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Revealing the evolved mechanisms that give rise to collective behavior is a central objective in
the study of cellular and organismal systems'~'2. In addition, understanding the algorithmic
basis of social interactions in a causal and quantitative way offers an important foundation
for subsequently quantifying social deficits'>'®. Here, we employ immersive Virtual Real-
ity (VR)! to reverse-engineer the sensory-motor control of social response during schooling
in a vertebrate model: juvenile zebrafish (Danio rerio). In addition to providing a highly-
controlled means to understand how zebrafish translate visual input to movement decisions,
networking our systems allows real fish to swim and interact together in the same virtual
world. Together, this allows us to directly test models of social interactions in situ. A key
feature of social response is shown to be single- and multi-target-oriented pursuit. This is
based on a quasi-2D egocentric representation of the positional information of conspecifics,
and is highly robust to incomplete sensory input. We demonstrate, including with a ‘Tur-
ing test’ for pursuit behavior, that all key features of this behavior are accounted for by
individuals following a simple experimentally-derived proportional derivative control law,
which we term ‘BioPD’. Since target pursuit is key to effective control of autonomous vehi-
cles, we evaluate—as a proof of principle—the potential utility of this simple evolved control
law for human-engineered systems. In doing so, we find close-to-optimal performance in
autonomous vehicles (terrestrial, airborne, and watercraft) pursuit, while requiring limited

system-specific tuning or optimization.
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Collective behavior arises from positive and/or negative local feedback loops, which enable
repeated local interactions to scale up into highly robust coordinated activities without the need
for regulation by global supervision or via a pre-established template!>. Due to their ubiquity
and importance across scales of biological organization, the mechanisms that give rise to coordi-
nated motion among cells® and organisms such as swarming insects*>, schooling fish®®, flocking
birds®!°, and humans in crowds'""!?, have been of particular interest of multiple disciplines. In
addition to providing new insights into biology, an understanding of the evolved strategies ani-
mals employ to coordinate collective behavior can offer new opportunities for the development of

engineered solutions'®, such as for the coordination of autonomous vehicles!*%°.

To date, however, it has been extremely difficult to infer the nature and causal structure of
biological interactions that give rise to collective behavior using conventional experimental ap-
proaches'*™13. Consequently, the sensory-motor feedback mechanisms that have evolved to regu-
late collective behavior are often poorly understood?!, with our inability to identify, or test among,
alternative hypotheses being a major bottleneck. Recent advances in immersive volumetric vir-

tual reality (VR) technology!'”-*

provide a new means to control, and thus interrogate, the causal
structure of social relationships among individuals. In addition, they allow the direct testing of
experimentally-derived hypothetical models of social interactions in situ, by allowing reciprocal
coupling between real organisms and virtual counterparts?}. Thus, analogous to how the ‘dynamic
patch clamp’ method has revolutionized neuroscience, creating a realtime interface between liv-

ing cells and experimentally-derived models®*, virtual reality opens up a ‘dynamic social clamp’

approach? to the study of animal behaviour.
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Here, we employ this approach to investigate the sensory-motor control employed in regu-
lating schooling behaviour in a model vertebrate, the juvenile zebrafish (Danio rerio) (1£0.1 cm
in length, 24-26 days post fertilisation, Fig. 1). At this age zebrafish predominantly employ vi-
sion to coordinate response to conspecifics when schooling (the lateral line being dominated by
self-generated motion due to viscous adhesion forming a boundary layer around such small fish?).
Since leading others is known to be driven by different internal processes, such as indifference to

others?® and motion towards external ‘goals’?’

, as a valuable starting point—and due to its general
importance—we focus here only on socially-mediated interactions. In addition to uncovering a key
algorithm employed in regulating schooling behavior (Fig. 1b-f, Supplementary Note 1, Supple-

mentary Fig. 1, and Supplementary Table 1), we will demonstrate its application to motion control

in engineered systems (Fig. 1g).

Since our immersive virtual reality, for freely swimming animals, relies on correct volumetric
rendering from the perspective of a single individual (via the anamorphic illusion), it is not possible
to put more than one individual in each VR arena. We can, however, connect systems such that
individuals can see, and thus interact with, a realtime ‘holographic’ projection of the other (Fig. 1c
shows this principle for a pair of individuals), which we term “the Matrix”. We find that, as in the
real world (Supplementary Figs. 2a-d, 3a-d, and 4a-c), individuals in “the Matrix” (Supplementary
Figs. 2e-h, 3e-h, and 4b-d) interact only when they occupy the same = — y plane, with even small
movements out of that plane (i.e., in the z dimension), either towards the surface, or to deeper
water, being associated with rapid decoupling of social interactions (Supplementary Fig. 5). The

structure, and strength, of the interactions within this plane (as quantified by decomposing motion
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to lateral speed v, which is perpendicular to the leader’s head direction, and forward speed v,),
which is along the leader’s head direction (Fig. 2a)), is found to be near-identical when they
interact within the physical world (Supplementary Fig. 4a-c) as when they interact in the same
‘holographic’ world (Supplementary Fig. 4b, d and Supplementary Fig. 6, Kolmogorov—Smirnov
test, p=0.26 for v,, p=0.9 for v,). This suggests our VR system is ideal for dissecting sensory-

motor feedback control.

To do so, we first employ open-loop experiments since these enable us to control the causal
flow of information from a leading (virtual) fish to a follower (Fig. 2b), allowing us to establish
how both spatial factors, and average swim speed (evaluated over its natural range, while also
taking into account its ‘bursty’ nature resulting from rapid tail undulations followed by a friction-

dominated glide, Fig. 2c; see Supplementary Fig. 7 for details), impact social response.

Fish tend to follow/pursue the virtual leader at a relatively stable distance, with this distance
increasing approximately linearly as a function of the leader’s speed (Fig. 2d-j), but with different
“times to collision” (with respect to the current position of the leader, if the leader were to suddenly
stop; Supplementary Fig. 8). The decomposed lateral (v,) and forward (v,) components of the
follower’s speed, as a function of the spatial position of the follower relative to a leader positioned
at x= 0, y= 0, are shown in Fig. 2e, f, respectively. As shown in Fig. 2g, the average lateral speed
increases as a function of lateral distance (x-axis) up to a specific distance, r, = 0.07m (determined
by finding the maximum lateral speeds following a bootstrapping procedure; see Supplementary

Note 2 for details), indicated by the dotted line, following which it starts to decrease. Lateral speed
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is minimally impacted by swim speed (as seen by the similarity of panels in Fig. 2e and the average
plots in Fig. 2¢g). The magnitude of the forward speed component as a function of the front-back
distance, shown in Fig. 2h, also increases up to a similar distance, r, = 0.07m (see Supplementary
Note 2 for details), but, unlike lateral speed, it increases in absolute magnitude as a function of

average swim speed of the leader.

According to the above properties (speed control being proportional to the distance lag and

to the average swimming speed of the leader, plus a lateral point of speed reduction at a specific

28-31

distance), and following reverse engineering methods in biological studies™®™", we propose a par-

simonious bio-inspired PD controller, ‘BioPD’:

;

Te = TFp—TL
vy, = —(Kpxe+ Kyie)e 7
(D
Ye = Yr — YL
ve
Vy = _<pre + Kdye>e 27%

where zr, yr (and respectively, z, y;) are the positions of the follower (leader) in a global coor-
dinate system resolved in the - and y- axes according to the leader (Fig. 2a). r, and r,, describe
the critical distances at which the strength of social interactions is largest (Supplementary Note 2).
K, and K, are the derivative gain and proportional gain parameters, respectively, which are the
two main parameters in the model. We first determined the derivative parameter, based on the rela-
tionship between the average forward swimming speed of real and virtual fish (see Supplementary
Note 2 for details), finding /3 =0.58 (Fig. 2i). The proportional parameter K, is estimated based

on the stable distance lag under different average swimming speeds of the leader, which for our

4
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zebrafish is found to be a constant with value K, =2.3 (Fig. 2j).

Despite its simplicity, we find that the BioPD model can account for all of the main features
observed in our experiments, including the stable swim speed of the follower, which is matched to
that of the leader (Supplementary Fig. 9a, b), a similar spatial probability density with respect to the
leader and similar lateral and forward swimming speeds as a function of =, and y. (Supplementary
Fig. 9c-f). This indicates that fish exhibit a simple PD controller when regulating schooling, and

that they employ the same parameters regardless of the average swim speed of the leader.

Speed input in a PD controller can be either perceived instantaneous speed or average speed
over some period of time. Therefore, we further used our VR system to evaluate, directly, which
features of the speed of conspecifics are employed in regulating social response. Previously, it
has been suggested that the motion characteristics associated with burst-and-glide locomotion of
juvenile zebrafish may provide an important social cue®>. However, we find no evidence that this
form of biological motion plays a role in schooling; zebrafish respond identically to continuous
motion as they do to biological (bursty) motion (abstracted in Fig. 3a, but see Supplementary Fig.

10 for a detailed comparison).

This suggests that fine-scale instantaneous speed is not employed in the regulation of school-
ing. To evaluate this further, we investigated how the temporal resolution of visual input influences
social response. By systematically changing the temporal update frequency, such that the virtual
fish is always visible, but that its position is only updated at a certain rate (e.g., if the frequency

is 10 Hz, the position of the virtual fish will be updated 10 times per second, the frames between
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which it does not change position, Supplementary Fig. 11), we find that only if the update rate falls
below ~5Hz is social response impacted (Fig. 3b). This indicates that zebrafish integrate informa-
tion over approximately 0.2s, a timescale close to the typical period of their burst-and-glide gait
(Supplementary Fig. 7), which may imply the use of spatial working memory? and is captured in

the model by averaging speed with a similar time window.

To establish how robust the schooling response is in the face of incomplete information,
we decoupled speed and position by manipulating the visibility of the virtual fish. As may be
expected of animals that need to deal with regular occlusions of others, such as by vegetation, or
in patches of high turbidity, they do not respond to the sudden disappearance, or appearance, of
a conspecific (Fig. 3c, d and Supplementary Figs. 12, 13). By adjusting both the duration of the
windows of time during which information is available (Supplementary Figs. 12, 13), as well as
whether the perceived speed in these windows is, or is not, congruent with the displacement (i.e.,
the average speed) between these windows (Supplementary Fig. 13), we again find evidence that
the algorithm employed by zebrafish employs positional information as the input for speed control,

and not estimates of instantaneous speed (Fig. 3c, d and Supplementary Figs. 12, 13).

With the core assumptions of BioPD validated, we now ask whether it can account for further
dynamical features of natural schooling. In order to establish this control law above, we employed
virtual conspecifics that move in a constant direction and at a constant average swim speed. In
reality, however, fish dynamically modulate both properties. By presenting exactly the same tra-

jectories, obtained from real fish leaders, both to real fish and to agents employing BioPD (Fig. 4a,
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b), we can compare directly the response of real followers with agents employing BioPD. We find
that BioPD provides robust and effective response to the dynamic changes in speed and direction
exhibited in the natural system, and results in highly-comparable pursuit behavior to that exhibited

by real fish (Fig. 4e, f).

Our VR systems allow us to take an even further step in establishing sensory-motor control;
we can also ask whether leaders react differently to real followers versus followers employing
BioPD. This can be thought of as a “Turing test” for the leader: is an agent employing BioPD
sufficiently convincing to allow natural bi-directional interactions? To do so, we now allow two
real fish, A and B, to interact in “the Matrix”, but each time fish A becomes a leader (i.e., occupies
a frontal position), we can immediately replace the natural control of B with our BioPD control,
and vice versa (Fig. 4c, d). Thus we can compare what we predict fish will do to what they actually
do, for every pursuit event. We find that despite its simplicity, BioPD facilitates the maintenance
of qualitatively similar, and effective, reciprocal social relationships among hybrid simulated-real

individuals (Fig. 4g, h).

Having established the response to a single conspecific, we now ask whether BioPD can also
predict the response of real fish to two conspecifics'®. To do so, we consider its response to two
leaders swimming side-by-side at a range of inter-individual lateral distances and swim speeds
(Fig. 41, j). We simply applied the BioPD controller for an agent receiving sensory input from the
two leaders, but taking into account the linear perspective in the fish eye (see Supplementary Note

2 for details). We find that BioPD accounts, quantitatively, for a key experimental finding; that real
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fish will both change their distance lag (Fig. 4k) and will suddenly switch from adopting a position
in-between the ‘targets’ (here, the leaders) to deciding among them (i.e., swimming predominantly
with one of the virtual fish) as a function of increasing the lateral distance, [, between the virtual
leaders (Fig. 41 and Supplementary Fig. 14). Furthermore, it also accounts for the observed
increase in the critical distance (/..) at which this transition occurs as a function of increasing swim

speed (Fig. 41 and Supplementary Figs. 15, 16).

Reverse engineering natural control laws—which have been subject to evolution by natural
selection for millennia—could, in principle, provide new, simpler and/or more robust solutions for
human-engineered problems'®. The effective pursuit of mobile targets, along with the maintenance
of appropriate spacing with respect to a target (which can include interception, or pursuit while also
avoiding collisions, for example), is a central challenge in the effective control of autonomous ve-
hicles, such as self-driving cars and guided aircraft and spacecraft. Man-made controllers, such
as the widely-employed model predictive controller (MPC)**, have been shown to be optimal for
certain tasks, but typically are highly complex, and need to be individually-optimized—a very
time-consuming process—for each specific application (since they depend on an accurate under-
lying model of the dynamical systems in which they are to be embedded). Natural systems, by
contrast, are under the section to evolve highly robust and cheap strategies that approximate op-
timal solutions under a wide range of conditions. Seldom, however, are such evolved solutions

evaluated in situ in real physical systems.

To gain insight into such potential application domains, we implemented, and compared
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the pursuit performance of a state-of-the-art optimal MPC controller (see Supplementary Note
3 for details) and BioPD in three very different robotic platforms; terrestrial vehicles, airborne
drones, and watercraft (Fig. 1h), the task being to follow a virtual leader on a predefined sine-
shaped trajectory (Fig. 4m, Supplementary Video 2). Furthermore, unlike the MPC controller,
which required a complex and time-consuming optimisation procedure for each robotic system, we
employed BioPD with exactly the same parameters as estimated from zebrafish in all scenarios.
We found that without system-specific tuning, and despite its simplicity, BioPD exhibits highly
robust and effective performance, providing very close to optimal control energy? in the vehicle,
drone, and roboboat control tasks (Fig. 4n and Supplementary Figs. 17-19). This proof of principle
suggests that reverse-engineering evolved control laws may provide a complementary approach to
traditional methods, especially when designing controllers that must be efficient and robust, yet

require minimal sensing and computational requirements.
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Methods

Methodological overview We developed and utilized a virtual reality platform to reverse engineer

the sensory-motor control algorithm for schooling behavior (Supplementary Fig. 1). To confirm its

effectiveness, we compared the speed control of a real fish to another real fish in a traditional plat-

form with that to a virtual fish in our system. Subsequently, we conducted open-loop experiments

in the virtual environment with a single virtual fish, where we controlled the leader’s swimming

properties, such as average speed, patterns, and visibility. By doing so, we developed a biolog-

ically inspired proportional derivative control model for the following behavior and verified its

assumptions. Furthermore, we estimated the model through various means, including simulations,

13
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experiments in the virtual reality system, experiments with two virtual leaders, and tests with three

types of robots (terrestrial, airborne, and watercraft).

Virtual reality experiments We conducted experiments with zebrafish (Danio rerio) of age 24 to
26 days postfertilization raised in a room at 28 degrees on a 16-h light, 8-h dark cycle. The variation
in age was to allow us to always use fish of a similar body length (1£0.1 cm). 498 zebrafish were
used (See Supplementary Table 1). Experiments were conducted in a fish virtual reality setup
procured from Loopbio GmbH (refer to ref. [17] for details). After a fish was introduced into
the arena (a bowl-shaped container with a diameter of 34 cm and a depth of 9 cm at the water
level), we allowed the fish to acclimate to the environment for 20 minutes. This was followed
by a 10-min control, during which the fish was presented with a single virtual conspecific (1 cm
in body length) swimming in a circle with a diameter of 16 cm. After this, the real fish was
exposed to the virtual fish, initialized with various swimming conditions (See Supplementary Note
1 for details). Each experiment lasted 90 minutes. We analyzed the data using custom Python 3.7
code. All experiments were conducted in accordance with the animal ethics permit approved by

Regierungsprisidium Freiburg, G-17/170.

Simulations We utilized the BioPD algorithm to simulate the behavior of following a virtual
leader in the VR experiment, as well as a real leader in a pair of fish performing leader-follower
behavior extracted from real fish data. For following the virtual leader, we set the follower’s initial
position to a range of -0.05 to 0.05 m on the z-axis and -0.05 to O m on the y-axis. We introduced
variability by adding white noise to the follower’s speed control, with a standard variance of 0.016

for the z-axis and 0.45 times the average speed of the follower for the y-axis. The maximum

14
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swimming speed was limited to 0.1 m/s. In contrast, for following a real fish leader, we initialized
the geometry position and swimming probabilities of the follower to match the starting point of
leader-follower behavior in the pair of real fish swimming in the same arena. The only difference
in this model from the previous one is that the leader is extracted from real fish leader data, which
dynamically changes both average swimming speeds and directions. No noise was added in the

second simulation.

Parameter estimation for the model The BioPD model has four primary parameters (-, 7, K,
K ), which we determined by measuring real fish data collected in the virtual reality experiments.
In the following behavior, when the distance between the leader and follower is larger than the
threshold distance r,, (r,), the follower reduces its speed to follow the leader. Therefore, we mod-
eled the turning point of speed as a first-order Gaussian derivative function, with the threshold
distance corresponding to the peak of the function. We determined the threshold distance by boot-
strapping (see Supplementary Note 2 for details). Since the follower must be within the distance
threshold to catch up with the leader, we simplified the model to a traditional PD controller. By
analyzing the PD controller, we found that the average swimming speed of the leader and follower
is determined by a first-order linear function, where the slope is determined by K, only, and the
intercept is determined by both K, and K;. We obtained these two parameters through a similar

bootstrap analysis, and detailed derivations are given in the Supplementary Note.

Robotic experiments We tested both BioPD and an optimal controller on three different types of
robots: the Crazyflie drone®®, the SunFounders Robot PiCar-X, and a robot boat from MIT**. To

create a virtual leader for the robots to follow, we programmed it to move in a sinusoidal curve.
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We applied BioPD with the same mathematical model and parameters, which were scaled by the
body size of the robots. Additionally, we considered a model predictive controller (MPC) based
on our previous study**. Parameters are optimized for each type of robot. Further details can be

found in the Supplementary Note 3.

Data availability All data supporting this study’s findings have been privately uploaded on figshare
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Fig. 1. Schematic of the study of sensory-motor control of schooling behavior. a, The flow
diagram of the sensory-motor control of the social response to neighbors. We reverse engineer the
sensory-motor control (SMC) of following behavior to a model, which we term as ‘BioPD’ (see
explanation in the main text). b, A “traditional” experiment in which two real fish swim together in
one bowl-shaped arena. Note that trajectories are shown in 1:1 scale with respect to the dimensions
of the bowl, but the size of the fish is enlarged by a factor of 3x to ensure better visibility. ¢, “The
Matrix” system, where each arena contains a single individual, each of which can interact with a
realtime volumetric projection of the other. d, Open-loop experiments with one virtual fish as a
leader swimming back-forth at a recorded swimming speed (0.04 m/s in average). e, Experiments
with two virtual fish swimming side-by-side as two leaders to verify the sensory-motor control. f,
Experiments with two real fish interacting within “the Matrix” to verify the sensory-motor control
of the following behavior. A virtual fish becomes a follower controlled by the BioPD when the
real fish becomes a leader (e.g., the real fish swims in front). Otherwise, the virtual fish copies
the position and direction of the real fish in the other arena. g, Evaluating the performance of the
BioPD model by comparing it to a model predictive controller (MPC) in three robotic systems
(terrestrial, airborne, and watercraft). See Supplementary Videos 1 and 2 for a glimpse of the

experimental design.
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Fig. 2. Reverse engineering sensory-motor control of fish to a bioinspired proportional-
derivative controller, ‘BioPD’. a, The local coordinate system is based on the position and direc-
tion of the leader. The real fish’s swimming speed is resolved into lateral speed v, and forward
speed v,. b, Schematic to show the experimental setup, where a real fish follows one virtual fish
which is swimming back-and-forth in a straight line. ¢, The virtual fish exhibits a realistic burst-
and-glide swimming pattern for five different average swimming speeds vy p (0.04 to 0.08 m/s with
an interval of 0.01 m/s). d, The higher the average swimming speed of the leader, the greater is the
distance maintained by the follower to the leader. e-f, Lateral (e) and forward (f) speed control as a
function of the position of the follower in the local coordinate of the leader with different average
swimming speeds. g-h, Average lateral (g) and forward (h) speeds as a function of the follower’s
position in the z (g) and y (h)-axis in the local coordinate of the leader. The shaded areas denote
the standard deviation after 100 bootstraps. i, The distribution of the derivative parameter K is
based on the maximum forward swimming speed at each average swimming speed of the leader. j,

The comparison between the experiments and simulations.
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Fig. 3. Evaluating the perceptual information utilized in the regulation of social response to
a leader. a, Virtual fish swims with the same average but different instantaneous speeds: burst-
and-glide as the control (i) or constant speed as the treatment (ii). b, Virtual fish swims with
different update frequencies at 100 Hz as the control (i) or at 5 Hz as the selected treatment (ii)
while keeping a fixed location between updates. ¢, Virtual fish swims with different visibilities
(always visible as the control (1), or periodically become invisible (time being visible and invisible
are both set to 0.2s) as the treatment (ii)) to decouple the presented position and speed information.
d is the same as ¢, except the virtual fish jumps to a location further away by increasing its speed
during the period of invisibility by a factor of 2 as compared to speed during being visible. Selected
swimming performances, including relative position (iii-iv), lateral speed (v-vi), and forward speed

(vii-viil), are presented (See Supplementary Figs. 10-13 for details).

20



416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

434

Fig. 4. Evaluating the BioPD: simulations, experiments in “the Matrix” system and in two
virtual leader scenarios, and using robotics. a-b, Positions of real followers (a, RF) and sim-
ulated followers controlled by the BioPD (b, VF) relative to a real leading fish (positioned at the
origin). ¢-d, Experimental verifications in “the Matrix” system. The virtual fish in the right arena
is an ‘avatar’ of the real fish from the left arena if the real fish in the right arena is not swimming in
front. Otherwise, the virtual fish (¢, VF) in the right arena is controlled by the BioPD. The virtual
fish in the left arena is always controlled by the real fish from the right arena. In the left arena, the
real fish (d, RF) follows the virtual fish controlled by the real fish in the other arena. Virtual (c¢)
/ real (d) follower’s positions relative to the real (c) / virtual (d) leader’s position in two arenas in
“the Matrix” system. e-h, Distributions of relative distance in the y- (e,g) and z- (f,g) axis of the
simulations (e, f) and experiments (g, h). Jensen Shannon Divergence, JSD= 0.03, 0.0, 0.08, 0.0
for (e-h) respectively. i, The setup for two virtual fish leaders swimming side-by-side at different
left-right distances and average swimming speeds. j, The definition of the coordinate system. Ori-
gin is the center of the two virtual fish. Positive y points to the head direction of the virtual fish.
k, The model predicts the relative distance between the real fish and the virtual fish swimming at
different average swimming speeds. 1, The model also predicts the bifurcations in the following
behavior of the real fish when they follow two virtual leaders. m, Three robots are controlled by
BioPD and model predictive controller (MPC) to follow a leader moving in a sinusoidal wave. n,

A comparison of the control energy of BioPD and MPC.
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