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We  present  an algorithm  for  tracking  the  movement  body  parts  of  restrained  animals.
The  tracking  algorithm  works  with  low  frame-rate  videos.
The  tracking  algorithm  automatically  segments  and  tracks  multiple  body  parts.
We  demonstrate  the power  of the algorithm  in  analysing  insect  behaviour.
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a  b  s  t  r  a  c  t

Background:  Insect  behavior  is often  monitored  by human  observers  and  measured  in  the form  of  binary
responses.  This  procedure  is time  costly  and  does  not  allow  a fine  graded  measurement  of  behavioral
performance  in  individual  animals.  To  overcome  this  limitation,  we  have  developed  a  computer  vision
system  which  allows  the  automated  tracking  of  body  parts  of  restrained  insects.
New method:  Our  system  crops  a continuous  video  into  separate  shots  with  a static  background.  It then
segments  out  the  insect’s  head  and  preprocesses  the  detected  moving  objects  to  exclude  detection  errors.
A  Bayesian-based  algorithm  is  proposed  to identify  the  trajectory  of  each  body  part.
Results:  We  demonstrate  the  application  of  this  novel  tracking  algorithm  by monitoring  movements  of
the  mouthparts  and  antennae  of honey  bees  and  ants, and  demonstrate  its  suitability  for  analyzing  the
behavioral  performance  of  individual  bees  using  a  common  associative  learning  paradigm.
ulti-target tracking
ntenna

Comparison  with  existing  methods:  Our  tracking  system  differs  from  existing  systems  in  that  it  does  not
require  each  video  to be labeled  manually  and  is  capable  of  tracking  insects’  body  parts  even  when
working  with  low  frame-rate  videos.  Our  system  can be generalized  for  other  insect  tracking  applications.
Conclusions:  Our  system  paves  the  ground  for fully  automated  monitoring  of  the  behavior  of  restrained
insects  and  accounts  for  individual  variations  in  graded  behavior.

© 2014  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND
. Introduction

Insects are often used to study the neuronal mechanisms that
nderly behaviors ranging from sleep to higher-order associative
earning (Sauer et al., 2003; Matsumoto et al., 2012; Menzel, 2012).
hen controlled stimulus conditions are needed, insects are often

estrained and their behavior is monitored as movements of body
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parts such as their antenna or mouthparts. Insect behavior is often
measured by human observers and recorded in the form of binary
responses to prevent the introduction of subjective biases by the
observer. This procedure is time consuming and it does not allow a
fine graded measure of behavioral performance in individual ani-
mals.

In neuroscience the honey bee is a particularly powerful model
animal for learning and memory research (Menzel, 2012). Asso-
ciative learning of individual, fixed bees can easily be studied by
classical conditioning, where an odorant is paired with a sugar

reward. Whether a bee has learned the association is usually
assessed by its proboscis (i.e. the mouthpart of the bee) extension
response (binary all-or-nothing measure) (Bitterman et al., 1983).
A bee extends the proboscis reflexively when stimulated with sugar
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ater or with a previously conditioned odorant. Up to now learning
nd memory have been mainly assessed by a crude all-or-nothing
easure (whether a bee reacts to a learned stimulus, or not). This

inary measurement is not suited to reveal individual differences
n learning and memory performance, for this purpose a graded
erformance measurement is required (Pamir et al., 2014).

A graded measure for learning and memory can be extracted
rom the temporal characteristic of the proboscis extension
esponse, which contains information about whether a bee has
earned an association or not (Rehder, 1987; Smith et al., 1991; Gil
t al., 2009). Moreover, temporal patterns of antennae movement
hange upon sensary stimulation (Erber et al., 1993) and reveal
nternal states such as sleep and wakefulness (Hussaini et al., 2009;
auer et al., 2003). To precisely analyze such dynamic behavioral
onitors, tracking systems are required. However, available insect

racking systems often have the weakness that they require prior
arking of the animal (Hussaini et al., 2009), and are often capable

nly of tracking single insects (Veeraraghavan et al., 2008; Landgraf
nd Rojas, 2007), working with slowly-moving insects only (Balch
t al., 2001; Ying, 2004), or can track only one type of body part, i.e.
ee’s antennae (Hussaini et al., 2009; Mujagić et al., 2011).

We addressed this issue and developed a computer vision sys-
em which allows the automated tracking of the body parts of
estrained insects while providing quantitative information about
he movements of their mouthparts and antennae. This system can
asily be adopted to other insects, and it allows one to implement
ovel approaches to analyze insect behavior using graded measures
f behavioral performance.

. Materials and methods

We  will elaborate our system as follows. We  firstly perform
oving object detection by subtracting the static background (Sec-

ion 2.3). The moving object detector generates a set of bounding
oxes (BBs), which are rectangles that bound detected objects. We
hen preprocess the input frame to reduce undesired BBs including
alse, missing, splitted and merged ones (Section 2.4). The appear-
nce model is constructed in Section 2.5. Finally we  propose a
racking algorithm in Section 2.6, which is able to identify the label
f each of the five moving objects: “1” for right antenna, “2” for
ight mandible, “3” for proboscis, “4” for left antenna and “5” for
eft mandible as shown in Fig. 1c. For the sake of clarity, in Table 1

e list all abbreviations and notations used in the paper.

.1. Video acquisition

Honey bee foragers (Apis mellifera) were caught from outdoor
ives and prepared as described in Szyszka et al. (2011). Small
nt workers (Camponotus floridanus)  were provided by C.J. Kleinei-
am. Colonies were reared in a climate chamber at 50–60% relative
umidity and 26 ◦C. The founding queens were collected by A.
ndler and S. Diedering in Florida Keys (USA). The ant’s neck was
ushed through a slit in plastic foil, and its head was fixed dorsally
o the plastic foil with a low temperature melting, equal-weight

ixture of dental wax (Deiberit 502; Dr. Böhme und Schöps Den-
al), and n-eicosan and myristic acid (both Sigma–Aldrich). Each
ndividual insect was imaged at 30 frames per second using a CCD
amera (“FMVU-03MTM/C” Point grey, Richmon, Canda) in order to
ecord the head with proboscis, mandibles and antennae. The setup
f the bee experiment is shown in Fig. 1a. Insects were recorded
ith or without odor stimulation and sugar feeding. Odor stimulus

elivery was monitored by lighting an LED within the field of view
f the camera, so that data analysis can be done relative to stimulus
elivery. Insects were harnessed on a platform, with their head in
xed positions, but able to move antennae and mouthparts freely.
e Methods 239 (2015) 194–205 195

The camera was set on top of an individual insect. The camera was
fixed, and the platform to which the insects were fixed was  moved
when changing to a new insect for recording. Unlike the high speed
camera used in (Voigts et al., 2008), which is capable of capturing
videos at 500 frames/s, the frame-rate of the acquired movies in this
paper was only 30 frames/s. Although it would be possible to record
with a high speed camera, we aim at developing a system that uses
affordable cameras such as web-cam or consumer level cameras
and keeps the data volume low. Each video was about 30 min  long
and consists of 12 trials, with 16 individual honey bees each. For
each trial, a single video to be processed was  approximately 10–30 s
long and had a frame size of 480 × 640 pixels.

2.2. Coordinate system setup

To extract the information of the relative position of each object
to the insect head, it is required to set up the coordinate system. As
the platform is not static during the changing of insects, the scene
change is detected to ensure a static background before the actual
tracking procedure starts. For scene change detection, the edges in
each frame were detected using a Sobel Filter. The mean of all the
blocks within the edge image is computed and compared to the
mean of all the blocks of the previous frame. If the absolute differ-
ence of means between two  blocks in consecutive frames is greater
than a predefined value, the block is assumed to be changed. The
scene is detected to be changed if the number of changed blocks is
greater than a predefined number. The video is cropped into several
shots automatically according to the scene change detection.

For each shot, the mean of the first ten frames is used to esti-
mate the insect head’s position. After thresholding, a dark region
with the greatest circularity value and an area within the range of
0.33–2.6% of the whole image is selected as the segmented head,
and the position of the origin is estimated as the left-most point of
the segmented head (as shown in Fig. 1b). With the origin (marked
as point “o”) and the centroid of the head (marked as point “c”)
estimated, a new coordinate system is established by using the
mandible as the origin, line “oc” as x-axis and the line orthogonal
to “oc” as y-axis.

2.3. Object detection

For detecting moving objects, Gaussian Mixture Model (GMM)
background modelling (KaewTraKulPong and Bowden, 2002) is
used. The first five frames of each shot are used for training the
initial model parameters of the GMM  background model. As in
KaewTraKulPong and Bowden (2002), background subtraction is
performed by marking a pixel as a foreground pixel if it is more
than 2.5 standard deviations away from any of the distributions of
the background model. The background model is updated for each
frame; and a static object staying long enough will be determined
as part of the background. The model is suitable for our case, where
a static background exists in each shot.

2.3.1. LED and sugar stick detection
As the LED is used to indicate when the odor is released, detec-

tion of the LED is part of our task. Due to the nature of the GMM
background model, the detection of the LED fails when it is on for
a few seconds. To address this problem, we  store the BB of the LED
when it is detected for the first time, and measure the intensity
within the BB. If the intensity is greater than the average of the
image, the LED is determined to be on.
The time when the sugar stick touches the insect is required for
assessing the latency of its proboscis extension response. A BB that
is attached to the dilated head having a width or height greater than
100 pixels is assumed to be the sugar stick.
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ig. 1. Illustration of the coordinate system setup: (a) Example of the experimental
s  point “o” and the centroid of the bee’s head is marked as point “c”. The new coor
o  “oc” as y-axis. (c) label of each object which needs to be identified.

.4. Preprocessing

The object detector generates a set of false BBs (e.g. shad-
ws, reflection and legs), missing BBs (motion blurred antenna
r antenna above the head), splitted BBs (splitted BBs of the
ame antenna), merged BBs (one BB including two or three
bjects), which make the following tracking task difficult. There-
ore, preprocessing operations include exclusion of undesired
Bs by incorporating position information, shadow removal
KaewTraKulPong and Bowden, 2002), merging splitted BBs, and
plitting merged BBs.

We  will show in Section 3.1 that these preprocessing operations
reatly reduce the detection of undesired BBs, but some false, miss-
ng, splitted and merged BBs may  still remain. Thus the tracking
lgorithm is required to tackle this problem.

.5. Appearance model

A feature vector fi,j = [fi,j(1), . . .,  fi,j(7)]T is extracted for the ith
bject zi,j, i = 1, . . .,  nj in the jth frame Zj, j = 1, . . .,  N to indicate its

osition, shape, geometry and speed, where nj is the number of
he detected objects in Zj and N is the number of frames. Seven
eatures are used to represent the appearance model and are listed
n Table 1: distance between the nearest vertex and mandible fi,j(1),

able 1
bbreviation and Notations

BB Bounding box GMM  

Zj jth frame zi,j

N number of frames nj

Cj set of ci,j Lj

li,j label of zi,j ,1: right antenna; 2: right mandible; 3: prob
4:  left mandible; 5: left antenna; 6: false positive.

ci,j class of zi,j ,1: antenna; 2: mandible; 3: proboscis.
fi,j feature vector
fi,j(1) distance between the nearest vertex “n” and “o”
fi,j(2) x-coordinate of the furthest vertex “f”
fi,j(3) area of zi,j

fi,j(4) x-component of motion vector
fi,j(5) y-component of motion vector
fi,j(6) area of top-hat filter output
fi,j(7) “1” represents point “o” is within the BB; “0” otherwis
, (b) constructed coordinate system: the left-most point of the bee’s head is marked
 system uses the point “o” as the origin, line “oc” as x-axis and the line orthogonal

distance between the furthest vertex and the y-axis fi,j(2), area of
the object fi,j(3), motion vector (fi,j(4),fi,j(5)), area of top-hat filtered
output fi,j(6), and a logical variable fi,j(7) indicating whether the
furthest vertex is within the BB.

To represent the position of each BB, the vertices nearest or fur-
thest to point “c” are extracted and denoted as point “n” and “f”
in Fig. 2, respectively. The distance between point “n” and “o” and
the x-coordinate of point “f” are used as features. The shape of each
object is indicated by the area of the black region, since each object
is black. A top-hat filter is used as a ridge detector for identifying
antennae: after thresholding and greyscale reversion, the top-hat
filter is applied to the image block within its BB. However, the out-
put of the top-hat filter is not a unique feature for antennae. As
illustrated in Fig. 2, there are three BBs including an antenna with-
out motion blur, a proboscis with reflection of light, and an antenna
with severe motion blur. Their outputs of the top-hat filter are also
shown. It can be seen that the area detected by the top-hat filter may
be significantly different if the antenna has severe motion blur. On
the other hand, the area of the top-hat filter output of a proboscis
with reflection may be comparable to an antenna, so we have to

distinguish between these two  cases by other features. Therefore,
whether the area of the top-hat filter output of the image patch
within the BB is greater than 0 serves as a condition when calcu-
lating the conditional probability. Similarly, whether point “o” is

Gaussian mixture model

ith BB in Zj

number of the detections in Zj

ordered set of li,j
oscis;

e
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ig. 2. Appearance model for classifying body part of a bee: the closest vertex of a B
s  “f”. Three BBs including an antenna without motion blur (top), a proboscis with r
op-hat  filter are highlighted to show the property of the top-hat filter as a feature.

ithin the BB is also used as a feature, as the BB of an antenna
eldom includes point “o”. The motion vector, which is the relative
isplacement between each bounding box in its previous frame and
urrent frame is estimated by the template matching method (Yu
t al., 2006).

.6. Tracking algorithm

We  propose a novel tracking algorithm that incorporates
rior information about the kinematics and shapes of antenna,
andibles and proboscis. The objective of the algorithm is to assign

ach BB zi,j with labels li,j, where li,j ∈ {1:right antenna; 2:right
andible; 3:proboscis; 4:left mandible; 5:left antenna; 6:false pos-

tive}. We  guide the tracking by using the preceeding frames. The
verall tracking algorithm consists of three levels: object level,
rame level and temporal level. At object level, the prior probabil-
ty of the class of each BB (i.e. antenna, mandibles or proboscis) is
omputed. At frame level, the identification of each BB is assigned
ccording to the sequence in which the BBs are arranged, and the
robability that the assignment corresponds to its ground truth is
omputed based on the prior probability and the prior information
f all the objects’ order. The frames with the highest probabil-
ty are treated as benchmarks. The final assignment is fulfilled by
rame-to-frame linking between benchmarks and their temporal
eighbours. As a result, the transitive update of the assignment
enerates the most probable identifications.

.6.1. Object level
At object level, the probability P(ci,j|fi,j) of each BB zi,j for each

lass ci,j (where ci,j ∈ {1:antenna; 2:mandible; 3:proboscis}) is com-
uted given its feature vector fi,j. They are further classified as li,j
t frame level described in the following section. Among the seven
eatures, fi,j(1), . . .,  fi,j(3) are assumed to follow a Gaussian distri-
ution whose mean � and covariance matrix � are learned from
he training set, i.e. a set of annotated BBs. Let us pack the three
eatures into a vector and denote it as f̄i,j = [fi,j(1), . . .,  fi,j(3)]T . The
onditional probability P(ci,j|f̄i,j) is computed by

(c |f̄ ) = 1
exp{−1

(f̄ − �)
T |�|−1(f̄ − �)}. (1)
i,j i,j

(2�)
1

2N |�| 1
2 2 i,j i,j

The other features fi,j(4), . . .,  fi,j(7) are modelled as discrete vari-
bles with constant prior probabilities assumed to be known. The
 top-most BB in this figure) to point “c” is denoted as point “n” and the furthest one
on (middle), an antenna with severe motion blur (bottom) and their outputs of the

class-conditional probability density function P(ci,j|fi,j) of a feature
fi,j is computed based on Bayes’ rule.

P(ci,j|fi,j)

= P(ci,j|f̄i,j, fi,j(4) ∈ �4, . . .,  fi,j(7) ∈ �7)

= P(ci,j|f̄i,j)P(fi,j(4) ∈ �4|ci,j)

P(f̄i,j)P(fi,j(4) ∈ �4)

·
7∏

p=5

P(fi,j(p) ∈ �p|ci,j)

P(f̄i,j, fi,j(4),  . . .,  fi,j(p − 1))P(fi,j(p) ∈ �p)

(2)

where �p is the set that represents the constraint of fi,j(p), and
the conditional probability P(fi,j(p) ∈ �p|ci,j = k) is assumed to be
known and set as a constant. For example, P(fi,j(6) > 0|ci,j = 1) = 1,
since an antenna must have top-hat filtered pixels. The other
unknowns of Eq. (2) can be computed by solving the equations com-
bining the constraint that each object must be an antenna, mandible
or proboscis, thus we have:

3∑
k=1

P(ci,j = k|fi,j) = 1. (3)

Given estimates for P(ci,j|fi,j), a Naïve Bayesian Classifier is per-
formed for each BB to decide which class it belongs to according to
the highest conditional probability.

However, a high accuracy is not guaranteed using this approach
due to the similarity of the shape of different classes, and in some
cases different objects possess similar positions and speed. The pro-
posed algorithm improves the tracking results by incorporating
information of the sequence in which the BBs are ordered in the
same frame (frame level) and the temporal correlation between
neighbouring frames (temporal level).

2.6.2. Frame level
At frame level, li,j is assigned to zi,j based on its estimated class
ci,j in the jth frame Zj incorporating the appearance information of
an insect head, i.e. the position and the order of zi,j. As a result, an
ordered collection Lj = {l1,j, . . .,  li,j, . . .,  lnj,j

} is constructed, where
nj is the number of the detected objects in the jth frame.
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The conditional probability P(Lj|Cj) of the assignments Cj in
rame j given their estimated classes Lj is computed as the fidelity
f the assignment at frame level. Applying Bayes’ theorem, we have

(Lj|Cj) = P(Lj)P(Cj|Lj) (4)

here P(Lj) is the frequency of the sequence in which the objects
re arranged, and P(Cj|Lj) is the likelihood of Cj generated from
he assignments Lj. They are estimated following two  assumptions
ased on the observation that the objects maintain a consistent
equence shown in Fig. 1c, except for occasionally missing objects:

. If the number of antenna BBs is greater than 2, or the number of
mandibles BBs is greater than 2, or the number of proboscis BBs
is greater than 1, P(Cj|Lj) = 0; otherwise, P(Cj|Lj) = 1.

. If Lj is not in ascending order, P(Lj) = 0; otherwise, P(Lj) is the

likelihood of a permutation of Lj and is computed as 1/

(
n
nj

)
.

where n is the number of objects, i.e. n = 5 in the case of honey
ee. P(Lj|Cj) is computed following Eq. (4) and normalized over N
rames. As a result, the highest P(Lj|Cj) = 1.

.6.3. Temporal Level
At temporal level, the correlation between neighbouring frames

s taken into account to generate the final assignment. The frames
c with the highest conditional probability P(Lj|Cj) = 1 are regarded
s the benchmark frames, and their less confident neighbours Lc±k
re updated by minimizing the pairwise linking costs between Lc

nd Lc±k. The optimal assignments are found as follows:
While ∃Lj, j = 1, . . .,  N that is not updated do:

. Find the Lc with the highest probability P(Lc|Cc = 1).

. The frame-to-frame linking between Lc and Lc±k is found by
applying the Hungarian algorithm (Munkres, 1957).

. Update P(Lc±k|Cc±k) as the following scheme:
• If the number of antenna BBs is greater than 2, or the number

of mandibles BBs is greater than 2, or the number of proboscis
BBs is greater than 1, P(Lc±k|Cc±k) = 0;

• If Lc±k is not in ascending order, P(Lc±k|Cc±k) = 0;
• If there is no match of li,c±k found in Lc, P(Lc±k|Cc±k) = 0;
• Otherwise, P(Lc±k|Cc±k) = 1.

. Mark Lc, Lc±k as updated.

Output L.

.7. Software implementation

A set of graphical user interfaces (GUIs) and processing algo-
ithms were developed using Matlab with the Computer Vision
ystem Toolbox. For those who would like to acquire a copy of the
oftware implementation described here, further information can
e obtained from the authors via email.

The user interface for the developed software is shown in Fig. 3.
sers can input videos, set/adjust parameters and operate functions

hat implement the proposed algorithm. For example, the param-
ter of the top-hat (TH) filter is important for feature extraction
see Fig. 2). Users could view its influence on the filtered image
n the window of Fig. 3 by selecting the region through a video
layer in Fig. 4, and adjusting the TH parameters through Fig. 3.
he other interface in Fig. 5 is used for selecting a few training
amples and its corresponding class labels within the classification

Section 2.6.1). Given the user inputs, a table of feature vectors fi,j
f selected objects and their corresponding ci,j is stored for training
he Naïve Bayesian Classifier. Finally, for evaluating and viewing
he tracking results, the label li,j, the BB and the tip of each object is
e Methods 239 (2015) 194–205

added to the output video (see Fig. 6). The final output of the track-
ing procedure is the set of positions and angles for each object for
each frame in Excel file format, based on which subsequent analysis
is performed. The complexity of the tracking system is measured
by processing time. The proposed algorithm is run using Matlab on
an Intel Core i7-2600K CPU at 3.4 GHz with 16 GB RAM, the overall
processing time is only about 7.5 s per frame. The main computa-
tional load comes from the feature extraction in Section 2.5, while
the computations in Sections 2.6.2 and 2.6.3 are negligible (it takes
0.5 s for 10000 frames).

3. Results

We  tested the proposed tracking algorithm on a set of movies
of honey bee heads (Apis mellifera) and an ant (Camponotus flori-
danus) during odor stimulation and sugar feeding (Fig. 7). Across
the different movies, the patterns of moving objects were different
and such was  the tracking success (Table 2).

3.1. Preprocessing

First, we show the efficacy of preprocessing operations stated in
Section 2.4 in detail.

3.1.1. Exclusion of false BBs
To exclude the legs of the insect (Fig. 8A) or false BBs which are

caused by reflection (Fig. 8C), a mask is obtained by segmenting
the insect head (shown as the green region). Given the insect head
mask, the BBs which are not attached to the mask or totally con-
tained within it are excluded. Results with false BBs excluded are
shown in Fig. 8B and D.

3.1.2. Shadow removal
To further exclude detection errors due to shadows, we  applied

a shadow removal algorithm provided by KaewTraKulPong and
Bowden (2002). In this algorithm, the pixel is considered as a
shadow if the difference in both chromatic and brightness com-
ponents is within some predefined threshold. As an example, the
shadow of the antenna in Fig. 8E is effectively removed by the
algorithm (Fig. 8F).

3.1.3. Merging splitted BBs
This scheme is applied to merge the BBs that belong to the same

objects but are detected as two  distinct BBs due to the reflection
(Fig. 8G). Two BBs are merged to one if they have the approximately
the same angle, which is shown in Fig. 8H.

3.1.4. Splitting merged BBs
A BB including both antenna and probascis (or mandible) is split

in this algorithm (shown in Fig. 8I), so that only a BB including the
point “o” is considered to be split. A top-hat filter is applied to the
BB to identify the antenna, and a new BB is obtained based on the
result. The old BB is split into two or three BBs according to the
position of the new BB, as shown in Fig. 8J.

3.2. Tracking performance

In the following we show the capability of the proposed algo-
rithm for rectifying the incorrect classification output produced
at object level (Section 2.6.1). An example is shown in Fig. 9, the

classsification result at the 649th frame is c1,649 = 1, c2,649 = 3, which
indicates c2,649 is incorrectly classified as proboscis. Given C649 = {1,
3} (where Cj = {c1,j, . . .,  ci,j, . . .,  cnj,j

}), the upper BB is assigned as
l1,649 = 1 indicating it is the right antenna, and the lower one is



M. Shen et al. / Journal of Neuroscience Methods 239 (2015) 194–205 199

Fig. 3. A screenshot of the user interface of the software. Users can input videos, set/adjust parameters and operate functions that implement the proposed algorithm. For
example, users could view its influence on the filtered image in the window by selecting the region though a video player in Fig. 4, and adjust the TH parameters.

Fig. 4. A screenshot of the movie player in Matlab. The selected region could be stored and exported to other functions and GUIs.
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Fig. 5. A screenshot of the classification module of the software. Users can select training samples and their corresponding class labels for classification (Section 2.6.1). Given
the  user inputs, a table of feature vectors fi,j of selected objects and their corresponding ci,j is saved for training the Naïve Bayesian Classifier.

Fig. 6. An example frame with tracking labels li,j , the BB and the tip of each target.

Table 2
Tracking performance on six tested videos during different stimulation protocols and behaviors (Length: the number of frames N, TE: tracking errors, MD:  missing detection,
GT:  groundtruth trajectories).

Video Length Animal Stimulus or behavior TE(%) MD(%) GT

1 5150 Bee1 Odor stimulation 3.9 14.1 5
2  3600 Bee2 Non-stimulated 0 20.2 2
3  3600 Bee2 Sleeping 0 0 2
4  7200 Bee3 Conditioning Odor stimulation and feeding during classical odor-sugar conditioning 7.4 22.2 5
5  4245 Bee3 Odor stimulation during memory retention 0 0.2 5
6  4357 Ant Odor stimulation feeding during classical odor-sugar conditioning 5.5 17.4 3
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ig. 7. Example of an ant head (A) before and (B) during odor stimulation, (C) su
outhpart, mouthpart is detected in a single BB) of an ant are tracking targets.

ssigned as l1,649 = 3 indicating it is a proboscis (see Fig. 10). Accord-
ng to Eq. (4), we have the following values: P(L649 = {1, 3}|C649 = {1,
}) = 0.5, and P(L648 = {1, 5}|C649 = {1, 1}) = 1. Then L649 is corrected
ith the help of the benchmark frame L648 in the temporal level.
s the refined result generated in the temporal level described in
ection 2.6.2, L649 is updated as L649 = {1, 5}.

For measuring the overall performance of the proposed algo-
ithm on different experiments, we manually evaluate the labels on
he tested videos, as shown in Table 2. The ratio of tracking errors
TE, the number of frames containing incorrectly labeled objects)
o total frames N is listed in Table 2. The description of each video
s characterized by three values: Length (the number of frames N),
he number of groundtruth trajectories GT (i.e. trajectories of actual

oving objects) and the ratio of missing detections MD.  The diffi-
ulty of tracking increases with a larger number of GT, as identity
witching tends to occur more frequently. MD occurs due to severe
otion blur when the antennae are moving quickly or cannot be

etected when they move above the bee’s head due to low contrast.
 larger ratio of MD leads to a more challenging tracking problem.
It is shown in Table 2 that the tracking performance is satisfac-
ory, since the ratio of TE to N is below 10% in all experiments. The
ees did not move when they are asleep, thus both TE and MD are
ero. For Videos 4 and 6, the sugar stick used for feeding disturbs
warding and (D) after odor stimulation. Three body parts (i.e. two antennae and

the background model, thus producing significantly higher TE and
MD.

3.3. Behavioral analysis

We tested the tracking algorithm on four videos of three bees’
heads and one ant head, and tracked the movement of their pro-
boscis, antennae and mandibles (Table 2). One bee was recorded
during odor stimulation, a second bee was  recorded during sleep,
and a third bee was  recorded during classical conditioning and
memory retention. The ant was recorded during classical condi-
tioning. The tracking performance differed between the videos; the
tracking error rate ranged from 0 to 7.4%, the missed detections rate
ranged from 0 to 22.2 %, as shown in Table 2.

We then used the tracking data to evaluate different behavioral
monitors during associative odor-sugar learning of an individual
bee (Fig. 11A). We  trained a honey bee to extend its proboscis to an
odor by pairing this odor with a sugar reward (Szyszka et al., 2011).
The training consisted of 10 trials which were spaced by 11 min.

During each training trial the bee received a 6 s long odor stimulus
(1-hexanol) and a 3 s long sugar reward which started 5 seconds
after odor onset. In a memory test 30 min  after the training the bee
was stimulated with the trained odor and a novel odor (1-nonanol).
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ig. 8. Examples of excluding false measurements (A) and (C) and the results after 

H);  splitting merged mearsurements (I) and (J).

he common way to analyze the bees’ performance during this
aradigm is to note whether it extends the proboscis during the
dor stimulus (but before the sugar stimulus) in anticipation of the

ugar reward (Matsumoto et al., 2012). This monitor yields binary
ata: “1” for proboscis extension response, “0” for no response. The
ee started responding to the trained odor during the third training
rial and continued responding during subsequent trials. During the

ig. 9. Sample frame t = 649: Example of false classification. The left antenna is incor-
ectly classified as proboscis, the classes of two  detections are c1,649 = 1, c2,649 = 3.
ion (B) and (D); shadow removal (E) and (F); merging split measurements (G)  and

test it responded to the trained but not to the novel odor, indicating
that it formed an odor specific associative odor-sugar memory. This
stable behavioral performance in individual bees is typical: once
bees start responding during training they continue to respond
(Pamir et al., 2011, 2014). However, it is currently unclear whether
this abrupt behavioral performance change reflects abrupt learning
or whether learning is a more gradual process (Gallistel et al., 2004;
Pamir et al., 2011, 2014). In fact, this abrupt behavioral performance
change might be due to the binary monitor of the proboscis exten-
sion response which does not allow monitoring gradual changes in
behavior. Therefore, we  analyzed other graded parameters which
we extracted from the videos. The onset of movements of the pro-
boscis (Fig. 11C), for example started already during the second
trial, while the full proboscis extension response started during
the third trial (Fig. 11B). The onset of the proboscis movement
occurred three seconds after odor onset and became shorter during
the third and fourth trial. Thus, during training there is a gradual
behavioral change in the odor response which is not detectable
in the binary proboscis extension response (Fig. 11B). During the
test the proboscis movement onset occurred earlier for the trained
than for the novel odor. The proboscis movement response to the
novel odor indicates that the bee partly generalized the learned
response to the novel odor. This information is lost in the binary
proboscis extension response (Fig. 11B). Similarly the elongation

of the proboscis (Fig. 11C) shows a gradual change during learning
and memory test, as it progressively increases for the trained odor.
Bees constantly move their antennae, both in the absence and pres-
ence of odor stimuli. We  asked whether the mean pointing direction
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ig. 10. Illustration of temporal level: The conditional probability of the frame 64
espectively. The labels are updated according to the frame-to-frame linking betwe

f the antennae differ during the absence and presence of an odor
nd whether there is a change in pointing direction during train-
ng (Fig. 11E). Before odor stimulation the mean angle of the bee’s
ntenna was around 32◦. During the first odor presentation before
eceiving the sugar stimulus in trial 1 the bee moved its antennae
ackwards. During the following training trials the bee pointed the
ntennae further and further forwards; however, during the mem-
ry test there was no difference in the pointing direction between
he trained and the novel odor. Next we asked whether odor stim-
lation and odor-sugar training changes the correlation between
he left and right antenna movements (Fig. 11F). We  quantified
ntenna movement correlations by calculating the Pearson corre-
ation between the angles of both antennae during four seconds
efore or during odor onset. Correlated forward-backward move-
ents of both antennae would yield positive correlation values;

orrelated left-right movements would yield negative correlation
alues. Antenna movements were generally negatively correlated
correlated left-right movements). During odor stimulation the bee
xhibited fewer correlated left-right movements than before odor
timulation. However, there was no apparent change in correlation
n the course of the training. Taken together, the tracking data of
ntennae and proboscis provide a gradual measure of behavioral
erformance in individual bees. These behavioral monitors could
llow detecting and quantifying gradual changes in behavioral per-
ormance in individuals which would not be accessible using the
inary proboscis extension response.

. Discussion

We  presented a novel computer vision system for the auto-
ated analysis of behavior of restrained insects, by tracking their

ntennae and mouthparts.

.1. Comparison to existing tracking systems

Automatically tracking the movement of insects provides
esearchers quantitative information about the movement of the
nsect body or body parts such as antennae and mouthparts, thus
t allows for a more fine-grained analysis and paves the way  to
ddress open questions in behavioral insect studies. However, new

hallenges arise from the specific requirements of the biological
xperiments, and addressing them by simply applying existing
eneric image/video processing algorithms leads to suboptimal
esults.
 frame 649 are P(L648 = {1, 5}|C649 = {1, 1}) = 1 and P(L649 = {1, 3}|C649 = {1, 3}) = 0.5,
9 and the benchmark L648. The label l2,649 is corrected as 5.

There has been intensive work on tracking objects in video
sequences. However, most of these algorithms do not directly adapt
well to tracking insects, which exhibit very specific forms of motion.
Some existing research on tracking insect bodies (e.g. bee dance
Veeraraghavan et al. (2008), Landgraf and Rojas (2007), ants Balch
et al. (2001), Ying (2004)) and body parts (e.g. bees’ antennae
Hussaini et al. (2009), Mujagić et al. (2011), mice’s whiskers (Voigts
et al., 2008)) has been reported recently. A method for antennae
tracking is proposed by Hussaini et al. (2009), but it requires initial
manual labelling for each video. In another recent work by Mujagić
et al. (2011), the movements of antennae are tracked by select-
ing the two largest clusters only. In both Hussaini et al. (2009) and
Mujagić et al. (2011), mandibles and proboscis are not considered,
which make them not applicable for our study.

Many state-of-art tracking approaches estimate the posterior
distribution of the position of the object in the current frame
by using a Particle Filter (Zhou et al., 2004; Khan and Dellaert,
2004), and some studies also exploit its usage in insect track-
ing (Veeraraghavan et al., 2008; Landgraf and Rojas, 2007; Ying,
2004). For example, the algorithm proposed by Veeraraghavan et al.
(2008) tracks a single bee using Particle Filtering to maintain its
identity throughout the video sequence. However, as pointed out by
Perera et al. (2006), Particle Filtering is often only effective for short
tracking gaps and the search space becomes significantly larger for
long gaps. This is applicable only for the videos that were captured
by a high-speed camera (Voigts et al., 2008; Petrou and Webb, 2012)
or inlude slow moving objects (Balch et al., 2001). The main prob-
lem of our videos is that the tracking gap of each moving object
is relatively long due to the lower frame-rate, while the anten-
nae move rather fast. Another problem is that antennae cannot be
detected when they move above the head due to the low contrast.
The mandibles and proboscis move infrequently, thus their track-
lets are short. The resulting gaps give rise to an issue similar to long
gaps in that the frame-rate of the recorded videos is usually low and
thus the potential matches on the far side of the gap are difficult to
predict. Similarly, the algorithm proposed by Balch et al. (2001) is
not able to tackle the tracking gap, which tracks multiple ants by
merely applying data association techniques. Moreover, the detec-
tion errors produced by typical moving object detectors such as
false, missing, split or merged measurements increase the difficul-
ties of assigning correct identity and maintaining identity. In Voigts

et al. (2008), a statistical model is used to assign each whisker of a
mice the most probable identity under the constraint that whiskers
are ordered along the face. Inspired by Voigts et al. (2008), we
construct a Bayesian algorithm in this paper, which computes the
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Fig. 11. Antenna and probscis movements reveal gradual performance changes during odor learning. Behavioral performance of a single bee during associative odor-sugar
learning (trials 1–10) and memory test with the trained odor (trial 11) and a novel odor (trial 12). (A) Imaged bee head. The parameter “antenna angle” (E) reads as follows:
0◦: Antenna is pointing straight forward; 180◦: antenna points straight backward; negative values: Antenna crosses the midline. The parameter “proboscis elongation” (D)
shows the length of the proboscis normalized to the maximum length. (B) Behavioral performance monitored as binary proboscis extension response (full extension). The
bee  started responding to the trained odor during the 3rd training trial and continued responding to it throughout the training and test. (C) Onset latency of the proboscis
movement. The onset latency decreased from the 2nd to 4th trial. During the test the onset latency was  shorter for the trained odor than for the novel odor. (D) Elongation
of  the proboscis during odor stimulation (mean during the initial 4 s of the odor stimulation). (E) Antennae angle during 4 s before (blue) and during odor stimulation
( betwe
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mean  ± SEM). Angles of the left and right antennae were averaged. (F) Correlation 

blue)  and during odor stimulation. (For interpretation of the references to color in

robability of the assignments of objects in each video frame, given
he estimation of their classes (antennae, mandible or proboscis)
sing a Naïve Bayesian Classifier. The proposed algorithm exploits
emporal correlation between benchmark frames with high prob-
bility and their less confident neighbors, and generates the most
robable labels. We  verify the efficacy of the proposed system on
ifferent type of bees’ behavioral experiments.

.2. Possible applications
Our tracking system provides quantitative measures of the
ovements of multiple body parts of restrained insects. This

ehavioral read-out allows us to obtain a graded performance mea-
ure for individual insects and opens up a method to overcome
en the angular antenna movements of the left and right antennae during 4 s before
gure legend, the reader is referred to the web  version of this article.)

problems of traditional experimental procedures and to address
novel questions in insect behavioral research.

For example, the common experimental procedure of pooling
binary performance measures of groups of identically treated ani-
mals often confounds the interpretation of behavioral data, as the
group average is not representative for all individuals (Gallistel
et al., 2004; Pamir et al., 2011, 2014). Our approach helps to over-
come this problem, as it allows the analysis of graded behavior in
individuals.

To give another example: The observation that once having

responded for the first time, honey bees continue to respond with
a high probability during training and memory test could suggest
that learning results in abrupt performance changes (Pamir et al.,
2011, 2014). However, learning related gradual changes might
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xist, and might have been masked by the binary behavioral read
ut. Thus, our tracking approach can help to reveal the dynamic of
ehavioral performance changes within individuals.

Finally, our tracking system might help to investigate how the
ndividual learning and memory performance depends on training
arameters, genetic factors and internal states, such as arousal and
ttention.
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