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Figure 1: Input image†(a), paint color palette on black and white surface, extracted from the image and mixed from a set of base pigments
by our method (b), painting generated by our software renderer using the paint color palette (c), painting generated by our painting machine
and the given paint color palette (d).

Abstract
We present a painterly rendering method for digital painting systems as well as visual feedback based painting machines that
automatically extracts color palettes from images and computes mixture recipes for these from a set of real base paint colors
based on the Kubelka-Munk theory. In addition, we present a new algorithm for distributing stroke candidates, which creates
paintings with sharp details and contrasts. Our system is able to predict dry compositing of thinned or thick paint colors using
an evaluation scheme based on example data collected from a calibration step and optical blending. We show results generated
using a software stroke-based renderer and a painting machine.

CCS Concepts
• Computing methodologies → Non-photorealistic rendering; Image manipulation; • Applied computing → Performing
arts;

1. Introduction

A variety of painterly rendering methods exist that use the full spec-
trum of the RGB color space as color palettes to render an im-
age [ZZXZ09,SLKD16,Her98,ZZ10]. Many of such digital meth-
ods neglect complex color interaction and limit color composition
to the additive RGB color space, which is not applicable to paint-
ing machines that use real paints, whose compositing is much more
complex. Other methods which use a more appropriate color com-
positing do exist and are either based on the Kubelka-Munk the-
ory [BWL04, CAS∗97] or particle systems [CKIW15]. However,

Photo from https://commons.wikimedia.org/wiki/File:
Sea_shore.jpg, accessed April 4th, 2018.

none of these methods have been applied to painting machines.
Lindemeier et al. [LMPD15] proposed a painting machine that is
able to use paint colors, but only used a simple prediction model to
evaluate the effect of brush strokes based on RGB alpha composit-
ing. This works well as long as paint colors mix linearly, which
is only true for a small subset of paint colors. To handle arbitrary
paint color palettes, it is necessary to integrate a more advanced
paint color compositing model.

We present a system that generates paintings from input images
and is applicable to digital painting systems as well as visual feed-
back based painting machines. The method either extracts a color
palette from input images or suggests mixture recipes for manually
defined colors, which can be used to mix the image palette from
predefined base paints. We use the Kubelka-Munk theory of dif-
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fuse reflection [KM31,Kub48] to predict the effect of brush strokes
of a certain color, which is useful to compute the quality of brush
stroke candidates. The system is updated by intermediate calibra-
tion during the painting process to adapt its compositing prediction
model using data from the visual feedback.

We additionally present a new stroke distribution technique that
reduces overpainting and maintains sharp object borders using an
adaptive super pixel segmentation based on the SLICO algorithm
by Achanta et al. [ASS∗12]. This technique is also able to handle
the evaluation of brush strokes created with thinned and opaque
paint by using optical blending based on extracted regions.

Our contributions can be summarized as follows:

• A new brush stroke distribution method that uses an extended
super pixel segmentation.
• A new brush stroke evaluation method for limited color palettes

and painting machines that handles compositing of thin and thick
layers of paint, based on an adaptive paint compositing predic-
tion model and the Kubelka-Munk theory.

2. Related Work

Stroke-based Rendering: Stroke-based rendering was firstly in-
troduced by Haeberli [Hae90] in 1990. His system makes it pos-
sible to create artistic pictures using the mouse to guide a virtual
brush. A general scheme for stroke-based rendering was later pub-
lished by Hertzmann [Her98]. His method starts out with large
brushes for initial coarse painterly rendering of an image and add
details by decreasing brush stroke size in subsequent steps. More
recent painterly rendering methods [ZZXZ09, ZZ10, ZZ11] seg-
ment input images into foreground and background, as well as dif-
ferent object classes using a semi automatic approach. A brush
texture dictionary was collected from artists and was used to se-
lect textures for the rendering process according to object classes.
An overview of painterly rendering and stroke-based approaches is
given in [Her03, HGT13, KCWI13].

Paint Simulation: Curtis et al. [CAS∗97] developed a digital
painting system simulating the effect of watercolor. They used the
Kubelka-Munk theory of diffuse reflectance to simulate the compo-
sition of pigments. Baxter et al. [BWL04] proposed a digital paint-
ing system that offers users to manipulate a digital canvas with vir-
tual brushes and oil-based paint colors. They estimated scattering
and absorption of base color pigments using a spectrometer and
solving a least squares problem. The interaction of the paint colors
is computed in real-time making use of graphics hardware. Chen
et al. [CKIW15] propose a particle system that was fully imple-
mented with CUDA, which models wet-wet mixture of paint quite
realistically in real-time. Recently, some researchers proposed ap-
proaches that decompose images in pigment and thickness chan-
nels [TDLG17, AMSL17], for later recoloring and further image
editing. An image color palette is extracted from an input image
and each color present in the image is decomposed into a weighted
combination of base pigments. Gatys et. al. [GEB15, GEB16] de-
veloped a machine learning approach that uses pretained convolu-
tional nerual networks to transfer the artistic style of one image
to a photography, while preserving the original content. All of the
above mentioned methods are only used in digital painting systems

that still require a user to create the artistic images, and none of
them applies the color interaction to real systems, such as painting
machines.

Painting Machines: Jean Tinguely (1925-1991, see [Wik17d])
was one of the first artists to build painting machines to create com-
plex but mostly random patterns. He followed a tradition from the
19th century, when people were fascinated by mechanical appa-
ratuses. Harold Cohen [Coh17] built a plotter with the ability to
paint abstract paintings. His project, known as “AARON” is re-
garded as the most important painting machine in contemporary
art. Other early artists such as Frieder Nake [Wik17b] used the up-
coming pen plotters in the 1960s to create artistic graphics. Wan-
ner [Wan11] built a plotter based on LEGO Mindstorms and ex-
plored the question if such a setup is capable of producing aesthetic
results that go beyond the control of the programmer. Today, a num-
ber of artists use painting machines, Ben Grosser [Wik17a] and
Holger Baer [Bär17], Ken Goldberg, [Wik17c] for creating abstract
paintings. Specialized plotters such as Vangobot [KM12] are able
to create colorful paintings today, but none of them uses a feedback
mechanism. Vangobot uses a sophisticated color mixing machine
and applies paint directly on a canvas like an inkjet printer. Tresset
and Fol Leymarie [TL12,TFL13] created a robotic installation that
is able to create portrait sketches of people. Tresset built several
versions of Paul, which are shown at many exhibitions. Visitors
are drawn by up to five robots in parallel from different perspec-
tives. While this system creates sketches that have an own artistic
style, it is however limited to sketches and the focus of the project
lies more on the performance and exhibition. Since 2016, van Ar-
man has been developing multiple systems under the name cloud-
painter [vA16], which use machine learning algorithms to generate
paintings after input photos. Cameras are used to analyze the cur-
rent state of a painting. The first visual feedback based painting sys-
tem, e-David [DLPT12, LPD13, LMPD15, LSD16], consists of an
industrial robotic arm and creates paintings and drawings of input
images using visual optimization. It can adapt to varying painting
styles, tools, surfaces and paints. A variety of painterly rendering
algorithms have been adapted to work with the feedback loop ap-
proach, in which the robot periodically takes a photograph of its
progress and determines which actions to take based on that feed-
back.

3. Overview

Our system consists of multiple parts. First, our system extracts
RGB color palettes from images based on an altered version of the
approach proposed by Aharoni-Mack et al. [AMSL17]. Our mix-
ing algorithm then computed mixture recipes for target colors in
the RGB palette. It outputs mixture weights that can be used to
manually mix a paint color from base pigments that are measured
in a previous step. This is done for all colors in the RGB palette,
resulting in a paint color palette that is passed to the painting algo-
rithm.

This painting algorithm, which is applicable to software or hard-
ware painting systems, uses the paint color palette to painterly ren-
der a given input image based on visual feedback optimization. The
underlying stroke placement method identifies brush stroke candi-
dates using an adaptive super pixel segmentation. An evaluation
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scheme based on optical blending and the segmentation is used to
compute the quality of the identified brush stroke candidates. This
is done by using data retrieved from a calibration process, that es-
timates the effect of brushes and paint colors of each color in the
palette.

To generate paintings for our results we use two different setups.
We use the system proposed by Lindemeier et al. [LMPD15]. Their
system consists of an industrial robot wielding brushes, has up to
24 pots for paint colors, 5 brush slots and is connected to a camera
that takes images of the canvas that are color corrected. This sys-
tem offers a general framework for visual feedback based painting
algorithms and we are able to directly apply our method. Since the
visual feedback system uses polarization filters to reduce specular
highlights, which is needed for our paint color compositing model
based on the Kubelka-Munk theory.

As software renderer we use an approach that is inspired by the
work of Zeng et al. [ZZXZ09], where previously collected brush
textures are tinted with a target color and mapped to the canvas
along a spline curve, interacting with the canvas through alpha
compositing. We extend this approach to Kubelka-Munk composit-
ing, where brush color and canvas color are blended using Equation
1. We acquired brush stroke textures by using a simplified approach
of the method of Lu et al. [LBDF13]. We let the painting machine
paint randomly generated strokes with black paint and different
brushes on a white canvas. We then took pictures of the strokes
and cut out and parameterize the brush strokes manually. For each
of the strokes, the brush type used, the resulting maximum width,
and the original stroke path are stored. Stroke spine and texture co-
ordinates are calculated according to Lu et al. [LBDF13]. We then
built a library similar to Zeng et al. [ZZXZ09] that offers a nearest
neighbor search to select brush stroke textures according to a given
brush size and shape of the stroke path.

4. Estimating Base Paint Colors

In order to produce high quality renderings of images based on real
paint, it is necessary the create a system that is able to extract and
compute mixtures of paint and predict the interaction of paint when
composed. Since this is highly nonlinear and difficult to achieve, we
need to identify algorithms and methods that address the interaction
of paint. First, we need to identify base paint colors that the system
can use as a foundation to compute new mixtures, since this is also
what artists usually do. Before artists create palettes, they define
a set of base pigments [CAS∗97, AMSL17, TDLG17], which are
later used to mix new colors. We therefore need to measure paint
pigments and we use a model that is widely used to represent paint
compositing.

The Kubelka-Munk diffuse reflection theory [Kub48, KM31] is
commonly used to predict the diffuse reflectance of paint on a back-
ground substrate. Since our camera system minimizes the amount
of specular reflectance we can use this theory to predict the result of
a paint layer applied to a given surface. The interaction is usually
computed for multiple wavelengths, but since we are limited to a
RGB-camera, we only consider red, green and blue reflectance. The
reflectance of a single layer of paint composed on a background can

be expressed by:

RKM(K,S,d,R0) =
1−R0(a−bcoth(bSd))

a−R0 +bcoth(bSd)
, (1)

where a = 1+ K
S and b =

√
a2−1

with R0 as the reflectance of the background substrate and K and
S as absorption and scattering of the paint mixture. The mixture of
paint can be modeled as a linear combination of their scattering and
absorption coefficients [Dun40]:

Kmix =
n

∑
i=1

ciKi, Smix =
n

∑
i=1

ciSi. (2)

Estimating paint colors is usually done by applying layers of known
and constant thickness of paint on a perfect black and white back-
ground. The scattering and absorption is then computed using the
measured reflectance values of each sample composed on the black
and white surface and an inversion of the Kubelka-Munk equa-
tions [L1̈3, CAS∗97]. A problem with this approach is that it as-
sumes uniform thickness across the measured surface to simplify
the equations. Due to the nature of brushes used in our painting
setup, it is not possible to apply paint of uniform thickness every-
where. An additional problem is that we cannot create perfect black
or white surfaces, which are crucial for correctly measuring absorp-
tion and scattering coefficients. Another approach is to apply thick
layers of each paint and mixtures of them, where the mixing ratio
is known, that completely block the reflectance of the underlying
substrate and then measure the resulting reflectance using a spec-
trometer [Cen13, BWL04]. However, this method is difficult to use
with our setup and hardware. Many samples of various mixtures
are needed and their mixing ratio needs to be measured exactly in
order to robustly solve the least squares problem.

We therefore use a different approach to measure the coeffi-
cients. We cover a surface using all the paints from the base pig-
ment set to create a spectrum of color spanning most of the spec-
trum of visible colors. A photo is taken using the color calibrated
feedback camera and used as the background reflectance R0 (see
Figure 2 (a)). We then apply brush strokes with constant pressure
profiles using each paint from the base pigment set and take another
photo as resulting reflectance R1 (see Figure 2 (b)). These pairs of
before and after reflectances can then be used to build and solve a
nonlinear least squares problem. We define a set of basis pigments
B = {B1, ...,B14} and each pigment Bi consist of its absorption Ki
and scattering Si. In order to measure each Ki and Si when apply-
ing paint, we can use Equation 1. The goal is to find those values
of K,S and d that minimize the color difference of the samples in
R1 and composed reflectance computed using Equation 1. For each
pigment in the base palette, we solve the following optimization
problem:

arg min
Ki,Si,di

∑
p

∥∥RKM(Ki,Si,di,p,R0,p)−R1,p
∥∥2

subject to 0 < Ki ≤ tupper,

0 < Si ≤ tupper,

di > 0

(3)

with tupper = 5 as upper boundary constraint, to avoid large val-
ues for S and K and p as the index of a currently visited pixel. We
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use the ceres library [AMO] to solve this and all other optimiza-
tion problems discussed in the paper. A result of this optimization
can be seen in Figure 2. The solver takes about 10 seconds to find
a solution for the problem on a desktop PC (Core i7 with 32GB
RAM). A photo of the canvas before the optimization yielding the
background reflectance R0 is shown in (a). The base pigments ap-
plied on the background resulting in the reflectance values R1 in (b).
The reflectance values computed using Ki,Si and di as estimated by
the solver and Equation 1 can be seen in (c) and the base pigment
palette is visualized in (d).

(a) (b) (c)

(d)

Figure 2: Example of base pigment estimation. The background
reflectance R0 (a), the 14 paints composed on the background re-
sulting in target reflectance R1 (b), composition of the measured
paint on the background (a) using the values of K and S estimated
by the paint coefficient solver and d, the thickness values as esti-
mated by the paint thickness solver (c). The root mean square error
(in CIELab color space) of all samples in (b) and estimated sam-
ples in (c) is about 2.20. The estimated color palette is visualized
in (d) composed on white and black background using d = 1.0 as
layer thickness and Equation 1.

Table 1 shows the estimated values for each pigment. The left
column lists the paints used, second and third row list the esti-
mates of absorption K and scattering S for the red, green and blue
channels. The average root mean square error, computed in CIELab
color space, of all samples is 2.20, which falls under the Just No-
ticeable Difference ∆

∗
ab = 2.3 [MT11] and is good enough for our

needs.

4.1. Extracting and Mixing Palettes

In order to extract dominant colors from images, we use the ap-
proach by Aharoni-Mack et al. [AMSL17]. They firstly project the
colors from the input image onto the ab-Plane in the CIELab color
space. Then, they iteratively remove colors from the convex hull of
the colors using the Douglas-Peucker algorithm [DP11]. Colors are
removed as long as the desired number of colors is not reached. In

Paint color Kr Kg Kb Sr Sg Sb RMS
Primary Magenta 0.30 2.65 1.16 0.47 0.11 0.34 2.48
Carmine Red 0.14 3.31 2.72 0.25 0.06 0.04 2.49
Cad. Red 0.18 2.50 2.69 0.94 0.04 0.03 1.50
Raw Umber 0.96 1.14 1.32 0.07 0.05 0.02 2.19
Cad. Orange 0.00 1.83 4.68 0.75 0.27 0.00 2.17
Cad. Yellow 0.00 0.14 5.00 0.49 0.59 0.00 2.22
Primary Yellow 0.00 0.11 3.07 1.10 0.77 0.00 2.29
Leaf Green 1.22 0.78 1.40 0.01 0.07 0.02 2.15
Phthalo Green 1.93 0.75 0.77 0.00 0.02 0.02 3.12
Cobalt Blue 1.92 1.29 0.37 0.00 0.06 0.18 1.90
Ultramarine Blue 2.05 1.44 0.19 0.00 0.02 0.01 2.02
Lilac 1.61 1.47 0.29 0.06 0.17 0.43 1.57
Lamp Black 1.37 1.39 1.43 0.01 0.01 0.01 2.47
Titanium White 0.04 0.04 0.04 0.95 0.94 0.99 2.22

Table 1: Estimated values of K, S for each measured paint. The
last column shows the root mean square error of estimated values
composed on R0 and the original rgb data in R1 in CIELab color
space. (“Cad” abbreviates Cadmium)

contrast to their original method we add the darkest and brightest
color to the palette before extracting k−2 colors.

After having extracted dominant colors, we need to identify the
paints from our base pigments that can be mixed to create the
color. The mixture of paint is modeled as a linear combination
of their scattering and absorption coefficients using Equation 2.
If the set of weights is known, a paint can be mixed by combin-
ing the base pigments weighted by their respective concentration.
The more common case is that a reflectance and transparency of
a color is given and the corresponding weights for the mixture
from the base pigments have to be found. In order to find mixing
weights for a given target paint, a nonlinear optimization problem
has to be solved. Recently, two similar methods were introduced
that find mixture weights for pigments to create a target RGB color
[AMSL17,TDLG17]. The corresponding mixture weights for each
of those paint colors is found by solving an optimization problem
that estimates the weights by composing on a white background
and comparing the result to the target. We extend these approaches
by introducing additional constraints that makes it suitable for our
needs.

Again, the goal is to find the weights that mix a target paint
from the base pigments and a thickness parameter d. These can
be estimated by minimizing the distance of target reflectance R1
and the effect of the current estimate using Equation 1 with Kw,
Sw, resulting from the mixture of w and composition on R0 us-
ing d. This optimization problem can then be defined similar to
[AMSL17, TDLG17] as:

arg min
w,d

‖(RKM(Kw,Sw,d,R0)−R1‖

subject to
n

∑
i=1

wi = 1,

0≤ w≤ 1,

d > 0

(4)
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The nonlinear equality constraint
n
∑

i=1
wi = 1 can be introduced to

Equation 4 as a term Esum penalizing solutions that create sums of
weight far from 1:

Esum = ‖w‖L1−1 (5)

An additional term penalizes dense solution vectors of w. This
helps reducing the numbers of paints involved in a mixture:

Esp = 1−

√
n− ‖w‖L1
‖w‖L2√

n−1
, (6)

Putting Equation 5 and 6 in 4 results in:

arg min
w,d

‖(RKM(Kw,Sw,d,R0)−R1‖+asumEsum +aspEsp

subject to 0≤ w≤ 1,

d > 0
(7)

with asum = 0.5 and asp = 0.1. We usually set R0 = 1, which can
be seen as white background. Having estimated the mixture recipe,
we mix the paint palette using the base paints. We use syringes to
measure the volumes and then mix the colors manually, if we use
the painting machine. An example of an extracted palette can be
seen in Figure 1 (b).

5. Brush and Thickness Calibration

The width of brush stroke marks can be varied by applying different
levels of pressure with the brush on the canvas. Therefore, the width
of brush strokes can be described as a function of pressure. The
pressure is to be understood as the distance that the brush would
be dipped into the canvas if it were permeable. We initially select
four different brush sizes (12mm, 8mm, 4mm, 2mm) as our set of
brushes used for painting. For each brush, the maximum pressure is
determined in advance by hand. Minimum pressure is defined as the
point where the brush bristles just touch the canvas. For each brush,
the pressure to width function is determined by painting several
samples of different applied pressure. We chose a sampling rate of
3mm, which resulted in about 10 stroke samples, depending on the
size of the brush. The measured values now express the brush width
as a function of pressure. In order to convert width into pressure
information later, we fit a spline to the manually measured values
and sample it at the desired location. A special width value, where
the brush produces the optimal brush stroke mark, is given by the
nominal size of the brush type. We define this width/pressure as
bopt , which is used as the main brush stroke width throughout this
paper.

Before a painting process is started, we need to calibrate the ef-
fect of brushes and paints when applied on already painted layers
in order to evaluate brush stroke candidates. Since the paint palette
is mixed from known pigment mixtures, we do know Kl and Sl
of each the respective palette colors L = (l0, ...., ln), but not the
layer thickness db,l that is also needed to compute the reflectance
using Equation 1. We estimate the layer thickness for each color
by applying a stroke on a separate canvas and determine the layer
thickness per pixel using the reflectances from before and after im-
ages R0,R1. The thickness map db,l of a layer can be computed by

solving Equation 1 for d:

d =
acoth

(
RR0−aR−aR0+1

bR−bR0

)
bS

, (8)

where a = 1+ K
S and b =

√
a2−1.

We solve this equation for each pixel of the before and after im-
ages of a certain brush stroke sample. We exclude values where
∆(R0,R1)< emin where emin is usually set to 0.005. This masks out
regions that were not covered by the brush stroke or differences that
are too small to compute and therefore negligible. It turned out that
estimating the thickness map only by solving Equation 8 produced
noisy results. We therefore solve a similar optimization problem
to Problem 3. We fix K = Kl and Sl to the corresponding palette
color and only solve for the thickness map db,l . We initialize db,l to
the solution given by Equation 8. The resulting thickness maps can
then later be used to simulate the effect of strokes with a certain
brush and paint, in order to evaluate brush stroke candidates. An
example of a thickness map estimation can be seen in Figure 3. A
brush stroke was applied onto a white surface and a feedback pic-
ture I1 is taken (a). The extracted thickness map can be seen in (b)
and a simulated brush strokes applied onto a background of same
reflectances as I0 using the extracted thickness map and paint (c).

(a) (b)

(c) (d)

(e) (f)

Figure 3: Estimation of brush thickness maps. Reflectances R0 be-
fore applying the brush strokes (a), Reflectances R1 after applying
the brush strokes (b), thickness map computed using Equation 8
(c) and the reconstructed brush stroke using the map (d), thickness
map computed using our optimization approach (e) and the recon-
structed brush stroke using the map (f). The results of the optimizer
are much smoother and more accurate. The thickness map images
are contrast enhanced and normalized for display.

6. Painting Layers

As it is often done by artists, we paint by starting with bigger
brushes and finalizing the painting with smaller brushes [LSD16].
In other words, we start with the biggest brush of our set and paint
until we can achieve no improvement with this brush and then
switch to the next. The input for this step consists of the current
brush b and the input image that is filtered using the Normalized
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Convolution Filter of Gastal and Oliveira [GO11] to get similar col-
ored regions while sharpening strong image edges. We choose the
kernel sizes according to optimal brush size bopt and set the spa-
tial kernel size σs = fs ∗ bopt and color kernel size σc = 8.0. The
resulting image represents the target image Gb and is used for all
computations involved in painting a brush layer. The orientation
field that guides the brush strokes paths is computed similar to the
method proposed by Kyprianidis et al. [KK11]. We apply the same
smoothing as for the input picture to the resulting structure tensor
field to create smooth orientations.

We repeatedly extract regions of sizes according to the optimal
brush size bopt using information derived from feedback and target
image and generate brush strokes based on that information that are
then later realized by the renderer. The regions are used to identify
locations for brush stroke candidates and to evaluate their quality
using optical blending by comparing the mean colors of regions.
Regions are also used to find locations on the canvas that are al-
ready very close to the target picture and do not need further pro-
cessing. This can also be used to determine if the painting process
should be terminated or if the next brush should be selected. We
discard all regions whose mean difference of color is below 0.8
and exclude them from the painting process. They will be marked
as invalid for brush stroke generation. If no region is marked for
painting, the system will switch to the next smaller brush.

6.1. Feedback Difference

At every iteration i of brush layers, we firstly query a feedback
image from the the used renderer. We then compute the distance
map Db,i from the resulting feedback image Fb,i to the given target
image Gb by:

Db,i = ∆(Fb,i,Gb) (9)

using the CIEDE2000 color difference ∆
∗
00 [SWD04]:

∆(p0, p1) =

{
∆
∗
00(p0,p1)

D0
if ∆
∗
00(p0, p1)< D0

1 else
(10)

with D0 = 100, which brings the color difference in the range from
0 to 1 and cuts of high differences where ∆

∗
00 is too large. The

difference image indicates regions where more brush strokes need
to be applied and where the current state of the canvas is close to
the target image.

6.2. Clustering Regions

We use the SLICO super pixel segmentation, which is a param-
eter free extension of the simple linear iterative clustering, called
SLIC algorithm [ASS∗12]. This is useful to evaluate local regions
on their current difference to canvas and to help to decide what
paint should be used in what area. We extend the algorithm by in-
corporating an additional distance weight used by the clustering to
group regions of similar color difference. The parameter free algo-
rithm SLICO [ASS∗12] in its original form is based on the distance
function:

DSLICO =

√(
dc

mc

)2

+

(
ds

ms

)2

(11)

with dc as the Euclidean distance of the pixel colors in CIELab
color space, ds as the Euclidean distance of the pixel positions and
their corresponding maximal distances mc,ms of the previous itera-
tion inside the super pixel, to normalize the distance function. This
decreases the compactness of the segmentation in regions where
the color distance varies significantly, mostly in textured, detailed
regions.

This method can be used to partition the image in smaller re-
gions, but the algorithm will always result in the same segmentation
since only the target image is included in the process. This results in
strokes that will be painted on top of the strokes of previous paint-
ing iterations and results in a lot of overpainting. To prevent this,
we include the difference map Db,i of canvas and target to force the
segmentation to group locations of similar color in the target image
Gb,i as well as similar values in the difference image Db,i. In addi-
tion, we replace the initial distribution of the spatial means based
on a grid by weighted Poisson disc sampling. The weights in that
case are the values of the difference map Db,i. This ensures that the
regions are initialized with regions of high differences. The new
distance function for the clustering including the difference map
can be defined as follows:

D∗ =

√(
dc

mc

)2

+

(
ds

ms

)2

+

(
de

me

)2

(12)

with de as the difference of the value of the difference map be-
ing currently processed and the mean difference value of the cor-
responding super pixel and me as the maximum difference in the
super pixel from the previous iteration.

Including the difference term into the cluster distance function
gives the advantage that the segmentation tries to cluster regions of
similar difference, where strokes need to be placed, while aligning
the clusters to image edges. This means that regions will always
group according to the distance of canvas and target, but will be
punished when grouping over image edges. An example segmen-
tation can be seen in Figure 4. The segmentation of the target im-
age Gb, i (a) and difference map Db,i (b) using the standard SLICO
method. Our approach can be seen in (c) and (d). Our method
groups regions of similar differences while aligning also to image
edges. The mean area of each region can be controlled by choosing
a corresponding number of regions or seed points k used to initial-
ize the clusters using k = sb

N
bopt

, with N as the number of pixels of
the whole image and bopt as the optimal brush size as described in
Section 5 and sb as scaling parameter that can be controlled by the
user to scale regions as wanted. This parameter can be used to in-
crease the size of the neighborhood of brush strokes for the optical
blending evaluation described in Section 6.3.1. We set sb = 1.5 for
all results created using thinned down paint colors.

6.3. Generating Brush Strokes

For all the regions we identified in the previous step, we now need
to generate strokes that improve each region. In other words, we are
looking for the brush stroke configuration that brings the canvas in
this region closer to the target image. For this we have to determine
the optimal length, width and paint color of the brush strokes.

The brush width used when drawing a stroke must be selected
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(a) (b) (c) (d)

Figure 4: Segmentation of the target image (a) and difference image (b) using the original SLICO algorithm. Segmentation of the target
image (c) and difference image (d) using our adapted version. Our approach groups regions of similar color and similar difference values.

according to the size and shape of the cell. Brush strokes should
paint over as few adjacent regions as possible orthogonally to the
line direction. This ensures that contrasts at the segment bound-
aries are maintained and enhanced. It also minimizes overpainting
of objects smaller than the minimum possible stroke width of the
currently selected brush. This is particularly noticeable in thin seg-
ments such as branches of trees.

Based on the distance transform proposed by Felzenszwalb and
Huttenlocher [FH12], we determine the point within the region
which has the largest distance to the edge of the cell. This point
defines the center of the maximum inscribing circle. The radius is
determined by locating the point at the edge of the cell closest to the
center. The calculated radius of the brush stroke is now converted
to pressure information by the pressure width function described in
Section 5.

6.3.1. Evaluation of Brush Stroke Candidates

After calculating the seed point and width of the stroke, we use
the orientation field to determine a path of a maximum length of
lmax = 30 ∗ bopt and step size of bopt using the vector field inte-
gration following the approach by Hertzmann [Her98]. We stop the
path prematurely if we land in a region already visited or marked as
converged and if, in addition, a minimum line length lmin = 5∗bopt
is exceeded.

Having generated a path of maximal length (Figure 5 (a)), we
now need to determine the paint color, which reduces the distance
from canvas to target. For this we can use the brush effect from
Section 5. For each paint color in our palette, we virtually render
the stroke using the corresponding thickness map onto a copy of
the current canvas reflectances resulting from the feedback picture
using a digital renderer instance as described in Section 3. We then
identify the best color from the current region by comparing the
differences of the mean region colors from target, original canvas
and the simulated renderings of each color. We use Equation 10
to compute the differences. The best paint color is the one whose
mean color is closest to the average mean color of the region in the
target image (Figure 5 (b)). In order to estimate the length of the
stroke, we iterate through all regions affected by the stroke path. As
long as the paint color, resulting from the evaluation in the previous
step for the seeding region, is improving the canvas, we continue. If
the selected color is not improving, we stop the path at the current
region (c). The final stroke left after this evaluation can be seen

in (d) and is added to the strokes to be realized later. All regions
affected by the final stroke path are excluded from the evaluation
of other regions and strokes. Using this evaluation scheme, which
computes the quality of brush strokes through optical blending by
averaging regions painted using example data during the evalua-
tion step, it is possible to handle opaque and thinned paints without
further adjustments.

7. Results

Figure 6 shows two paintings generated from the input image
shown in Figure 1 (a). The color palette was extracted from the
image and can be seen in Figure 1 (b). The paint color palette was
manually mixed according to the mixture recipe (Table 2) com-
puted by our mixing algorithm. We used 9 parts thinning medium
and one part pigments to thin down each paint. The result generated
using our software renderer is shown in Figure 6 (top). The result
created by our painting machine (bottom) comes close to the qual-
ity of our software rendered version. It took about 20 hours to finish
the painting. We used the same parameterization for rendering both
versions, the only difference lies in the rendering device. The slight
differences in colors at the mountain and sky result from inaccu-
racies in manually mixing the paint for the robot and brushes, that
are not properly cleaned during the painting process and therefore
taints other colors in the paint pots used by the robot. This result
shows that our method is able to create new colors from the palette
colors by dry-compositing semi-transparent layers of paint on top
of other layers. Two examples using different thickness of paint
colors are shown in Figure 7. We manually selected a RGB palette
(b) consisting only of white, black and red, green, blue pigment
mixtures that we have estimated using our mixing algorithm. The
input image (a) is painterly rendered using the palette by our soft-
ware renderer and is shown in (c). Rendering took about 5 minutes.
A result generated by our painting machine is shown in (d). We
used the same parameterization as for the software result with the
painting machine. The painting process lasted for about 5 hours.
Our region-based stroke placement and evaluation strategy is still
able to achieve results that resemble the input closely using the op-
tical blending approach. We set the region area scale sb = 5 for
the result shown in (d) to increase the area of effect of the optical
blending in the brush stroke evaluation. Although one might argue
about the aesthetics of both results, they still resemble the input pic-
ture quite well when viewed from the right distance, although they
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(a) (b) (c) (d)

Figure 5: Estimation of brush stroke quality and length: current processed region (blue), corresponding seed point (yellow) and generated
stroke path (black) (a), selecting best brush stroke paint color regarding the current region (b), identifying those regions, where the chosen
color improves each affected region (green), in a forwards and backwards manner, starting from the seed region (c), the final stroke left after
discarding regions (red) where the chosen color does not improve the canvas (d).

Primary Magenta 0.20 0.03 0 0
Carmine Red 0.28 0.01 0 0.01
Cad. Red 0.32 0 0 0
Raw Umber 0 0 0 0.06
Cad. Orange 0.13 0 0 0
Cad. Yellow 0 0.21 0 0
Primary Yellow 0 0.70 0 0
Leaf Green 0 0 0 0.13
Phthalo Green 0.01 0 0 0.23
Cobalt Blue 0.00 0.01 0 0.09
Ultramarine Blue 0.01 0.04 0 0.20
Lamp Black 0.04 0 0 0.28
Titanium White 0 0 1.00 0

Table 2: Mixing recipe for the pure paint color palette used to gen-
erate the paintings shown in Figure 1 and Figure 6.

have been created with only 6 colors without further mixing. Some
differences can be seen, especially at the right cheek. These differ-
ences result from slight variations in paint color or brush marks, as
well as the change of the used paint colors during the painting pro-
cess, due to unintended mixing on the canvas or bad brush cleaning.
However, the painting still comes close to its goal due to the nature
of the visual feedback optimization that incorporates these effects
implicitly.

Another result by our painting machine is shown in Figure 8.
Here, we just used Lamp Black, Titanium White and thinning
medium to mix the palette. Although we did not use the smallest
available brush, our algorithm was still able to achieve details at
the gripper or the eyes by varying the applied pressure according to
our pressure width function, resulting in thinner brush strokes.

8. Conclusion

We proposed a system that generates paintings, extracts the color
palette and determines the appropriate mixing ratios to mix the
palette from predefined base pigments. In addition, we presented a
stroke distribution technique that maintains contrast by adaptively

segmenting regions, which reduces over painting, and allows for a
novel evaluation of stroke candidate quality. Furthermore, sample
data is generated for stroke evaluation, which can be used for the
evaluation of stroke candidates on the basis of the Kubelka-Munk
theory.

Our least squares solver that estimates thickness values of brush
strokes in the calibration step (see Section 5) tends to compute vary-
ing values if the background is not homogeneous. We can avoid that
by only using single colored surfaces for calibration. Our painting
machine is currently not able to adapt to change of paint color over
time. Brushes are sometimes not cleaned well enough and mix in
other colors when dipped into corresponding pots. We tried to re-
compute the absorption and scattering coefficients for each palette
paint color during the painting process using the painting’s re-
flectance data as captured by the feedback camera, but our estima-
tor (see Section 4) suffers if there are not enough samples spanning
a wide range of different reflectances.

Future works will encompass incorporating wet-wet paint inter-
action in addition to dry compositing presented in this paper. This
will be a very challenging problem and can be addressed in various
ways, but we think that this results in much more aesthetic paint-
ings and new opportunities of creating artistic imagery. We also
like to investigate machine learning techniques for predicting paint
compositing effects and addressing the paint’s change over time.
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Figure 7: Paintings created by our system: input picture (http://www.dannyst.com/gallery/portraits-of-strangers/,
accessed April 18th, 2017) (a), manually selected palette (b), result created by the software renderer based on a the original palette and
small brushes using optical blending (c), painting generated using the same settings and our painting machine (d).

Figure 8: Painting created by our painting machine from an input picture of “wall-e”. We used a manually selected palette consisting of
titanium white and lamp black (top left). We added matte medium to thin down the paint.
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