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Figure 1: The static tree model on the left is converted into a developmental model (middle part) that encompasses the ability to create
arbitrary intermediate stages between a very young model and the given geometry. We define a "growth space" that allows the user to edit
the model in an enhanced way. A corresponding model is shown on the right.

Abstract

Given a static tree model we present a method to compute devel-
opmental stages that approximate the tree’s natural growth. The
tree model is analyzed and a graph-based description its skeleton
is determined. Based on structural similarity, branches are added
where pruning has been applied or branches have died off over time.
Botanic growth models and allometric rules enable us to produce
convincing animations from a young tree that converge to the given
model. Furthermore, the user can explore all intermediate stages.
By selectively applying the process to parts of the tree even com-
plex models can be edited easily. This form of reverse engineering
enables users to create rich natural scenes from a small number of
static tree models.
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1 Introduction

Modeling complex natural scenes and objects was actively investi-
gated for many years; trees and plants belong to almost every ani-
mated movie or computer game. Various methods have been pro-
posed that successfully ease the modeling process while still creat-
ing realistic models. Today, thousands of such tree models can be
found on the internet, large libraries exist that encompass all sorts of
plants. While their visual fidelity has steadily improved over time,
most of these models are still stored in the form of static geometries
that cannot be altered easily, if needed. Specialized programs have
to be used and sets of quite specific parameters have to be known
to create variations or even animations –a task typically much too
tedious for most content creators.

In this paper we present an automatic method for analyzing and
re-modeling such tree models. The method allows developmental
stages to be generated from a single input and supports animating
growth between these states. In addition, our method offers new
forms of editing through selectively applying growth development
to parts of the plants. This dramatically reduces the tedium of edit-
ing such complex models and opens up what we call a "growth
space": a space for developmental edits that influences the model
in a quite natural way.

Most polygonal tree models (generated by L-Systems, Laser-
scanning, Xfrog or other systems) can serve as the input to our
system. Using a mesh contraction algorithm we reduce them to
a graph structure that represents the tree skeleton. The allometry –
the geometric relations within the tree– and the branching statistics
can be obtained from this data structure.

During tree growth the lower branches of a tree typically die off
or are pruned by humans, so we have to artificially add back these
branches to our developmental model. This is done by analyzing
the main branching structure and by using structural similarity –the
fact that trees typically repeat branching structures along their main
axes. Furthermore, we adapt the geometric relations during growth
since branches change their thickness and bend as the tree develops.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 169, Publication Date: November 2012

http://doi.acm.org/10.1145/2366145.2366188
http://portal.acm.org/ft_gateway.cfm?id=2366188&type=pdf
http://graphics.uni-konstanz.de/publikationen/2012/tree_growth/website/


Once we have all the necessary information, we are able to simulate
the growth of a tree as it develops from an initial young tree into the
given input model. Figure 1(center) shows the steps of such a pro-
cess. Different growth rates have to be applied to different branches
in order to meet botanic rules whereby a branch that receives more
light grows faster than others and if light is below a threshold, the
branch eventually dies off. Seasons with falling leaves can be in-
tegrated, pruned branches can be removed by fading or dropping
them, growth can be exaggerated to meet various artists’ needs.

2 Related Work

With regard to the huge amount of research into modeling trees, we
only discuss the most important methods and furthermore focus on
those related works that incorporate growth.

Early work on tree modeling concentrated on describing the mor-
phology of natural tree models. L-Systems [Prusinkiewicz et al.
1996; Měch and Prusinkiewicz 1996] were developed as a parallel
mechanism representing growth processes in nature, Prusinkiewicz
et al. applied the mechanism to geometric tree modeling and over
the years showed that almost all natural forms can be described
by these kinds of systems. While scientifically very helpful, L-
Systems are not very intuitive and require a lot of knowledge about
modeling, especially when the intension is to animate these systems
(cf. [Prusinkiewicz et al. 1993]). Procedural models for example by
Weber and Penn [1995] or by Lintermann and Deussen [1999] try
to overcome such modeling limitations. These approaches, how-
ever, are more specialized and cannot create the same variety of
shapes. A number of sketch- [Chen et al. 2008; Okabe et al.
2006] and image-based reconstructions [Shlyakhter et al. 2001; Tan
et al. 2007] reduce the modeling effort by applying data-driven
approaches. Only a few methods, such as [Prusinkiewicz et al.
1993; Lintermann and Deussen 1999] allow the creation of ani-
mated models. A survey of many tree modeling algorithms is found
in Deussen and Lintermann [2005]

Self-organizing plant models allow the morphology of a plant to
emerge from a complex dynamic system. Two early approaches for
climbing plants used voxel automata to direct the growth of such
(simple) structures [Arvo and Kirk 1988; Greene 1989]. These
models are able to sense the environment and to adapt their growth
accordingly; however, they cannot easily be applied to trees since
a much more complex structure has to be developed in this case.
More recently [Pirk et al. 2012] proposed a system that allows trees
to dynamically react to their environment by computing the tem-
poral light conditions and the inverse tropism of a tree model. In
contrast to our method they consider the environmental conditions
for a given tree but do not allow continuous animations of the de-
velopmental stages.

Particle-based simulations [Runions et al. 2007; Palubicki et al.
2009; Neubert et al. 2007] use large sets of interacting particles,
trajectories are used to produce the branching skeleton and gener-
alized cylinders for its geometric shape. Unfortunately, such ap-
proaches do not allow growth animations to be created automati-
cally as the particles flow backwards (like in [Neubert et al. 2007])
or can behave in an unnatural way during flow. Hart et al. [Hart
et al. 2003] present botanical methods to compute changes in the
branching skeleton and wood production when a tree develops.

Another form of developmental system is implicitly controlled
by modeling the statistics of botanical growth. DeReffye et al.
[de Reffye et al. 1988] introduced these types of systems, and yet
goal-directed animation is still not an easy task as it has to be
controlled by statistical variables. Open L-Systems [Měch and
Prusinkiewicz 1996] allow L-Systems to react to their environment

and thus to actively self-organize, however they require develop-
mental L-Systems as their input.

Animation of tree models. On the one hand, animation systems for
tree models require the ability to let models grow easily in a natural
way and on the other, they need to be editable in order to achieve
the desired effects: Both requirements are typically in conflict. The
Xfrog modeling system [Lintermann and Deussen 1999] allows the
definition of key-frames that describe the developmental stages of
a tree model in the form of parameter sets, which are interpolated
in a later step. Unfortunately, various combinations of parameters
can lead to strange animations when tree-specific constraints are
missing. Animated L-systems [Prusinkiewicz 2004] can describe
all forms of developing L-Systems, but are very hard to control.

As a result, most trees provided by today’s libraries are represented
in the form of a static polygonal models. After preprocessing the
tree models, which is described in the next Section, we show how
we compute important properties of the models such as growth rates
and allometry. A number of models and growth simulations are
shown and evaluated, limitations are discussed.

3 Processing Tree Models

Our developmental model relies on a graph-based data structure
which is computed from the input tree models. Typically, these
models are given as a grouped list of vertices with connectivity in-
formation. These groups represent the different organs of the plant
such as branches, leaves or blossoms.

To generate the branch graph we use a mesh contraction algorithm
as described in [Au et al. 2008] and assume that the input to this al-
gorithm is such a grouped list of vertex data. The method allows us
to process a wide variety of tree models ranging from reconstructed
tress to models grown by L-Systems and models from commercial
libraries.

When a tree develops, branching angles of bifurcation change over
time. This is due to various kinds of tropisms, i.e. phototropism
(growth towards a light source) or gravitropism, growth following
gravity (or perpendicular to it) and as a result of forces that act on
the branching structure and bend the branch. A tree develops addi-
tional wood at places with high tension, this also alters the branches.

To effectively model these changes, we use a branch representation
in coordinates by two angles α,β which are relative to the parent
edge. Please note that branches might be represented by more than
one edge, since we allow consecutive sequences of edges without
branching.
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Figure 2: a) Gravelius ordering in a branching system (main
branch is assigned order g = 1) with marked chains; b) Pipe Model
Theory [Shinozaki 1964]: the tree is seen as a system of pipes of
uniform thickness that supports the leaves.
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Botanical branching structures are often described by marking the
terminal leader (main axis) and the Gravelius order of branches; an
ordering method originally developed for binary branching systems
to describe rivers and streams [Gravelius 1914], but also success-
fully applied to tree modeling by Holton [1994].

Starting from the root edge of the graph, which is assigned a level
groot = 1, the child edge with the smallest deviation angle within
each bifurcation is assigned the same level as the parent edge while
the secondary edges are considered to be one level higher. To ac-
count for decurrent tree architectures (trees with weak apical dom-
inance) we assign the same level to all child edges whenever their
difference in angle and in radius is below a 5% range. Following the
Gravelius order of the branches we are able to determine the main
trunk and the side branches of the different orders. This scheme is
our primary ordering within the graph.

We are now able to define chains in the branching graph: a chain is
a sequence of consecutive edges without any level change. These
chains are used to determine the growth rate and to insert missing
geometry into the original model. They can reach from the root
to the tip of a branch. Additional information is collected about
the average branching angle αavg for bifurcations with different
child levels and also about the internode length I (average spacing
between leaves) of the terminal branches.

The resulting data structure is a set of edges E with each edge hav-
ing been assigned the following properties: rotation angles α, β,
length l, order g, and radius r and a set of child edges Ec (all pa-
rameters see Table 1).

Table 1: System variables used for the tree models. (∗)denotes
time-dependent variables.

Name Description

(α(∗)
i , βi, l

(∗)
i ) relative coordinate frame (angle pair and

length) of the edge ei
gi level assigned to edge ei according to the Grav-

elius order.
r
(∗)
i radius of edge/branch ei. We limit our descrip-

tion to one radius per edge, although a precise
description would have one radius for the start
and another for the end.

bi radius coefficient of edge ei (see Sec. 4.3).
v(∗) growth rate
v
(∗)
α angular velocity
ravg average radius of all terminal edges. Used as

initial value for interpolation during growth.
α
(n)
avg average angle of branches with different as-

signed levels from n to n+ 1.
I internode length defined as the average distance

between leaves on terminal branches.
CR: Crown ratio (crown height divided by tree

height). Influences growth rate and time of re-
moval of geometry added in growth space.

4 Reverse Growth Simulation

For the given graph we do a reverse growth simulation, i.e. parame-
ters are computed for the intermediate stages of the tree that finally
lead to the given graph. This involves computing individual growth
rates for the branches, interpolation of the branch radii, updating
the branch angles, adding pruned branches and also the pruning of
existing branches.

4.1 Growth Rate

A tree with a constant and equal growth rate for all branches would
result in a shape where all branches have the same distance from
the root. This is neither the case for real trees nor for the models we
obtain as our input. Growth at a uniform speed, for these models,
would result in intermediate models with some branches stopping
their growth at an early stage. Rather than having a constant growth
rate across all branches, the growth rate in nature is dictated by a
number of influences, but mainly by the amount of light received by
a branch (see Fig. 3). Branches that receive less ressources produce
less biomass and will eventually die off (for details please refer to
[Leyser and Day 2003]).

The fact that we want the final model to be reproduced with all
branches still growing, leads directly to a recursive formulation
with different growth rates for individual branches. The growth
rate vg of a chain is defined as

vg =

∑
i li

tmax − tstart
(1)

with li being the lengths of the edges that form the chain, and tmax
the chosen duration of the growth process. We start with the chain
that defines the main axis (edges with order g = 1) tstart = 0.
For chains with g > 1 the computation of vg depends on the time
tstart =

∑
p lp/vp (p index of parent edges) where all parent edges

reach their full length.

The length of a chain at time t is computed by

l(t) = vg · (t− tstart). (2)

This definition gives us a constant growth rate per edge with the
merit of being fully automatic. However, often trees do not have
such a constant growth rate. Modifying Eq. (2) allows us to define
other biologically motivated functions for growth rate and angular
speed such as the logistic function or linear acceleration (as dis-
cussed in [Prusinkiewicz et al. 1993]). The accompanying video,
however, shows that constant growth already creates plausible ani-
mations for many tree models.

4.2 Angle Interpolation

During growth, branching angles change over time. We distinguish
between two classes of branches: apical and lateral branches. For
apical branches the initial direction is the one of the parent branch,
for lateral branches of level g the initial angle is given by α(n)

avg . The
angular velocity vα of an edge is set to

vα =
αi − αinit

∆t
(3)

with ∆t being the duration the angle changes. This duration of
the interpolation depends on the time the edge starts to grow t =∑
p lp/vp (p: all parent edges) and the time the branch reaches a

certain radius.

Following the pipe model theory of Shinozaki et al. [1964] (see
Section 4.4) we stop the angle interpolation as soon as the number
of terminal edges of the subgraph reaches an upper limit (a good
value is a limit of 5). In this case the branch becomes "solid" and
does not bend anymore.

4.3 Radius Interpolation

Another recursive formulation can be found for the branch radii,
but this time from the tips of the twigs towards the root. According
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Figure 3: Growth speed of a tree visualized by color. Red repre-
sents fastest speed, cyan slowest.

to an observation of Leonardo da Vinci, the cross-section area of
a branch is the sum of the cross-section areas of its child branches
[Richter 1970]. Later Murray [1927] empirically found a relation
of circumference c at bifurcations (c1, c2: circumferences of child
branches)

c2.49 = c2.491 + c2.492 (4)

This was based on measurements for branches of many different
species. As a result, Murray proposed that trees statistically follow
a 2.5 power law of branching.

We use this simple allometric rule to define branch radii during the
growth simulation. However, since hand-modeled trees often ig-
nore such rules (e.g. for efficiency, for artistic reasons or to empha-
sis some parts of the tree) and our main goal is to eventually match
the final tree, we calculate a coefficient b of the original tree model
for each edge using

bp = 1
rup

∑
i r
u
i u = 2.5 . (5)

with ri being the radii of child branches and rp the associated ra-
dius of the edge. The coefficient bp is used for computing the radii
of intermediate stages using the following recursive description:
For each branch ep that currently does not have children (a ter-
minal shot) the current radius rp is initialized by ravg while for
non-terminal branches the radius rp is defined by

rp =

(∑
rui
bp

)1/u

(6)

with ri being the radii of the child branches.

4.4 Pipe Model Theory

A popular model in theoretical biology is the Pipe Model Theory
by Shinozaki et al. [1964]. The theory postulates that tree forms
emerge from vascular systems that have to distribute resources
within the tree as well as having to mechanically support them-
selves. A tree structure is an assembly of leaf units of constant size
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Figure 4: a) Profile diagrams for trees (Figure 1 of [Chiba 1990]):
(a) relation between Γ(z) andC(z); (b) relation between T (z) and
C(z);

and corresponding pipes of uniform thickness connecting the leaves
to the root (see Figure 2(b)). While real trees have a much more di-
verse construction, the theory successfully explains many effects in
natural trees.

One fundamental finding produced by the theory is the profile di-
agram (see Figure 4) that maintains its similarity among various
plant communities despite their differences in species or morphol-
ogy.

The profile diagram represents the vertical distribution of leaves
Γ(z) and of non-photosynthetic tissue C(z) (contained in a hor-
izontal layer of unit thickness ∆z) downward from the top of the
plant or community to the ground. F (z) is the cumulated leaf quan-
tity for the whole tree and T (z) the cumulated tissue (leaves plus
non-photosynthetic tissue).

These distributions are what we try to maintain when animating tree
growth. If the distributions of the given model deviate too much
from these values, we assume that branches were pruned, add such
branches and let them die off during animation to finally reach the
given model.

For empirical investigations Γ and C are determined by applying
the so-called Stratified Clipping Method (STC) where the biomass
for the leaves (Γ(z)) or the non-photosynthetic tissue (C(z)) is de-
termined by selecting a vertical range [z, z + ∆z] within the tree.
Another way of collecting the data for these distributions is the
Main-axis Cutting Method (MAC) [Chiba 1990; Chiba 1991]. Here
the values associated with a height z are those parts of the plant that
emerge from the main-axis segment of length [z, z + ∆z].

Differences in the biomass distributions obtained by MAC and STC
of the input model allow us to detect regions in which additional ge-
ometry is needed during earlier developmental stages of the model
(we will explain this in more detail in the next section). Such re-
gions are candidates for filling in additional geometry to account
for pruned branches during our simulation.

4.5 Adding Missing Structures

Trees are affected by several environmental factors that influence
their shape. During growth, parts of a tree get lost, e.g. through
mechanical influences such as wind, intentionally by human prun-
ing, or due to the lack of resources.

This information is not available by looking at the final tree, which
is the basic problem for the input models we have. Our tree mod-
els have been developed for certain environments we do not have
information about. A plant was potentially modeled to be part of
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a tree stand or to be placed in an urban environment where lower
branches have to be pruned. In both cases we need to fill in the
missing geometry in order to obtain a plausible growth animation.

We do this by taking advantage of the principle of self-similarity
within trees [Ferraro et al. 2005]. This principle has been heavily
used for tree modeling in the past, grammar based methods mostly
rely on it (see [Prusinkiewicz 1998, pp.121] for an overview). We
exploit self-similarity and copy branches from the tree to the miss-
ing parts. This is done in the following way:

• copy the largest possible continuous part of branches in the
tree canopy to the lower parts of the trunk that are empty.

• fill in the missing information with the fewest possible num-
ber of copies.

The regions to be filled with geometry are determined as follows:
A well-known dimensionless measure used in forestry is the crown
ratio (CR, see Table 1). Crown ratio values range from 0 (no crown,
dead or defoliated) to 1 (crown extends over the entire tree bole).
For trees where the crown ratio is smaller than one, the region below
the crown needs to be filled with additional geometry (see Fig. 5).
Additionally, predicting CR values for intermediate stages allows
us to determine when additional geometry is pruned during growth
(see next section).

Figure 5: Left to right: Tree model with marked crown region
and overlap region; updated model with added geometry. Original
branches are colored blue, added branches colored red; Different
Clipping methods.

While competing for space and resources such as sunlight individ-
ual branches eventually block out other lateral branches, finally ob-
taining a larger volume than their competitors that eventually di-
minished. Without adding additional geometry and branches dur-
ing earlier growth stages these regions become apparent for inter-
mediate model. The above-mentioned STC and MAC measures are
taken to detect regions of reduced density within the tree. We call
these kinds of regions "overlap regions", they are also filled with
additional branches.

Following the first chain (g=1, the main trunk) we copy all attached
sub-branches adding an offset along the chain to fill this region (see
Fig. 6). We define the overlap region to be as large as the filled sub-
crown region. We only add branches in this region that originate
from parts of the axis that fullfill the following heuristic.

The difference between T (z) obtained by MAC and STC is used to
analyse the overlap region between copied and original branches.

A significantly higher value of T (z)(STC) for a certain segment
along the chain then T (z)(MAC) (obtained by MAC) suggests that
the expected biomass for this region is concentrated along another
lateral branch that originates from another part of the main axis.
This analysis is done once for the original input model.

We want to reconstruct these candidate branches and keep branches
for the overlap region that are associated with segments along the
chain that exhibit larger T (z) values generated by STC then by
MAC or both values are low. In all other cases these candidate
branches are neglected. The additional structures are added to the
branching graph (together with the associated edge parameters) and
used to generate intermediate stages. In the remainder of this sec-
tion we show how the additional structures are removed during
growth to eventually match the original model.

While pruning and self-thinning during early stages of development
only affect the main branch, secondary level branches may be influ-
enced in the same way during later stages. We fill in these missing
parts in the same way as we add geometry to the main trunk.

The ability to add missing geometry and hallucinate branches that
have died off during growth enables us to form what we call growth
space, a space of possible extension (branches) obtained from the
original model.
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Figure 6: Copying of branch geometry. a) Branches attached to the
root chain (g=1) are copied and added with an offset δ1 (dashed
lines). b) We can apply this process to chains of any order (here
g=3 with δ2).

4.6 Removing Added Geometry

The principle of self-similarity also guides us during animation. We
try to maintain a plausible crown ratio of the model during growth
while starting with a typical young tree. Since branches do not
move upward during growth but are replaced by new ones, we use
the added geometry to form the crown at early stages. When the
tree grows, the early branches have to be pruned to maintain the
crown ratio.

Empirical investigations indicate the following logistic function for
the development of the crown ratio during growth (see [Hasenauer
and Monserud 1996])

CR =
1

1 + e−x
, x = c0 +c1 ∗SZ+c2 ∗CO+c3 ∗ST, (7)

where x is a linear combination of species-dependent and
environment-specific input variables: SZ=Size of the model,
CO=Competition about resources, ST=Site-specific parameters.
We assume competition and site variables to remain constant dur-
ing development of a tree and use tree height h for SZ. This leads
to the simplified version of Eq. (7):

CR =

(
1

1 + e−(c′0+c1∗h)

)γ
(8)
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using CRp and height hp of the original model and CR0 = 0.99
for h = 0 (discussion see Hasenauer and Monserud [1996]) we are
able to compute the model specific coefficients c′0, c1 for a standard
value of γ = 1. Evaluating Eq. (8) for intermediate values of h
gives us the time at when the additional geometry for regions below
the original crown has to be removed.

This provides a fully automatic method to find plausible values for
c′0 and c1. However, an artists can choose different values and thus
change the timing at which additional geometry is removed (see
below). The above function with slightly different values for the
target crown ratio at maximal plant height hp is used to gradually
remove additional geometry in the overlap area.

In Figure 7 the importance of adding and gradually removing geom-
etry during growth is shown. Only using this mechanism a natural
looking result can be achieved. It is important to note that branches
that are removed during growth still contribute to the computation
of the radii. If this were not the case, the deletion would alter other
radii leading to visible artifacts in an animation.

4.7 Adding Leaves

Usually trees produce leaves only at terminal branches. However
during growth, some edges turn into terminal edges, which were
not terminal edges in the original model, and would therefore not
have provided leaves for a realistic appearance of the developmental
stages. To improve the intermediate appearance for each chain we
use the leaf distribution of terminal branches in the original model
as candiate set for tempoary leaf positions. During the growth in-
terpolation we make these leaves visible if the edge is terminal and
remove them again if the edge becomes a non-terminal edge. Since
the number of branches slowly approaches the final number, the
leaves also gradually approach the foliage of the input model.

5 Results

Figure 10 shows six models that were processed and animated us-
ing our system. The models were imported from different sources
(reconstructed point scans, Xfrog, and L-System generated mod-
els), all trees show a visually plausible shape at the various stages
of their growth.

5.1 Growth Based Editing

We presented a system that automatically generates intermediate
models of a given input tree. However, different parameters can be
introduced allowing artists to gain additional control over the ap-
pearance of intermediate models and influence the resulting anima-
tion. The proposed process allows for enhanced editing operations,
such as scale, copy, and translate operations for tree models.

Changing Growth Speed and Timings: Changing the target crown
range in Sec. 4.6 allows us to keep additional geometry for the final
model (see Fig. 8 a)). Solving Eq. (8) for different values of γ
automatically changes the time steps for which additional geometry
is removed.

While the above changes are applied to the whole model, some en-
hanced editing can also be applied to parts of the tree. This allows
for a natural manipulation of the model. The following operations
for tree models can be seen as combinations of scale and structural
growth where scale translates to growth (see Figure 8(b))

Advanced Scaling: Selecting individual branches and changing
their age (while keeping the age of non-selected branches) corre-
sponds to traditional scaling operations that can be accomplished
with standard editing tools. The advantage of our method is that

the resulting branch radii, sub-branch angles and lengths are prop-
erly transformed to match the new age of the branch.

Advanced Copy&Translate: Copying selected branches and mov-
ing them is combined with the growth process and bound to the time
parameter. This means that branches that are translated to younger
parts of the plant automatically reduce their age, angles, and radii,
and vice versa. The radii of parent branches are changed according
to Sec. 4.3.

This increases the number of variations of the original model and
provides a powerful editing tool. Figure 8 shows the range of edit-
ing possibilities for a single input model. After the growth param-
eters have been computed the user is able to modify chains of the
model and change growth rate and relative time. This allows us to
take the input and produce diverse models from it, as can be seen
on the right.

5.2 Approximating Seasonal Growth

Typically plants exhibit a rhythmic extension of their leafy axes
during seasons. It is caused by an alternation of meristem inactiv-
ity and active shoot extension [Barthélémy and Caraglio 2007]. We
emulate this growth pattern for animation purposes using a remap-
ping function f of the time parameter t (t ∈ [0, 1] with t = 1 for
the full model)

tnew = f(t) =
sin((t · n− s) · 2 · π)

(2 · π · n · c) + t (9)

with n being the number of years the growth simulation should ap-
proximate. The coefficient c defines the behavior during seasons
with decreased growth rate (c ∈ [1, 1.4], for c = 1 f ′(t) recurrently
becomes 0 after a one year period). A shift parameter s = 0.5 is
used to remap the angle interpolation parameter in order to account
for the fact that the highest additional mechanical stress is caused
by the biomass of leaves, while s = 0 is used for the growth remap-
ping.

The derivative of the remapping function is used as a factor to
change the leaf size of the model for deciduous trees. Figure 9
shows frames of a seasonal growth animation with typical leaf col-
oring.

5.3 Performance

We measured the performance of our system to demonstrate its ef-
ficiency. Table 2 shows the timing in milliseconds using an Intel
Dualcore @ 2.66GHz with Nvidia GTX 580 graphics board. Even
quite complex scenes can be animated at interactive rates using this
kind of system (see Fig. 12).

Table 2: Time required for modeling and rendering of tree models
(in ms). Model size in number of triangles.

Species #Branches #Leaves Model Render
Fagus Sylvatica 10,623 59,822 49.1 4.56
Ulmus Laevis 27,236 33,200 56.6 3.87
Aesculus Hippo. 43,466 47,148 76.4 4.05
Picea Abies 3,813 5,901 13.0 5,38
Quercus Petraea 9,585 58,796 41.6 3.84
Quercus Petraea
(complex) 14,554 89,913 64.7 4.13
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(a) (b) (c)

Figure 7: Growth animations: a) without additional geometry the tree remains empty during growth; b) without the removal of additional
geometry the crown ratio is not met; c) gradually removing additional geometry during growth creates a natural model in all steps.

Start Model
Parameter Space

Ti
m

e

Input Model
a) b)

Figure 8: a) Applying growth partially opens a growth space; b) two models produced from a single input tree.

Figure 9: Frames of a seasonal growth simulation with typical color change.
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Figure 10: Six models processed and animated with our system. The largest tree of each species (model on the right) served as input to our
method. All other models were synthesized. We used three different model types to test our method; Xfrog: a), b), c); L-System generated
model: d); Reconstructed LiDAR Scans: e), f).
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6 Limitations

We successfully used the proposed method to generate models of
intermediate age for a number of different species from various
sources. So far, our method is working with monopodial trees only;
however, adding other branching structures is not a general problem
and will be implemented in the future.

Another limitation is that during simulation we are bound to the
environment for which the tree was modeled. This is what defines
the crown ratio and specifies the environmental factors that are pre-
sumed to remain constant during growth. Changing this (e.g. re-
laxing the constraint to eventually meet the original model) might
result in artifacts such as repetition. This effect is not usually seen
since the original geometry and its copies are used with different
local parameters, such as time, and therefore look different.

Figure 11: Failure case: the Salix, a willow tree forms branches in
a particular way that cannot be reconstructed by our system.

Furthermore, there are species that do not develop their branches
continuously. Every year, willow trees create hanging twigs that
are not always converted into branches in the next year but fall off.
It is therefore not possible to produce a continuous animation for
this specific case. Figure 11 shows the result for a Weeping Willow.
While intermediate states still look natural they do not show the
typical bending of the small branches and twigs.

7 Conclusion

We presented a method for creating growth models from a static
input tree. The tree is analyzed and self-similarity is used to cre-
ate branches where others have been pruned during growth (growth
space). Growth parameters are determined and interpolated to cre-
ate convincing animations. Based on these parameters, the tree can
be edited as a whole or in parts. The method allows the production
of time lapse animations of tree development, providing plausible
interpolation of branching angles and growth rates at the same time.
Since our model is not a growth simulation, every step in the devel-
opment of a tree can be created separately. This limits the method to
a certain set of applications (e.g. games, movies) since it provides
only a plausible approximation of the growth process. However, the
method is efficient, and enables real time evaluation and rendering.

A promising extension of the proposed method would be the inclu-
sion of environmental factors such as obstacles, shading, or com-
petition with neighboring plants - all kinds of limits and influences
for the natural growth process. However, since the objective is to
finally match the original model, the freedom to change the plant
during development is limited, especially since some of the envi-
ronmental factors are implicitly encoded in the original model.
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MĚCH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of
plants interacting with their environment. In Proc. of SIG-
GRAPH ’96, ACM, New York, NY, USA, 397–410.

NEUBERT, B., FRANKEN, T., AND DEUSSEN, O. 2007. Ap-
proximate image-based tree-modeling using particle flows. ACM
Transactions on Graphics (Proc. of SIGGRAPH ’07) 26 (July),
88:1 – 88:10.

OKABE, M., OWADA, S., AND IGARASHI, T. 2006. Interactive
design of botanical trees using freehand sketches and example-
based editing. In ACM SIGGRAPH 2006 Courses, ACM, New
York, NY, USA, SIGGRAPH ’06.

PALUBICKI, W., HOREL, K., LONGAY, S., RUNIONS, A., LANE,
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