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Abstract
We investigate semi-stochastic tilings based on Wang or corner tiles for the real-time synthesis of example-based
textures. In particular, we propose two new tiling approaches: (1) to replace stochastic tilings with pseudo-random
tilings based on the Halton low-discrepancy sequence, and (2) to allow the controllable generation of tilings based
on a user-provided probability distribution. Our first method prevents local repetition of texture content as common
with stochastic approaches and yields better results with smaller sets of utilized tiles. Our second method allows
to directly influence the synthesis result which—in combination with an enhanced tile construction method that
merges multiple source textures—extends synthesis tasks to globally-varying textures. We show that both methods
can be implemented very efficiently in connection with tile-based texture mapping and also present a general rule
that allows to significantly reduce resulting tile sets.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques

1. Introduction

Creating rich and complex content is a major problem
in computer graphics, especially in interactive applications
where large amounts of content have to be produced very
quickly and from limited data. Tile-based methods mitigate
this problem by synthesizing large amounts of content out of
a much smaller data set of tiles by generating a valid tiling.
For example-based texture synthesis, tilings based on square
Wang tiles with colored edges or, preferably, square corner
tiles with colored corners have proven particularly useful.
Once a set of carefully constructed tiles has been generated
from a provided input texture, arbitrary amounts of this in-
put texture can be produced at runtime in connection with
tile-based texture mapping.

So far, research has only focused on tilings of stochas-
tic nature which suffer from two unsolved problems. First,
they are prone to local repetition artifacts as the random dis-
tribution of tile edge or corner colors often leads to notice-
able clusters of tiles showing identical content (cf. Figure 5).
And second, they are limited to homogeneous (stationary)
textures as tiles are constructed only from a single input tex-
ture and are then distributed merely in a random i.e. in an
uncontrolled way. In this paper, we propose two new tiling
methods that solve these problems.

We show that the mentioned repetition artifacts can be

minimized by our first method which replaces the stochas-
tic distribution of tile colors with a pseudo-random distribu-
tion that is more uniform in the sense that it is less probable
that neighboring tile edges or corners are of the same color
(and hence represent the same content). Our method is based
on the Halton low-discrepancy sequence which we utilize to
pseudo-randomly enumerate the integer lattice and then as-
sign colors to each edge or corner on the basis of these enu-
meration indices. At the same time, it allows random access
to tiles which is important to maintain runtime synthesis in
combination with tile-based texture mapping.

The limitation of stochastic tilings to stationary texture
synthesis can be lifted by our second method which gener-
alizes the tiling process by allowing the user to control the
distribution of tiles. Tilings are derived from a user-specified
color probability function which defines the probability for
each edge or corner color at each point in the tiling space.
We assign related but different textures to each color and
construct tiles in a way that each texture content is repre-
sented equally in the resulting tile set. Since the controlled
distribution of colors directly translates to the distribution of
associated texture content, this strategy extends texture syn-
thesis to globally-varying textures. Analyzing the underlying
probability distribution with respect to occurring color com-
binations also allows us to significantly reduce the size of
resulting tile sets.
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2. Related Work

Tile-based methods have been applied to a variety of
synthesis problems, among them the synthesis of tex-
tures [Sta97,CSHD03,NWT∗05,LD06a], point distributions
[KCODL06, Ost07], and volume data [LEQ∗07, PGMG09].
A comprehensive overview can be found in [LKF∗08] and
a general introduction to tilings in [GS86]. For a good
overview over the broad field of example-based texture syn-
thesis we refer to [WLKT09].

Tile-based texture synthesis was first considered by
Stam [Sta97] and later extended to example-based tex-
ture synthesis in [CSHD03, NWT∗05, LD06a]. Cohen et
al. [CSHD03] merged different patches of an input texture
by constructing Wang tiles in correspondence to their edge
colors and presented a first stochastic tiling algorithm which
places tiles in scanline order. Wei [Wei04] and Lagae and
Dutré [LD06a] improved this algorithm by allowing ran-
dom access to tiles which is important for tile-based texture
mapping [LN03, Lef08]. Fu and Leung [FL05] extended the
tiling mechanism to arbitrary surfaces. Still, all of these ap-
proaches only generated stochastic tilings.

Cohen et al. [CSHD03] were also the first to consider
tile construction from multiple input textures in order to
generate non-stationary (globally-varying) results but still
only in a stochastic way. Example-based texture synthe-
sis of non-stationary characteristic was also considered by
several non-tile-based approaches [Ash01, MZD05] which,
however, do not allow runtime synthesis comparable to the
performance of tile-based texture mapping. The idea of con-
trolling tilings based on a probability distribution was con-
sidered for manually created textures or small patterns (tex-
tons) by [NC99, LN03] and for volume illustrations by Lu
et al. [LEQ∗07], but none of these techniques directly trans-
lates to example-based texture synthesis.

The problem of a more uniform distribution of colors
also roughly parallels problems in vector error diffusion
[SAFS99], color filter array design [Con09], or multi-class
Poisson disk sampling [Wei09] but these solutions do not al-
low local evaluation as needed by our application scenario.

3. Our Tiling Methods

Before we introduce two new tiling methods, let us briefly
recapitulate the necessary background on valid tilings based
on Wang or corner tiles. We also formulate a basic function
which captures such tiling methods in general.

3.1. Valid Tilings

Wang tiles are unit square tiles with colored edges [Wan61].
Since Wang tiles only enforce continuity with their horizon-
tal and vertical but not their diagonal neighbors, continuity
problems near tile corners may cause artifacts in synthesized
signals, a problem commonly known as the corner problem.

(x+1, y)

(x+1, y+1)

(x, y)

(x, y+1)

Figure 1: Tilings based on corner tiles may be evaluated lo-
cally by assigning colors to an underlying integer lattice and
then deriving the tile from the resulting color combination.

For this reason, corner tiles were proposed as an alterna-
tive to Wang tiles [NWT∗05, LD06a]. Corner tiles are unit
square tiles with colored corners that enforce continuity with
all their neighbors, and are stricter than Wang tiles in the
sense that every set of corner tiles can be transformed into
an equivalent Wang tile set, while the converse is not true.
For these reasons, the remainder of this paper concentrates
on corner tiles even though both of our tiling methods can
be used with Wang tiles as well.

Let T be a finite set of corner tiles and let C =
{0,1, . . . ,C− 1} be the set of C ≥ 2 different colors in T .
As the tiles have four corners, T can contain at most C4 dif-
ferent tiles. These tiles can be uniquely identified by their
corner color combination or by a tile index i, i.e. they can be
represented by C-ary numbers with 4 digits (cj)

3
j=0 or by the

decimal integers 0,1, . . . ,C4−1. The two representations are
connected by common radix conversion, i.e.

i =
3

∑
j=0

cj(i)C
j and cj = (i/C j) mod C (1)

for 0≤ j ≤ 3.

We now consider tilings of the plane in which tiles are
placed on the integer lattice points with their edges axis-
aligned, so that they partition the plane. The tiles may not
be rotated. A given tiling is valid if tile corners have match-
ing colors everywhere.

A straightforward way to generate a valid tiling is to place
tiles in scanline order, ensuring that neighboring tiles have
matching corner colors [CSHD03]. This way, however, a
tiling has to be generated in its entirety in order to evaluate a
single tile of interest. A better way is to align tile corners to
the integer lattice points which have instead been assigned a
color c ∈ C (cf. Figure 1). This way, tiles are implicitly de-
fined by the resulting corner color combinations and can be
evaluated locally [Wei04,LD06a]. This approach is captured
by a function h that maps lattice points to colors, i.e.

h : Z2→C. (2)

We call h the color distribution function.

Existing research can be classified as choosing h as a
stochastic hash function that returns random color values at
each lattice point, hence producing stochastic tilings.
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Figure 2: (a) The first 72 points of the scaled Halton se-
quence induce a stratification grid of size 8×9. While the se-
quence unfolds the grid cells get enumerated as indicated by
the first 10 point indices. (b) Dividing the point set (and thus
the set of grid cells) on the basis of these indices into two
halves yields two evenly distributed corner color classes.

3.2. Deterministic Tilings

However, distributing colors randomly may lead to large
clusters of corners of the same color. As typically each color
corresponds to specific texture content during tile-based syn-
thesis, these clusters lead to local repetition artifacts in the
synthesized results. We thus propose an alternative method
for distributing corner colors that avoids such large clusters
of the same corner color yet still maintains a pseudo-random
appearance. In particular, we are interested in a more uni-
form distribution of corner colors in the sense that it is less
probable that neighboring corners have identical color, and
that each class of corner colors offers a distribution of com-
parable uniformity. At the same time we want to maintain
the independent evaluation of corner colors to ensure ran-
dom access to tiles just as existing direct stochastic tiling
algorithms.

These requirements parallel the characteristic of low-
discrepancy sequences from quasi-Monte Carlo theory
which unfold incrementally in a way that a set of n points
does not have to be discarded when generating the (n+1)-th
point [Nie92]. In fact, every subset of such a sequence of-
fers good uniformity properties with respect to axis-aligned
boxes anchored at the origin. Of particular interest are
radical-inverse based low-discrepancy sequences as they ex-
hibit intrinsic stratification and as such pseudo-randomly
enumerate voxels in any dimension [Kel04]. As we are only
interested in the enumeration of the two-dimensional integer
lattice (and not the points itself) we found the unscrambled
Halton sequence sufficient for our purposes.

Tiling Method The Halton sequence [Hal60] is based on
the van der Corput radical inverse function φb which maps
integers to the unit interval by mirroring its b-adic expansion
around the radix point [Nie92], i.e.

φb(i) =
∞
∑
k=1

ak(i) ·b−k, (3)

where ak(i) denotes the k-th digit of the integer i ∈ N0 in
base b. The two-dimensional Halton sequence then consti-
tutes as

xi =
(
φb1(i),φb2(i)

)
,

where the bases b1 and b2 have to be relatively prime and
are typically picked as b1 = 2 and b2 = 3.

Multiplying the resulting point coordinates by powers of
their respective bases reveals the aforementioned stratifica-
tion property. An example is shown in Figure 2(a): here the
first 72 points induce a stratification grid of size 23× 32. In
general, the scaled Halton sequence

x′i =
(
2n1

φ2(i),3
n2

φ3(i)
)

induces a stratification grid of size 2n1 × 3n2 where the ex-
ponents n1,n2 ∈ N0 are chosen such that the intrinsic grid is
large enough to cover a desired tiling resolution Tx×Ty, i.e.
2n1 ≥ Tx +1 and 3n2 ≥ Ty +1.

The key observation now is that the scaled Halton points
x′i pseudo-randomly enumerate the induced grid such that
each subset of points/grid cells is of nice uniformity. Thus,
we divide the set of grid cells on the basis of the Halton point
indices i′ into C classes corresponding to the C corner colors
of a desired tiling. Figure 2(b) shows an example for C = 2
colors where the first 36 cells are assigned to color class 0
(blue) and the second 36 cells to color class 1 (green).

In general, a corner color may be derived from a Halton
point index i′ by our color distribution function h with the
mapping

h : (x,y) 7→
⌊

i′

2n1 3n2
C
⌋

. (4)

Tile indices may then be derived via Equation (1).

Implementation Currently, the Halton indices i′ are de-
rived only in a “forward” manner from the original inte-
gers i and not directly from tiling grid coordinates (x,y).
This is inefficient and prevents an implementation as a frag-
ment shader for tile-based texture mapping because we have
to compute every Halton point up to the one which falls
into (x,y).

It was recently shown by Raab et al. [RGAK09, RGK10]
that there is a direct way to compute the index of the first
Halton point that falls into a specified voxel. For our two
dimensional case their findings simplify to

i′ =
(
l1 p2 m1 + l2 p1m2

)
mod

(
p1 p2

)
, (5)

where an index i′ has been decomposed into i′ = bnj
j hj + lj

and is represented by its nj least significant digits lj and its
remaining most significant digits hj with respect to base bj in
dimension j. Furthermore, p1 = 2n1 and p2 = 3n2 with m1 =
(p−1

2 ) mod p1 and m2 = (p−1
1 ) mod p2 their multiplicative
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Figure 3: Tilings of size 30× 30 for various number of corner colors. Tile borders have been removed for a better view on
the resulting color distributions. In contrast to the stochastic approach our method produces tilings without any large clusters
of corners with identical color and an overall more “even” distribution of corner colors. This also becomes evident when
considering the individual classes of colors which are depicted below each tiling.

inverse, and

l1 = φ
−1
2

(
x

2n1

)
and l2 = φ

−1
3

(
y

3n2

)
,

where φ
−1
bj

is the inverse of (3) and reverses the digits before
putting them to the left side of the radix point. For more
details, we refer to [RGAK09].

Still, a remaining problem with (5) is that the products
l1 p2 m1 and l2 p1m2 quickly grow very large which is of
special concern for the fragment shader implementation that
typically only supports 32-bit integers. However, by using
modular arithmetic we can rewrite (5) to yield

i′ =
(

p2(l1m1 mod p1)+ p1(l2m2 mod p2)
)

mod
(

p1 p2
)
.

(6)

Since l1,m1 ≤ p1 and l2,m2 ≤ p2, the largest subtotal then
is max

(
p2

1, p2
2,2p1p2

)
which effectively pushes the limit for

tilings based on (6) to e.g. square tilings of size ≈ 46,0002

before they would start to repeat. Also note that since the
divisors in (6) are powers of the fixed primes 2 and 3, the
modulo operations may be implemented as optimized ver-
sions using bitwise operators.

Evaluation Figure 3 compares various corner color distri-
butions based on our deterministic method with distribu-
tions obtained from the stochastic tiling algorithm by La-
gae and Dutré [LD06b]. In contrast to this stochastic ap-
proach our method produces tilings without large clusters
or long streaks of corners of identical color and shows an

C Neighbors mean Neighbors std. dev.
stochastic our stochastic our

2 3.9970 3.4967 1.4142 0.5857
3 2.6653 2.1548 1.3337 0.6322
4 1.9981 1.5566 1.2241 0.6620
5 1.5981 1.1536 1.1311 0.6965
6 1.3328 0.8032 1.0536 0.6720
7 1.1421 0.6968 0.9890 0.6516
8 0.9993 0.6058 0.9350 0.6236

Table 1: Mean and standard deviation for the number of
identically colored neighbors based on tilings of various
sizes. The results for the stochastic approach are based on
the stochastic hash function from Lagae and Dutré [LD06b].

overall distribution of corners colors that is more uniform,
yet still pseudo-random. This becomes particularly evident
when considering the individual classes of colors which are
depicted below each tiling.

We also performed a quantitative analysis of the result-
ing corner color distributions where we were interested in
identifying cluster of the same corner colors. For this pur-
pose, we analyzed the local 8-neighborhood of each cor-
ner and counted the number of identically colored neigh-
bors. Table 1 lists mean and standard (RMS) deviation for
this measure based on 100 tilings of random resolutions up
to 4096× 4096. Compared to the stochastic approach our
method consistently generates corners with fewer neighbors
of identical color at smaller variance.
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3.3. Controllable Tilings

While our deterministic method generates tilings with a
more uniform distribution of corner colors, a natural exten-
sion to the tiling process is to allow the user to control the
distribution of corner colors. As each color is associated with
specific texture content during tile-based synthesis, this re-
sults in a direct way to influence the synthesized texture.
This extends example-based synthesis to globally-varying
textures as we will show in Section 4.

The key observation is that we can control resulting tilings
by defining a random field that provides the probability for
each corner color at each point in the tiling space. To deter-
mine a corner color at a given lattice point we then simply
have to sample the discrete probability distribution at this
lattice point.

Tiling Method Assume each point x ∈ [0,1]2 is assigned a
discrete random variable Xx that can take values from our set
of colors C = {0,1, . . . ,C−1}. Let pc ≡ Pr({Xx = c}),c∈ C
be the probability that the color c is assigned to point x. Then
the table

P :=
(

0 1 · · · C−1
p0 p1 · · · pC−1

)
,

C−1

∑
c=0

pc = 1

is the discrete probability distribution (probability mass
function) of the random variable Xx.

With this definition, the user may provide a color proba-
bility function ρ with

ρ : [0,1]2→P ,

where P = {P : C → [0,1] | ∑C−1
c=0 pc = 1} denotes the func-

tion space of all probability mass functions. Thus, ρ assigns
each point x ∈ [0,1]2 an individual discrete distribution Px.

To derive a tiling from such a color probability function
we simply sample ρ on the basis of our regular tiling grid
and then realize the corresponding random variable. Hence,
the corresponding color distribution function h is given by
the mapping

h : (x,y) 7→ X
(

ρ

( x
Tx

,
y
Ty

))
, (7)

where (x,y) are the coordinates of the corner of interest and
Tx×Ty the desired tiling resolution. Again, tile indices may
be derived via Equation (1).

This approach is a generalization of all tiling methods as
ρ may be designed in ways that simulate either strictly deter-
ministic or pure stochastic tilings. Note that it is nevertheless
better to apply our deterministic tiling method from the pre-
vious section directly as it is independent of a probability
distribution and extends naturally to arbitrarily large tilings.
Also note that this direct tiling algorithm requires that cor-
ners shared by neighboring tiles obtain the same color de-
spite being evaluated independently. One way to ensure this

k\C 2 3 4 5 6 7 8 9
1 87.5% 61.7% 43.0% 31.0% 23.3% 18.1% 14.4% 11.7%
2 - - 76.6% 58.2% 44.8% 35.2% 28.2% 23.1%
3 - - - - 64.4% 51.2% 41.5% 34.1%
4 - - - - - - 54.1% 44.7%

Table 2: Savings both in terms of tile construction time and
memory requirement if k disjunct pairs of corner colors can
be excluded from a C-color tiling.

is to utilize the same long-period hash functions that are used
for directly generating stochastic tilings [LD06b] as a (x,y)-
dependent random number generator. This is what we did in
our implementation.

Figure 4 shows various tilings using Equation (7). The
corresponding color probability functions ρ are depicted be-
low each tiling in the form of individual distribution layers
for each corner color. Some corners share the same distri-
butions such that their occurrence is equiprobable. Note that
the probabilities sum up to 1 (white) everywhere.

Reduced Tile Sets The number of possible tiles for C cor-
ner colors is C4, so the size of tile sets grows rapidly as C
increases. This is of special concern for tile-based texture
synthesis due to the amount of associated image content. For
example, a 6-color tile set already contains 64 = 1296 tiles.

But if we know that certain combinations of corner colors
can never occur, we can significantly prune the tile set for
a given color probability function ρ. For example, in Fig-
ure 4(c) ρ is designed in a way that the four corner colors in
the upper left will never be adjacent to the two corner colors
in the lower right. Likewise, in Figure 4(d), the two corner
colors from the center will never share a tile with the two
outer corner colors. Hence, all tiles containing such mutu-
ally exclusive pairs of corner colors can be safely omitted
during generation and storage.

Identifying non-adjacent pairs of corner colors is intricate
in the case of a continuous color probability function but
simple when it is provided in discrete form where a given
probability map may be analyzed very quickly for possible
corner color combinations, for example by linearly going
through the map and keeping track of probabilities greater
than 0 in the 8-neighborhood of each pixel. Analyzing the
consequences when excluding k specific pairs of corner col-
ors, however, is non-trivial and leads to an interesting combi-
natorial problem which we solve in Appendix A. In general,
if k disjunct pairs of corner colors will never be adjacent in
a tiling based on a provided probability function ρ, only

Nk =C4−2k(6C2−12C−6k+13)

tiles have to be generated and stored while still allowing to
generate every possible tiling based on ρ. For a single pair
of corner colors this already results in tile set reductions of
61.7%, 43.0%, 31.0% and 23.3% for a number of corner
colors of 3, 4, 5, and 6 (cf. Table 2). For the examples in
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Figure 4: User-controlled tilings based on the color probability functions depicted below each tiling. Some corner colors share
the same probability distributions such that their occurrence is equiprobable.

Figures 4(c) and 4(d) memory requirements even reduce by
82.0% and 61.7% since disjunct pairs of corner colors are
complemented by non-disjunct pairs. Note that for interac-
tive swapping of a probability function ρ, one may dynami-
cally swap the corresponding tile sets (e.g. a combined tex-
ture in our application scenario) as well.

Efficiency Generating a controllable tiling via (7) involves
the realization of a discrete random variable at each of a tile’s
four corners. As tilings may be arbitrary large, an efficient
realization of such variables is critical for the fast generation
of tilings using our approach. However, we can perform the
necessary computations elegantly inO(1) based on Walker’s
method of “aliases” [Wal77].

This method transforms a given discrete distribution table
P into two tables U and V , each the size of P, by precomput-
ing the decision for each outcome such that the realization
of the random variable reduces to a single comparison. For
our application, this implies that we can determine each cor-
ner color in constant time, i.e. independent of the number of
corner colors.

For discrete color probability functions, the two tables can
be generated for every point in O(C) during preprocessing.
It is even possible to combine them into a single table as each
entry in the first table U actually denotes a fractional part in
[0,1] and each entry in V an integer in {0, . . . ,C− 1}, our
corner colors. Thus, each entry may be range-compressed
into a single float, keeping the table size constant.

4. Example-Based Texture Synthesis

We now demonstrate the advantages of tilings based on our
two methods in the domain of example-based texture synthe-
sis where tile-based methods are of particular interest due to
their performance in connection with tile-based texture map-
ping. In this context, individual tiles are constructed from a
provided source texture and then get arranged by the tiling
algorithm to produce the output texture.

Tile Construction Corner tiles are usually constructed by
randomly choosing C patches from a single source texture

and arranging them for every tile according to its corner
color combination [NWT∗05, LD06a] (also cf. Figure 6(a)).
Hence, there is a direct connection between corner colors
and the synthesized result. Resulting patch borders are then
preferably covered by another unique center patch which is
merged with the corner patches via an optimization or graph-
cut technique [KSE∗03, NWT∗05, DZP07].

We extend this principle to multiple source textures where
each corner color is assigned an input patch from a fixed
corresponding source texture (cf. Figure 6(b)). Since we do
not want to favor one of the source textures in the resulting
tile set, the source texture for the gray center patch may be
obtained by interpreting a tile’s corner color combination as
another discrete probability distribution. When sampled, this
distribution yields the value of the predominant corner color
and hence the source texture. In Figure 6(b), e.g., it is twice
as probable that the center patch is chosen from the input
corresponding to the orange corner than from the other two.

The important observation is that this approach leads to a
balanced representation of each source texture in the result-
ing tile set. For controllable tilings, this means in particular:
if a user increases the probability of a desired corner color
for a specific tiling region, this leads to a proportional in-
crease of the probability that the associated texture content
will dominate this region after synthesis. Thus we maintain
the direct connection between corner colors and synthesized
content in case of multiple source textures.

Results We implemented both of our methods as fragment
shaders in connection with tile-based texture mapping. Fig-
ure 5 shows texture synthesis results for our determinis-
tic tiling method in comparison with current stochastic ap-
proaches. Here, all input textures (depicted below each re-
sult pair) are of resolution 128× 128 while the displayed
results are 640×640 cutouts (10×10 tilings) from near infi-
nite tilings. All tiles were constructed using our variant from
Figure 6(b) in case of multiple input textures.

In the case of stochastic tilings, large clusters of the same
corner color translate to local repetition of texture content,
and increasing the number of corner colors from 2 to 3 or 4
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Figure 5: Texture synthesis results based on stochastic tilings and our deterministic approach. Large clusters of corners
with identical color may become harmful when synthesizing textures with salient features as in these examples. Increasing the
number of corner colors and/or related input textures does not necessarily improve on this behavior as indicated by the bottom
examples. Our method avoids large clusters of the same corner color such that undesirable repetition artifacts become much
less detectable. Note that the results for each method are based on the same set of synthesized tiles.

(and thus the number of tiles from 16 to 81 or 256) does not
necessarily improve results as indicated by the bottom exam-
ples. In contrast, the tilings produced by our method show a
more even distribution of corner colors that is free of color
clusters and makes repetition artifacts muss less detectable,
even for C = 2 colors with only 16 tiles. We want to em-
phasize that the results for both tiling methods are based on
the same set of synthesized tiles, i.e. the improvements stem
solely from the better arrangement of tiles using our method.

Figure 7 shows results based on user-controlled tilings
which were utilized to synthesize globally-varying textures
from source textures related in a non-stationary way. Syn-

thesizing a tile set from such input textures yields a rich set
of tiles which can be used to generate large amounts of the
same globally-varying texture, akin to stationary textures.

Both of our tiling methods are as fast as existing di-
rect stochastic tiling algorithms and run at several hundreds
frames per second on current graphics hardware. In the case
of controllable tilings we could also reduce memory require-
ments by a typical 40% to 70% (depending on the probabil-
ity map), as described in Section 3.3. In addition, tiles can be
interactively rearranged in correspondence to an underlying
probability distribution, and due to Walker’s alias method
these increased degree of freedoms come at negligible costs.
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Figure 6: (a) Common approach to tile construction for
example-based texture synthesis: (I.) Input patches are cho-
sen randomly from a single source texture, (II.) arranged on
a tile according to its corner color combination, (III.) cut
out to fit the tile size, and (IV.) get their seams covered by a
unique center patch. (b) (I.) Our approach extends this prin-
ciple to multiple source textures, and (II.) chooses the center
patch by interpreting the tile’s corner color combination as
a discrete probability distribution.

5. Conclusion

We introduced two new methods for generating tilings based
on Wang or corner tiles and demonstrated their advantages
in the domain of example-based texture synthesis. Our de-
terministic tiling method improves upon the results of cur-
rent stochastic approaches by preventing local repetition of
texture content. As a consequence, synthesized textures are
of better quality even when using smaller sets of tiles. Our
second method generalizes these approaches and allows the
user-controllable generation of tilings while maintaining the
speed of the others.

We introduced a novel variant for tile construction that
allows a balanced merging of multiple input textures such
that texture synthesis may be extended to the synthesis of
non-stationary textures at runtime. Both of our methods can
be efficiently employed in connection with tile-based tex-
ture mapping where significant amounts of memory may be
saved by excluding tiles corresponding to non-adjacent pairs
of corner colors.

In future work, we would like to investigate the applica-
bility of both methods for the synthesis of other signals such
as point distributions or volumetric content where tile-based
approaches are of particular interest.
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Appendix A: Excluding Tiles

In this appendix, we derive the number of affected tiles Nk
when excluding tiles with k disjunct pairs of corner colors.
A derivation including non-disjunct pairs works similar but
is a bit more involved.

As the total number of tiles in a complete corner tile set T
equals C4, the number of tiles without i ≤C specific corner
colors equals Mi = (C− i)4. We are now interested in the
number of tiles Ts without an s-element set S ⊆ C of corner

colors, C = {0, . . . ,C− 1}, i.e. those tiles where all s colors
of S do not appear at the same time. Using Iverson notation
[GKP94] we observe for s = 2 colors {a,b}

T2 = ∑
T
[¬(a∧b)] = ∑

T
[¬a∨¬b]

= ∑
T
[¬a]+ [¬b]− [¬a∧¬b]

= ∑
T
[¬a]+∑

T
[¬b]−∑

T
[¬a] · [¬b]

= 2M1−M2 = 2(C−1)4− (C−2)4.

(8)

It can be shown that for any s-element set of corner colors
this observation generalizes to

Ts =
s

∑
i=1

(
s
i

)
(−1)i+1Mi

=C4−
s

∑
i=0

(
s
i

)
(−1)i(C− i)4

︸ ︷︷ ︸
=0 if s>4

.
(9)

The second summand disappears for s> 4 since Mi is a poly-
nomial of degree n = 4 [GKP94]. This reflects the fact that
there can be no tile with an (s > 4)-element set of corner
colors when we have tiles with just four corners.

Now let Nk denote the total number of tiles without k dis-
junct pairs of corner colors. Similar to (8) it can be observed
that for k = 2 disjunct pairs of corner colors {a,b} and {c,d}

N2 = ∑
T
[¬(a∧b)∧¬(c∧d)]

= ∑
T
[¬(a∧b)+¬(c∧d)]− [¬(a∧b∧ c∧d)]

= 2T2−T4,

which, analogous to (8), can be shown to generalize to

Nk =
k

∑
p=1

(
k
p

)
(−1)p+1 T2p

(9)
=

(
k
1

)
T2−

(
k
2

)
T4 +

k

∑
p=3

(
k
p

)
(−1)p+1C4

=C4−2k(6C2−12C−6k+13),

where 0≤ k ≤ bC/2c.
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