
Eurographics Symposium on Geometry Processing (2007)
Alexander Belyaev, Michael Garland (Editors)

GPU-assisted Positive Mean Value Coordinates
for Mesh Deformations

Yaron Lipman1 and Johannes Kopf2 and Daniel Cohen-Or1 and David Levin1

1Tel Aviv University
2University of Konstanz

Abstract
In this paper we introduce positive mean value coordinates (PMVC) for mesh deformation. Following the obser-
vations of Joshi et al. [JMD∗07] we show the advantage of having positive coordinates. The control points of the
deformation are the vertices of a "cage" enclosing the deformed mesh. To define positive mean value coordinates
for a given vertex, the visible portion of the cage is integrated over a sphere.
Unlike MVC [JSW05], PMVC are computed numerically. We show how the PMVC integral can be efficiently
computed with graphics hardware. While the properties of PMVC are similar to those of Harmonic coordinates
[JMD∗07], the setup time of the PMVC is only of a few seconds for typical meshes with 30K vertices. This speed-up
renders the new coordinates practical and easy to use.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

In recent years surface manipulation has received a consider-
able amount of attention. The prominent recent progress has
been in the development of surface-based techniques, where
the deformations are applied on the surface itself. Less at-
tention has been paid to free-form deformation (FFD) tech-
niques which deform the space in which the shape is em-
bedded. The work we present here is a space-deformation
technique which builds upon the mean-value coordinates
[Flo03, FKR05, JSW05, HF06]. Specifically, as we will de-
scribe in this paper, our work uses the key idea introduced
by Joshi et al. [JMD∗07], namely, positive coordinates, and
render it practical and easy to use.

When comparing surface-based methods to space defor-
mation methods there are few immediate conclusions. The
main advantage of surface-based methods is the high qual-
ity of detail preservation. These are typically achieved using
differential coordinates, which requires solving a large sys-
tem (linear or non-linear) which is computational expensive.
The dimension of such systems is proportional to the num-
ber of vertices in the surface representation. Moreover, these
methods rely on differential operators which are applied on
a mesh, and thus sensitive to the mesh quality and noise.

Space deformation techniques have less control on the
shape detail preservation, and it is not clear what surface
properties are maintained in such deformation. However,
they are much simpler and require considerably less compu-
tational cost than surface-based methods. Since they deform
the space around the mesh, rather than the mesh itself, they
are inherently insensitive to the mesh quality. Due to their
simplicity they are commonly used in commercial software
such as Maya and 3D studio.

The control points of early space deformation methods are
geometry-oblivious [SP86,Coq90], and thus the user control
over the deformation of the embedded mesh is limited. The
introduction of mean value coordinates (MVC) as a space
deformation method led to much more control over the em-
bedded mesh since the control points are geometry-aware.
The control points are defined as the vertices of a control
mesh, which can conveniently be called a "cage" [JMD∗07].
The cage encloses the mesh in a loose manner, flexible
enough so that many similar meshes can fit within the same
cage. Yet, the cage is tight enough to provide a good control
of the space in which the mesh is embedded.

The MVC posses several useful properties such as lin-
ear precision, interpolation and smoothness. However, as

c© The Eurographics Association 2007.



Lipman & Kopf & Levin & Cohen-Or / Positive Mean Value Coordinates

Undeformed MVC (13.5 sec) PMVC (18.5 sec) HC (333.61 sec, 643 voxels)

Figure 1: Comparison between MVC, PMVC, and HC. The weakness of negative cordinates is clearly evident, while HC takes
a long time to compute. The PMVC, in contrast, have no negative coordinates and are computed almost as quickly as the MVC.

shown by Joshi et al. [JMD∗07], the main flaw of MVC as
a tool for surface deformation is that they are not necessar-
ily positive on non-convex domains. This in turn leads to
counter-intuitive deformation when the control mesh is non-
convex. As illustrated in Figure 1, the negative coordinates
of a remote branch of the cage distort the geometry in a non-
intuitive unexpected way.

Joshi et al. [JMD∗07] suggest using harmonic functions
with Kronecker Delta-type boundary conditions to furnish
the desired positive coordinates. hereafter we will refer to
these coordinates with HC. Their solution is mathematically
elegant and guarantee positiveness, however, rather expen-
sive in practice; the coordinates requires solving the Laplace
equation on the whole interior of a three dimensional domain
(the interior of the cage). The solution of the Laplace equa-
tion is a non-local expensive process. The solution is practi-
cally calculated on a grid inside the control mesh, where the
grid resolution is determined by an error criterion. In that
case one has to balance accuracy with storage and computa-
tion; increasing the grid resolution by one level octuplicates
(8X) the storage and leads to significantly slower computa-
tion.

In this work we introduce positive mean value coordinates
(PMVC). Unlike the MVC, the modified coordinates are un-
conditionally positive, and require only a local computation.
We demonstrate the advantage of positive coordinates in var-
ious examples of surface deformation (e.g., Figure 1). The
PMVC are too involved to be computed analytically from
their closed form formula, instead, we introduce a GPU-
assisted technique to calculate numerically the coordinates
of a given input mesh. As we will show, the computation of
new coordinates, either as a result of a new cage or a new
mesh, requires few seconds only.

2. Positive Mean Value Coordinates

Given a shape to be deformed, denote by C a coarse control
mesh enclosing it. We will refer to C as a "cage" similar to
Joshi et al. [JMD∗07]. We denote by V = {vi}i∈IV the ver-
tices of the cage C, where IV is the corresponding index set.
Similarly to the cited previous works, the goal is to define a
set of functions λi(x), i ∈V such that the operator

P f (x) := ∑
i∈V

λi(x) f (vi), (1)

c© The Eurographics Association 2007.



Lipman & Kopf & Levin & Cohen-Or / Positive Mean Value Coordinates

and the functions λi(x) satisfy the following properties:

1. Affine invariance: ∑i λi(x) = 1.
2. Linear reproduction: P f (x) = f (x) for all linear func-

tions f (x).
3. Interpolation: limx→c P f (x) = f (c) where c ∈ ∂C (the

boundary of C).
4. Smoothness: λi(x) are smooth.
5. Positivity: λi(x)≥ 0 for all i.

where all these properties should hold for all x ∈ C (in-
side the cage). The first four properties were formulated
in [JSW05], and the last property is introduced in [JMD∗07].

The PMVC is defined as follows:

P f (x) =

∫
s∈Sx

f (π(s))w(x,s)dσ∫
s∈Sx

w(x,s)dσ
, (2)

where Sx is a unit sphere centered at x, and π(s) is the first
intersection of the line `(t) := x +(s− x)t and C, for t ≥ 0,
and w(x,s) = 1/‖x−π(s)‖.

Note the interesting relation between MVC and PMVC;
in PMVC the sphere is projected on the cage, while in the
former the cage is projected onto the sphere.

Given f (vi), i ∈ IV , let ψi(x) be a piecewise-linear func-
tion such that ψi(vi′) = δi,i′ , where δi,i′ = 1 iff i = i′, and
0 else. Define the piecewise linear function ∑i∈V fiψi(x) on
the boundary of C, and then the approximant is:

P f (x) = ∑
i∈V

fi

∫
s∈Sx

ψi(π(s))w(x,s)dσ∫
s∈Sx

w(x,s)dσ
.

Then, we define

λi(x) :=

∫
s∈Sx

ψi(π(s))w(x,s)dσ∫
s∈Sx

w(x,s)dσ
, (3)

and the interpolant can then be written in the form (1).

The λi(x) are called coordinate functions for the PMVC
interpolant. The coordinates are used for defining a transfor-
mation T from the interior of the cage C into Rd (d = 2,3):

T : interior(C)→ Rd .

The transformation T is defined as follows: A point p ∈
interior(C) can be written as the following affine combina-
tion due to the linear reproduction property

p = ∑
i∈IV

λi(p)vi.

Then, given a deformed cage C̃ with vertices Ṽ = {ṽi}i∈iV
the transformed position of p is defined as

T (p) := ∑
i∈IV

λi(p)ṽi.

Therefore, the properties of the transformation T are de-
rived from the properties of the coordinate functions λi(x).
Let us prove some of the properties listed above.

MVC PMVC

Figure 2: A coordinate function λi(x) is drawn for a non-
convex polygon. The i-th vertex is marked with green point.
The red color stands for positive values and the blue are
negative values.

The interpolation and linear reproduction properties can
be understood by the argumentation of [JSW05], but for the
sake of completeness we will lay it here also. First, the inter-
polation is due to the fact that w(x,y)∫

s∈Sx w(x,s)dσ
is converging to

the Delta function on the sphere as x → c for c ∈ ∂C. As for
the linear reproduction property it results from the symmetry
argument: ∫

s∈Sx

x−π(s)
‖x−π(s)‖

dσ = 0.

And therefore,

x =

∫
s∈Sx

π(s)w(x,s)dσ∫
s∈Sx

w(x,s)dσ
.

That is, the coordinate functions are reproduced, and from
the linearity of the operator (1) and the affine invariance the
property results. As to the non-negativity property of the co-
ordinate functions, this readily results from the fact that the
coordinates λi(x) are defined via an integration of a non-
negative function over a sphere in Eq. (3). For example, see
Figure 2 for comparison with MVC.

Smoothness One of the strong properties of the MVC is that
they are smooth. The PMVC definition involves visibility
consideration which incurs singularities across supporting
planes of reflex vertices. The supporting planes partition the
cage into regions within which the PMVC are smooth, while
across the supporting planes smoothness is not guaranteed.
An example of such scenario is shown in Figure 4, where
the coordinate function associated with the ‘spike’ vertex is
not smooth. However, as depicted in that figure, minor re-
finement of the cage alleviates this problem. In practice, we
found that in most cases the result is plausible and smooth.
This can be observed in Figure 3, where a shape of a checker-
board pattern that crosses a supporting line is smoothly bent.
The example shows the effect of editing a single vertex and
consequently of a single coordinate λi(x).

c© The Eurographics Association 2007.



Lipman & Kopf & Levin & Cohen-Or / Positive Mean Value Coordinates

Original MVC PMVC HC

Figure 3: Smoothness test across supporting visibility line. The influence of the coordinate function associated with the right-
most vertex is practically smooth across the supporting line; this is depicted by the deformation of a checkerboard shape (which
cross the supporting line) when moving this vertex only.

MVC HC PMVC PMVC subdivided

Figure 4: In the vicinity of very large reflex angles the PMVC might be non smooth. This problem is alleviated by subdividing
the acute angles to obtain a cage with a smaller maximum angle. In the rightmost image the sum of all three relevant coordinate
functions are colored. Note that subdividing the cage has almost negligible impact on the PMVC performance (see Table 2).

3. Calculating the coordinates

In this section we explain our method to compute the PMVC
coordinates λi for a vertex v. The coordinates could theore-
tically be computed analytically with the MVC framework.
However, this would require to re-mesh the cage for every
object vertex, so that only the visible parts are included; tri-
angles need to be cut along the visibility lines. This opera-
tion is very expensive, and renders this approach too slow to
be useful in practice. Our approximate method, in contrast,
computes the coordinates much faster using the GPU.

Equation 3 computes a coordinate λi by integrating the
visible parts of the associated ψi function over a sphere.
We compute this efficiently by rendering the ψ functions
into cube maps, and then integrating (summing) the ren-
dered values. The advantage of this method is that graph-
ics hardware is designed to perform visibility computations
very efficiently, and that all coordinates for a given vertex
can be computed simultaneously. We start, however, by first
explaining how to compute a single coordinate λi using our
method. Later, we show how it can be accelerated by com-
puting all coordinates simultaneously.

We set the colors ci′ of the cage vertices, such that ci′ =
δi,i′ (i.e. ci′ = ψi(vi′). In other words, vertex i is set to one,
and all other vertices to zero, as shown in Figure 5(a–c).
When rendering the cage, the built-in barycentric interpola-
tion of the GPU computes automatically the correct values of
ψi at each pixel. We start with rendering the cage as viewed
from vertex v into a cube map. Then, we read back the colors
and depth, and integrate the rendered values on the CPU. We
give each cube map pixel a specific weight to account for the
fact that we integrate over a cube rather than a sphere. The
weight is the area of the cube map pixel projected on the unit
sphere. This can be effectively computed as the sum of areas
of the two spherical triangles that can be formed from the
projected pixel vertices.

The GPU stores internally a transformed version of the
true depth to achieve better accuracy for near objects. The
exact depth can be computed as d = za/(z− zb), where z is
the transformed depth from the GPU, za = d f ar

d f ar−dnear
, zb =

dneard f ar
dnear−d f ar

, and dnear and d f ar are the distances of the near
and far clipping planes, respectively. To maximize depth ac-
curacy, the near and far planes are set tightly around the in-

c© The Eurographics Association 2007.



Lipman & Kopf & Levin & Cohen-Or / Positive Mean Value Coordinates

(a) (b) (c) (d)

Figure 5: (a-c) ψ functions for three vertices of a cage mesh, (d) all ψ functions packed into a single rendering.

Color Buffer Index Buffer Depth Buffer

Figure 6: Render buffers read back by the algorithm. The color and index buffers are interleaved in a single buffer.

terval of possible depths. The near plane is set slightly closer
as the closest point-to-triangle distance of the object vertices,
and the far plane is set slightly further away than the maxi-
mum distance between cage vertices.

The system so far explained requires rendering and inte-
grating a cube map for each vertex and for each coordinate.
We accelerate the computation using the following observa-
tion: each point on the surface of a triangular cage has at
most three ψ functions that take on a non-zero value. In-
side each cage triangle, these are the ψi corresponding to
the triangle vertices. We leverage this fact by using a dif-
ferent color scheme for the cage that encodes all non-zero
ψ functions inside each triangle. Then, we can compute all
coordinates in a single sweep over the rendered data.

Each cage triangle is colored in the same way, with one
vertex red, one green, one blue, i.e., the vertices have the col-
ors (1,0,0), (0,1,0), and (0,0,1), respectively. This causes
each vertex to influence exactly one of the RGB color chan-
nels (see Figure 5). The remaining 4th color channel is con-
stant over each triangle, and takes the triangle index number
(see Figure 6). During integration, when examining a pixel,
we use the triangle index in the 4th color channel to look-up
which cage vertices correspond to the RGB color channels.
The respective λ values are then updated with the contribu-

tions of the color channels. Figure 6 shows the full cube map
for a vertex in the Armadillo model. Reading back the render
buffers after each draw operation would cause a significant
overhead, because of CPU stalling when waiting for draw
operations to finish. Therefore, we use a larger render buffer
(e.g. 20482 pixels) that can hold many cube map faces. We
render as many faces as possible into this buffer, and only
once it is full we read it back for integration. Our computa-
tion scheme is detailed in pseudo-code in Algorithm 1.

4. Results and discussion

We have experimented with PMVC for mesh deformation,
with various models and cages, and compared it with MVC
and HC. The advantage of positive coordinates is manifested
for example in shapes with close distance between branches
of the cage, such as in the hand model in Figure 1 Figure
7 shows an example of well separated limbs cage. In that
case, the negative coordinates have only little effect and the
MVC and PMVC perform similarly. PMVC and HC gener-
ally yield similar visual results, except in cases where PMVC
is not smooth (see Section 2), or HC has some numerical
artifacts caused by an overly coarse grid, see for example
Figure 1 and 4.

c© The Eurographics Association 2007.



Lipman & Kopf & Levin & Cohen-Or / Positive Mean Value Coordinates

Undeformed MVC (3.70 sec) PMVC (3.03 sec) HC (66.48 sec)

Undeformed MVC (5.92 sec) PMVC (8.75 sec) HC (28.61 sec)

Figure 7: Comparison between MVC, PMVC, and HC deformations of the Armadillo and Horse models. Note that on models
like these, where the cage has well seperated limbs, the deformation quality is similar.

The running times of PMVC are generally in the same or-
der of magnitude as MVC, and about 10–100 times faster
than HC, depending on mesh and cage complexity. The per-
formance is roughly linear in the number of cube map pix-
els. We found that for most meshes 322 cube maps have fine
enough resolution so that no quantization artifacts are no-
ticeable. The hand model (Figure 1) was created with 642

cube maps. Table 1 provides detailed timings for various ex-
amples shown in this paper. The performance of PMVC is
only loosely connected to cage complexity. Table 2 shows
timings for a single object with increasingly more complex
cages.

As to memory usage, it should be noted that PMVC, sim-
ilar to MVC, computes the coordinates of each embedded
shape point directly on-the-fly during setup.

5. Conclusions

We presented mean value coordinates that consider only the
visible portion of the cage to guarantee, like harmonic coor-
dinates, that the coordinate values are always positive. The
key point is that the positive mean value coordinates can be
computed fast by exploiting the readily available visibility
computation of the GPU. Furthermore, as we showed, the
GPU speed turns the computation practically insensitive to

the cage resolution. This allows us to refine the cage and
improve the quality of the interpolation without significant
cost. Our method successfully brings the idea of positive co-
ordinates to the point where it is truly a practical and useful
tool for mesh deformation. We believe that more research
can lead to even faster methods to compute local coordinates
with assistance of the GPU.

Acknowledgements

We thank Scott Schaeffer for providing us with the cages and
models of the Armadillo and horse, and Hongbo Fu and Kun
Zhou for the hand model. We also thank Tao Ju for helpful
and insightful comments. This work was supported in part
by the Israel Science Foundation.

References
[Coq90] COQUILLART S.: Extended free-form deformation: a

sculpturing tool for 3d geometric modeling. Proceedings of SIG-
GRAPH ’90 (1990), 187–196.

[FKR05] FLOATER M. S., KOS G., REIMERS M.: Mean value
coordinates in 3d. Computer Aided Geometric Design 22, 7
(2005), 623–631.

[Flo03] FLOATER M. S.: Mean value coordinates. Computer
Aided Geometric Design 20, 1 (2003), 19–27.

c© The Eurographics Association 2007.



Lipman & Kopf & Levin & Cohen-Or / Positive Mean Value Coordinates

// Initialization
set all λv,i = 0
set all wsumv = 0

// Rendering and integration
foreach vertex v do

foreach cube map face f do
render f to render buffers
if render buffer full or last vertex-face pair then

// Integration
foreach render buffer pixel (x,y) do

tri = getValue(x,y,3)
w = getWeight(x,y)
for c = 0 to 2 do

i = vertexList [tri∗3+ c]
λv,i+ = getValue(x,y,c) ·w

end
wsumv+ = w

end
clear render buffers

end
end

end

// Normalization
foreach vertex v do

foreach cube map face f do
λv,i/ = wsumv

end
end

Algorithm 1: Our algorithm to compute the PMVC co-
ordinates.

[HF06] HORMANN K., FLOATER M. S.: Mean value coordinates
for arbitrary planar polygons. ACM Transactions on Graphics 25,
4 (2006), 1424–1441.

[JMD∗07] JOSHI P., MEYER M., DEROSE T., GREEN B.,
SANOCKI T.: Harmonic coordinates for character articulation.
Transactions on Graphics 26, 3 (Proc. SIGGRAPH) (2007).

[JSW05] JU T., SCHAEFER S., WARREN J.: Mean value co-
ordinates for closed triangular meshes. vol. 24, 3 (Proc. SIG-
GRAPH), pp. 561–566.

[SP86] SEDERBERG T. W., PARRY S. R.: Free-form deforma-
tion of solid geometric models. Proceedings of SIGGRAPH ’86
(1986), 151–160.

Armadillo Horse Hand
Mesh Vertices 15,002 48,485 24,795
Cage Vertices 110 51 252
MVC 3.70s 5.92s 13.50s
PMVC 322 3.03s 8.75s 6.64s
PMVC 642 9.82s 30.64s 18.50s
HC 643 66.48s 28.61s 333.61s
HC 1283 770.00s 305.93s 4413.66s

Table 1: Performance comparison.

Cage Vertices Cage Triangles PMVC timing
51 98 16.07s
102 200 16.32s
198 392 16.73s
402 800 17.44s
843 1682 18.70s

1523 3042 20.41s

Table 2: The performance of PMVC is only loosely con-
nected to the cage complexity. The table shows timings for
the hand model (24,795 vertices) and spherical cage. The
cage was subdivided into increasing numbers of triangles.

c© The Eurographics Association 2007.


