
Towards a Standardized Spectral Analysis of
Point Sets with Applications in Graphics

Thomas Schlömer Oliver Deussen
University of Konstanz, Germany

May, 2010

Abstract

We investigate common pitfalls in the spectral analysis of point sets
based on amplitude/power spectrum and radial statistics. We demonstrate
the sensitivity of these measurements to the type of Fourier transform and
formulate recommendations for crucial analysis and formatting parameters.
Following these guidelines elevates comparability between different point
generation methods with respect to their spectral characteristics.

1 Introduction

Spectral analysis is an important aspect in the evaluation of two-dimensional
point sets in computer graphics domains such as sampling or non-photorealistic
rendering. Fourier amplitude spectra, mean periodograms, and evaluating
radial statistics all help to reveal correlations between points that may become
problematic during their later application. As these evaluations are largely
qualitative, however, special care has to be taken with respect to the exact
analysis and formatting parameters, the utilized type of Fourier transform, or
the applied mapping operators. Changing any of these variables may yield
very different results which prevents the unbiased comparability of different
point generation methods.

This report is an attempt to standardize these settings by formulating rec-
ommendations for the evaluation of amplitude spectrum/mean periodogram,
radially averaged power spectrum, and anisotropy. It can be seen as a continu-
ation of the established work by Ulichney [8] and Lagae and Dutré [3].

2 Spectral Analysis

Point sets generated via deterministic methods can be interpreted as finite-
energy signals which possess a Fourier transform. Hence, they are character-
ized by the corresponding Fourier amplitude (magnitude) spectrum. This is
not the case for point sets generated with non-deterministic methods due to the
random fluctuations inherent to the specific method. Instead, these methods
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can be regarded as stationary stochastic processes where the main signal char-
acteristic is complemented by noise. Such processes do not have finite energy
but finite average power and hence are characterized by the corresponding
power density spectrum [6].

2.1 Power Spectrum Estimation

The power density spectrum P( f ) of a stationary stochastic process is the Fourier
transform of its autocorrelation function. Since the autocorrelation function is
seldomly known, a spectral estimate of P( f ), P̂( f ), must be obtained. Bartlett’s
method [6] of averaging K periodograms yields an unbiased and consistent
estimator for the power spectrum, is simple to implement, and exhibits variance
that decreases linearly with K.

For real signals, the periodogram is the square of the magnitude of the
Fourier transform. Hence, for a given point set {x0, . . . , xn−1} ⊂ [0, 1)2 it can
be obtained by

1
n

∣∣∣∣F n−1

∑
i=0

δ(x− xi)

∣∣∣∣2,

where F denotes the Fourier transform and δ Dirac’s delta function. The
spectrum estimate P̂( f ) is then captured by the mean periodogram which results
from averaging K periodograms. In an implementation it will be discretized
using a square resolution depending on the frequency domain size N.

2.2 Radial Statistics

∆

fr

fc

Ulichney [8] derives two useful one-dimensional statis-
tics from a power spectrum estimate P̂( f ) which help
to reveal directional artifacts. The first is the radially
averaged power spectrum

Pr( fr) =
1

Nr( fr)

Nr( fr)

∑
i=1

P̂( f ),

which can be obtained by partitioning P̂( f ) into concentric annuli of width ∆,
and averaging the Nr( fr) frequency samples within each annulus of central
radius fr. Consequently, the annuli start to exceed the spectral estimate at a
critical frequency fc half the domain size.

The second statistic is the anisotropy

Ar( fr) =
s2( fr)

P2
r ( fr)

,

where s2( fr) denotes the variance of the frequency samples and is given by

s2( fr) =
1

Nr( fr)− 1

Nr( fr)

∑
i=1

(
P̂( f )− Pr( fr)

)2.

The anisotropy is a measure for the radial symmetry of the spectrum and is
usually plotted in decibels.
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(a) Dart throwing

frequency
0 fc

p
o
w
e
r

0

0.5

1

1.5

2

frequency
0 fc

a
n
is
o
tr
o
p
y

-10

-5

0

5

10

(b) G-hexominoes [4]

Figure 1: Exemplary spectral analysis of point sets with a blue noise property
obtained via (a) a stochastic, and (b) a deterministic generation method. The
averaging of multiple periodograms makes the statistics smoother in the case
of the stochastic generation method.

As an example, Figure 1(a) shows mean periodogram (top right), radial
power (bottom left) and anisotropy (bottom right) for a stochastic point genera-
tion method, in this case traditional dart throwing. The mean periodogram was
obtained by averaging K = 100 periodograms which yields very smooth radial
statistics. For comparison, Figure 1(b) shows Fourier amplitude spectrum,
radial power and anisotropy for a deterministic method aiming at the same
frequency response, in this case the tile-based method by Ostromoukhov [4].
As expected, the radial statistics are less smooth in this case. The anisotropy
plot also reveals slight correlations in the source point set and shows peaks at
several distinct frequencies.

3 Choosing the Parameters

The significance of the above measurements depends on a series of analy-
sis and formatting parameters, among them the domain size of the Fourier
transform N, the number of periodograms K, the annuli width ∆, and others.
Moreover, some care has to be taken when applying the Fourier transform as
sometimes the inherent discretization error of a DFT/FFT prevents an accurate
analysis. In the following, we discuss each of the relevant analysis parameters
and operators.

3.1 Domain Size

To capture a method’s characteristic frequency response, its amplitude spec-
trum/mean periodogram should be of a resolution N × N that spans a fre-
quency domain large enough to cover all relevant frequencies. For an arbitrary
set of n points, this implies N = 2

⌊
w 1

dmax

⌋
where dmax = (2/(

√
3n))1/2 is the

maximal mutual minimum distance between points, derived from the packing
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density of circles in the plane [3]. The scalar w ≥ 1 determines by how much
the periodogram window exceeds the relevant frequency range in order to
allow a proper view on the response. In our experience, a suitable choice is
w = 4 which is also the value employed in this report.

3.2 Fourier Transform

The Fourier transform (FT) involved in the amplitude spectrum/periodogram
computation is typically performed in its discrete variant as a FFT in order
to exploit its computational efficiency [2]. It can be applied by translating
the point set into a discrete periodic sample image where each sample is
represented as an impulse of value 1, and where its location is rounded to
the nearest pixel grid location. The square resolution M×M of this sample
image is often chosen to be equal to the periodogram resolution N × N which,
however, may be insufficient for an accurate spectral analysis.

Figure 2 demonstrates this by plotting mean periodogram and radial power
based on a DFT in comparison to reference solutions obtained via a continuous
FT. In the first row for each generation method, the resolution for the DFT
equals the domain size of the CFT (M = mN with m = 1), in the second row
it has been increased by a factor of m = 4. If the resolution is insufficient,
mean periodograms obtained via the DFT (left) significantly deviate from
the reference solution as indicated by the difference images next to them, in
particular in higher frequency regions. This observation is also supported by
the radial power plots (right) where the results based on the DFT (red) are
superimposed over a CFT ground truth (gray).

The discretization error of a DFT can become more severe for some de-
terministic point sets like, e.g., a regular grid or some Rank-1 lattices whose
Fourier transform is just a set of peaks. In such a case, correct peaks may be
complemented by “aliasing” peaks introduced by the discretization. A DFT
also implies periodic signals which does not fit e.g. non-toroidal point sets.

In an analysis scenario accuracy is more important than performance which
is why we generally recommend the use of a continuous Fourier transform.

3.3 Number of Periodograms

As already mentioned, Bartlett’s method of averaging K periodograms yields
an unbiased estimator for the power spectrum with variance that decreases
linearly with K. Thus, a larger K yields smoother radial statistics than a smaller
K (cf. Figure 3). According to our experience, K = 10 usually suffices for a
proper spectral analysis which is in line with the current convention [3, 8].

Note that since the anisotropy is plotted in decibels according to the relation
xdB = 10 log10 x, a value of −KdB implies background noise. For this reason,
anisotropy plots should contain a reference line at the appropriate noise level,
e.g. at 0,−10,−20 for K = 1, 10, 100 (cf. Figure 1). Anisotropy close to the
noise level indicates good radial symmetry for the specific generation method.
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Figure 2: Comparing analysis results based on a discrete FT and a continuous
FT for (a) point sets obtained via dart throwing, and (b) random point sets
optimized by Lloyd’s method until full convergence.
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(a) K = 1 (b) K = 10 (c) K = 100

Figure 3: Mean periodograms obtained by averaging K periodograms for point
sets generated via traditional dart throwing.

3.4 Annulus Width

The validity of the radial statistics—radially averaged power spectrum and
anisotropy—obviously depends on the user-chosen annulus width ∆. In partic-
ular, ∆ should not be too large as wide annuli effectively smooth the graphs and
may hide subtle correlations in the analyzed point sets. Lagae and Dutré [3]
suggest a width of approximately one frequency sample which is sufficiently
small to reveal even subtle correlations. This width yields

√
2 · N/2 annuli

where N/2 is the Fourier domain size as discussed above. Hence, at the critical
frequency of fc = N/2 the annuli start to exceed the spectral estimate and
yield less reliable statistics. This should be marked appropriately (cf. Figure 1).

3.5 Formatting/Display

In order to ensure full comparability, we recommend some final touches on
the analysis results.

Tone mapping Amplitude spectra and mean periodograms should conform
to the same logarithmic tone mapping. The renderings in this report
were generated using the mapping x 7→ log2(1 + αx) with α = 0.25. This
works very well for a large variety of methods, both deterministic and
stochastic.

Anisotropy scale When plotting the anisotropy, the axis minimum and maxi-
mum value should not exceed the background noise level by more than
a factor of ≈ 1.25 for K ≥ 10. Otherwise, the graph may get significantly
compressed, suppressing potential artifacts.

DC peak The DC peak may be removed from all plots as it provides no insight
into the spectral characteristics of a specific generation method.

4 Conclusion

We formulated recommendations for the spectral analysis of two-dimensional
point sets with applications in graphics. Following these guidelines avoids
common pitfalls and, hopefully, facilitates comparability. Spectral analysis
remains an important tool among the variety of other valuable measurements
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such as (toroidal) minimum distance [3], sampling efficiency [5], or discrep-
ancy [7]. To further support comparability, we provide an implementation of
all recommendations via an open source project at [1].
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