
Interactive Watercolor Animations

Thomas Luft Oliver Deussen

Department of Computer and Information Science
University of Konstanz, Germany
{luft, deussen}@inf.uni-konstanz.de

Abstract

We present algorithms that produce a natural water-
color appearance of 3D-scenes and render them in real-
time. Our approach imitates the most important natural ef-
fects of watercolor and incorporates two essential painting
techniques: the wet-in-wet and the wet-on-dry painting. We
apply our technique to different scenes, and show how to
segment and abstract the content.

Keywords: Non-Photorealistic Rendering, Watercolor,
Real-time Rendering

1 Introduction

Watercolor paintings are characterized by diverse pat-
terns and specific textures, which occur during the painting
and drying process. Thus, in the field of non-photorealistic
computer graphics, the production of watercolor paintings
is one of the most intricate and complex processes.

In contrast to already known simulation algorithms, our
goal is to create convincing watercolor renderings of 3D-
scenes in real-time. We introduce an efficient approach
that allows the imitation of the most essential drawing tech-
niques and natural effects, and that give the appearance of
natural watercolor paintings. Since the process of drawing
is always an abstraction of the motif, special consideration
must be given here to the overall scene complexity and its
simplification (see Fig. 1).

In order to create real-time graphics, we especially rely
on the potentials of hardware accelerated shaders.

1.1 Related Work

There are only a few works that explicitely treat the gen-
eration of watercolor paintings. A physically based ap-
proach is the work of Curtis et al. [1], which is directly re-
lated to the cellular automaton approach of Small [4]. Curtis

Figure 1: Watercolored landscape scene.

et al. offer a detailed description of the most important ef-
fects that occur during the watercolor painting and drying
process. A similar work is described by Van Laerhoven et
al. [5]. Their approach allows an interactive simulation of
watercolor painting that consists of a number of user given
brush strokes. The work of Lum and Ma [3] was inspired by
watercolor paintings. It describes a raytracing based render-
ing pipeline that creates procedural textures based on LIC
(line integral convolution), which produce a watercolor like
appearance. Their work allows the rendering of 3D-scenes,
however, it does not allow the real-time rendering. Lei and
Chang [2] propose a rendering pipeline that imitates several
important watercolor effects and allows a real-time render-
ing of small scenes. Their work is similar to our approach,
but uses different techniques.

2 Imitating Watercolor Paintings

Curtis et al. [1] describe several effects that are essential
for a watercolor appearance, such as the edge darkening,

http://www.fst.umac.mo/pg2005/
http://www.ub.uni-konstanz.de/kops/volltexte/2007/2754/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-27549


Figure 2: Watercolor imitation: a) shape extraction, b) flow pattern, c) edge darkening, and d) paper structure

the flow effect, and the pigment granulation. In this sec-
tion we describe our approach to imitate these effects by
using simple algorithms instead of an exact, but neverthe-
less complex simulation. Since our method is intended for
real-time graphics, we implemented the effects using vertex
and fragment shaders.

Simplification and Segmentation In order to simplify
and segment the scene, we separate it into different areas
with more or less uniform content. This segmentation is
based on an unique identifier that we assign to an object or a
group of objects. As a result, we achieve a more precise seg-
mentation in comparison to image segmentation techniques
that are based on color or texture. This advantage provides
a very high degree of frame-to-frame coherence during the
animation of our watercolored scenes.

The first step is to create an ID-imageS : N2 → R4

in the RGBA color space, which contains individual ID-
layersρ : N2 → R. Each layer is coded by one individual
color channel of the ID-image. If more layers are preferred,
several ID-images have to be created. This coding scheme
allows us to apply anti-aliasing without crosstalk artifacts
between the ID-layers. Thus, the quality of the ID-layers is
increased significantly, and a high noise ratio can be avoided
that would otherwise propagate throughout the next render-
ing steps and disturb the results.

For the simplification step we apply a Gaussian filter to
each ID-layer. The result of this simplification is an abstract
smooth shape, which is described by the intensity values of
the ID-layers. The intensity values are used directly to cre-
ate the different washes of watercolor (in the following re-
ferred to as color layers). Each wash has a specific color
and transparency depending on the ratio between water and
color pigments. Consequently, our watercolor model con-
sists of several color layersλ : N2 → R4 that are speci-
fied by a RGB color vectorcrgb and an overall transparency
ca. In the following, we outline the imitation of the water-
color effects due to additionally modulating the alpha chan-
nelλa(x, y) of each color layer.

Shape extraction The shape of the color layer arises from
the intensity values of the corresponding ID-layerρ(x, y).
To extract the intensity, we use the dot product of the ID-
imageS(x, y) = [r, g, b, a] and a maskm = [r, g, b, a] that
specifies the color channel of the desired ID-layer. Then a
step function is applied to produce a first, hard edged shape
of the color layer:

ρ(x, y) = S(x, y) ·m

λa(x, y) = ca · step(κρ, ρ(x, y))

Here the thresholdκρ defines the dilation of the color layer.
A high threshold results in a smaller area, while a small
threshold increases the color area (see Fig. 2(a)). The size
of the ID-layers are adjustable and do not have to be equal
to the screen size. By choosing a particular resolution for
the ID-image, we can control the level of abstraction. Con-
sequently, the smaller the ID-image, the higher is the degree
of the abstraction.

Wet-in-Wet and Wet-on-Dry Painting We distinguish
between the two most important watercolor painting tech-
niques: the wet-in-wet and the wet-on-dry painting. These
techniques mainly affect the border of the color layer. While
the wet-on-dry painting causes a hard edged border, the wet-
in-wet painting causes smooth, feathery patterns at the bor-
der that may overlap with the underlying color layers and
simultaneously interact with them.

To adjust the border behavior, we add another parameter
κδ and replace the step function with a smooth step function
(cubic Hermite interpolation):

λa(x, y) = ca ·∆step(κρ − κδ, κρ + κδ, ρ(x, y))

Here the parameterκδ specifies the smoothness of the bor-
der and reproduces the wetness of the underlying color
layer. A smallκδ simulates a harder border, and thus a
dry underground, while a largeκδ produces a smooth color
blending, and consequently imitates a wet-in-wet painting
(see Fig. 2(b)).



Edge Darkening During the drying process, the water-
color pigments are transported towards the border due to
water flow. This effect is easily imitated using our filtered
ID-layer. The applied Gaussian filter causes a smooth in-
tensity transition following the border of the color layers.
To achieve a darkened border, we additionally modulate
the alpha channelλa(x, y) by the smooth intensity values
ρ(x, y):

λa(x, y) = λa(x, y) · ρ(x, y) · κω

Here the user can specify the intensity of the edge darkening
by changing the attributeκω, which influences the final re-
sult drastically. This attribute represents a particular quality,
which is usually determined by the manufacturer of natural
watercolors (see Fig. 2(c)).

Paper Structure The underlying paper structure affects
the water flowing process significantly, and thereby also the
visual results. To emphasize this process, we additionally
modify the color layers alpha channel according to an in-
tensity textureT : N2 → R that represents the paper struc-
ture:

λa(x, y) = λa(x, y) · T (x, y) · κτ

Since the paper structure influences the pigment transporta-
tion fundamentally, it also changes the appearance of the
border of the color layers. Thus, we integrate the paper
structure into the intensity values of the ID-layers:

ρ(x, y) = S(x, y) ·m + T (x, y) · κθ

The intensity of the paper structure and its influence on
the border of the color layers is specified by the parameters
κτ andκθ.

Finally, the color layers are composed on the screen us-
ing the standard OpenGL blending function. In order to
emphasize structure and lighting, additional layers can be
integrated and processed similarly, e.g. the shadow in fig-
ure 1 and 3.

3 Conclusion

We present algorithms that produce a natural watercolor
appearance of 3D-scenes and render them in real-time. Our
approach imitates the most important natural effects of wa-
tercolor and incorporates two essential painting techniques.
We applied our technique to different scenes, and show how
to segment and abstract the content.

We tested our implementation on a 3.0 GHz Pentium IV
with an GeForce 6800 graphics board. A multi-pass render-
ing procedure was used to render one or more ID-images,
and the shadowing effect that is based on a shadow map. In
Table 1 an overview of the scene complexity and the per-
formance is given:#triang is the number of triangles of

Figure 3: Watercolored still life showing different ef-
fect settings, combined with silhouette strokes.

the original scene,#render passesis the number of required
render passes,#color layersgives the number of color lay-
ers, andfpsgives the average number of frames per second
during an animation. The scenes are rendered at720× 720
pixels, the ID-images at360× 360 pixels.

Future work aims at the lighting and shading of the
scenes. Currently, the color layers have a unique color and
thus they produce a flat impression. Here the incorporation
of a shading algorithm will be helpfull as well as the integra-
tion of additional color layers that emphasize highlighted or
dark areas.

Table 1: Scene complexity and performance.

Figure #triang #render passes #color layers fps

1 420614 3 7 26.5
2 62624 1 3 134.3
3 62560 4 8 44.7

References

[1] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer,
and D. H. Salesin. Computer-generated watercolor. InSIG-
GRAPH ’97: Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages 421–
430, 1997.

[2] E. Lei and C.-F. Chang. Real-time rendering of watercolor
effects for virtual environments. InPCM ’04: Proceedings
of the 5th Pacific Rim Conference on Multimedia, pages 474–
481, 2004.

[3] E. B. Lum and K.-L. Ma. Non-photorealistic rendering using
watercolor inspired textures and illumination. InPG ’01: Pro-
ceedings of the 9th Pacific Conference on Computer Graphics
and Applications, pages 322–330, oct 2001.

[4] D. Small. Simulating watercolor by modeling diffusion, pig-
ment, and paper fibers. InProceedings of SPIE 91, feb 1991.

[5] T. Van Laerhoven, J. Liesenborgs, and F. Van Reeth. Real-
time watercolor painting on a distributed paper model. In
Proceedings of Computer Graphics International 2004, pages
640–643, jun 2004.



Figure 4: Images from ”The four seasons” showing different effect settings.

Figure 5: A comparison with the original scenes.


	Text76: First publ. as: Paper / Pacific Conference on Computer Graphics and Applications (PG '05), Macao, China, 2005
	Text77: Konstanzer Online-Publikations-System (KOPS)URL: http://www.ub.uni-konstanz.de/kops/volltexte/2007/2754/URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-27549


