bending is
hampered by the increasing thickness of the older branches.
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Appendix B: Operator Cost Function Details

To compute the structural distance in polynomial time, the cost
of individual operators needs to be properly constrained [Zha96].
In our implementation the cost of joining two nodes J (ta, tb)
has to be defined so that γD(J (ta, tb)) ≥ γD(ta) + γD(tb), and
γI (J (ta, tb)) ≥ γI (ta) + γI (tb). In other words, deleting or inserting
a combined node should not cost less than the total cost of deleting or
inserting its original components. We compute the geometric prop-
erties of J (ta, tb) by applying the formulas from the last column of
Table 3 on the fused tree graphs. Geometric properties such as
length, thickness and slope of the branches are used to weight the
costs of γA(tk), γI (tk) and γD(tk).

The cost of deletion or insertion of node tk is computed from
the total length bL(tk) and thickness bT (tk) of branches that are
contained within the node as χI (tk) = χD(tk) = bL(tk)bD(tk). To
compute the cost of assigning node t1 to node t2, we first define
an ordered pair of nodes (t ′

min, t
′
max) where (t ′

min, t
′
max) = (t1, t2) if

the total length of branches in node t1 is smaller than in node t2;
otherwise (t ′

min, t
′
max) = (t2, t1). The assign cost is then

χA(t1, t2) = s(t1, t2)bL(t ′
min) (bD(t1) + bD(t2))

+ (bL(t ′
max) − bL(t ′

min)
)
bD(t ′

max), (B.1)

where s(t1, t2) is the dissimilarity factor between branches contained
within nodes t1 and t2. The dissimilarity factor is the normalized
Minkowski distance of a set of local differences δB that compare
slope (bS), straightness (bT ) and deformation (bα) of the branches
represented by nodes t1 and t2. The differences are computed using
Equation (4). The dissimilarity factor is then

s(t1, t2) = p

√√√√1

k

k∑
1

δ
p

B,i ,

where k is the number of used local differences and p = 2.5 is the
order of Minkowski distance. With increasing dissimilarity or with
increasing difference in the lengths bL of the compared nodes, the
value of γA(t1, t2) converges to the combined cost γD(t1) + γI (t2).
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B., MĚCH R., PRUSINKIEWICZ P.: Self-organizing tree models for
image synthesis. ACM Transactions on Graphics 28, 3 (2009),
1–10.

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The Algorithmic Beauty
of Plants. Springer–Verlag, New York, 1990.

[PNDN12] PIRK S., NIESE T., DEUSSEN O., NEUBERT B.: Capturing
and animating the morphogenesis of polygonal tree models. ACM
Transactions on Graphics 31, 6 (Nov. 2012), 169:1–169:10.

[PSK*12] PIRK S., STAVA O., KRATT J., SAID M. A. M., NEUBERT B.,
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KOLTUN V.: Metropolis procedural modeling. ACM Transactions
on Graphics 30 (2011), 11:1–11:14.

[VGDA*12] VANEGAS C. A., GARCIA-DORADO I., ALIAGA D. G.,
BENES B., WADDELL P.: Inverse design of urban procedural mod-
els. ACM Transactions on Graphics 31, 6 (Nov. 2012), 168:1–
168:11.

[WP95] WEBER J., PENN J.: Creation and rendering of realistic trees.
In Proceedings of SIGGRAPH ’95 (1995), pp. 119–128.

[XGC07] XU H., GOSSETT N., CHEN B.: Knowledge and heuristic-
based modeling of laser-scanned trees. ACM Transactions on
Graphics 26 (Oct. 2007), 19.

[Zha96] ZHANG K.: A constrained edit distance between unordered
labeled trees. Algorithmica 15, 3 (1996), 205–222.

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.


