
Reverse engineering the control law for schooling in
zebra�sh using virtual reality
Liang Li  (  lli@ab.mpg.de )

Max Planck Institute of Animal Behavior https://orcid.org/0000-0002-2447-6295
Mate Nagy 

Hungarian Academy of Sciences
Guy Amichay 

Northwestern University
Wei Wang 

Massachusetts Institute of Technology https://orcid.org/0000-0003-4023-2845
Oliver Deussen 

University of Konstanz
Daniela Rus 

MIT https://orcid.org/0000-0001-5473-3566
Iain Couzin 

Max Planck Institute of Animal Behavior https://orcid.org/0000-0001-8556-4558

Biological Sciences - Article

Keywords:

Posted Date: September 25th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2801869/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: There is NO Competing Interest.

https://doi.org/10.21203/rs.3.rs-2801869/v1
mailto:lli@ab.mpg.de
https://orcid.org/0000-0002-2447-6295
https://orcid.org/0000-0003-4023-2845
https://orcid.org/0000-0001-5473-3566
https://orcid.org/0000-0001-8556-4558
https://doi.org/10.21203/rs.3.rs-2801869/v1
https://creativecommons.org/licenses/by/4.0/


Reverse engineering the control law for schooling in ze-1

brafish using virtual reality2
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Revealing the evolved mechanisms that give rise to collective behavior is a central objective in21

the study of cellular and organismal systems1–12. In addition, understanding the algorithmic22

basis of social interactions in a causal and quantitative way offers an important foundation23

for subsequently quantifying social deficits13–16. Here, we employ immersive Virtual Real-24

ity (VR)17 to reverse-engineer the sensory-motor control of social response during schooling25

in a vertebrate model: juvenile zebrafish (Danio rerio). In addition to providing a highly-26

controlled means to understand how zebrafish translate visual input to movement decisions,27

networking our systems allows real fish to swim and interact together in the same virtual28

world. Together, this allows us to directly test models of social interactions in situ. A key29

feature of social response is shown to be single- and multi-target-oriented pursuit. This is30

based on a quasi-2D egocentric representation of the positional information of conspecifics,31

and is highly robust to incomplete sensory input. We demonstrate, including with a ‘Tur-32

ing test’ for pursuit behavior, that all key features of this behavior are accounted for by33

individuals following a simple experimentally-derived proportional derivative control law,34

which we term ‘BioPD’. Since target pursuit is key to effective control of autonomous vehi-35

cles, we evaluate—as a proof of principle—the potential utility of this simple evolved control36

law for human-engineered systems. In doing so, we find close-to-optimal performance in37

autonomous vehicles (terrestrial, airborne, and watercraft) pursuit, while requiring limited38

system-specific tuning or optimization.39
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Collective behavior arises from positive and/or negative local feedback loops, which enable40

repeated local interactions to scale up into highly robust coordinated activities without the need41

for regulation by global supervision or via a pre-established template1,2. Due to their ubiquity42

and importance across scales of biological organization, the mechanisms that give rise to coordi-43

nated motion among cells3 and organisms such as swarming insects4,5, schooling fish6–8, flocking44

birds9,10, and humans in crowds11,12, have been of particular interest of multiple disciplines. In45

addition to providing new insights into biology, an understanding of the evolved strategies ani-46

mals employ to coordinate collective behavior can offer new opportunities for the development of47

engineered solutions18, such as for the coordination of autonomous vehicles19,20.48

To date, however, it has been extremely difficult to infer the nature and causal structure of49

biological interactions that give rise to collective behavior using conventional experimental ap-50

proaches13–15. Consequently, the sensory-motor feedback mechanisms that have evolved to regu-51

late collective behavior are often poorly understood21, with our inability to identify, or test among,52

alternative hypotheses being a major bottleneck. Recent advances in immersive volumetric vir-53

tual reality (VR) technology17,22 provide a new means to control, and thus interrogate, the causal54

structure of social relationships among individuals. In addition, they allow the direct testing of55

experimentally-derived hypothetical models of social interactions in situ, by allowing reciprocal56

coupling between real organisms and virtual counterparts23. Thus, analogous to how the ‘dynamic57

patch clamp’ method has revolutionized neuroscience, creating a realtime interface between liv-58

ing cells and experimentally-derived models24, virtual reality opens up a ‘dynamic social clamp’59

approach23 to the study of animal behaviour.60
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Here, we employ this approach to investigate the sensory-motor control employed in regu-61

lating schooling behaviour in a model vertebrate, the juvenile zebrafish (Danio rerio) (1±0.1 cm62

in length, 24-26 days post fertilisation, Fig. 1). At this age zebrafish predominantly employ vi-63

sion to coordinate response to conspecifics when schooling (the lateral line being dominated by64

self-generated motion due to viscous adhesion forming a boundary layer around such small fish25).65

Since leading others is known to be driven by different internal processes, such as indifference to66

others26 and motion towards external ‘goals’27, as a valuable starting point—and due to its general67

importance—we focus here only on socially-mediated interactions. In addition to uncovering a key68

algorithm employed in regulating schooling behavior (Fig. 1b-f, Supplementary Note 1, Supple-69

mentary Fig. 1, and Supplementary Table 1), we will demonstrate its application to motion control70

in engineered systems (Fig. 1g).71

Since our immersive virtual reality, for freely swimming animals, relies on correct volumetric72

rendering from the perspective of a single individual (via the anamorphic illusion), it is not possible73

to put more than one individual in each VR arena. We can, however, connect systems such that74

individuals can see, and thus interact with, a realtime ‘holographic’ projection of the other (Fig. 1c75

shows this principle for a pair of individuals), which we term “the Matrix”. We find that, as in the76

real world (Supplementary Figs. 2a-d, 3a-d, and 4a-c), individuals in “the Matrix” (Supplementary77

Figs. 2e-h, 3e-h, and 4b-d) interact only when they occupy the same x− y plane, with even small78

movements out of that plane (i.e., in the z dimension), either towards the surface, or to deeper79

water, being associated with rapid decoupling of social interactions (Supplementary Fig. 5). The80

structure, and strength, of the interactions within this plane (as quantified by decomposing motion81
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to lateral speed vx, which is perpendicular to the leader’s head direction, and forward speed vy,82

which is along the leader’s head direction (Fig. 2a)), is found to be near-identical when they83

interact within the physical world (Supplementary Fig. 4a-c) as when they interact in the same84

‘holographic’ world (Supplementary Fig. 4b, d and Supplementary Fig. 6, Kolmogorov–Smirnov85

test, p=0.26 for vx, p=0.9 for vy). This suggests our VR system is ideal for dissecting sensory-86

motor feedback control.87

To do so, we first employ open-loop experiments since these enable us to control the causal88

flow of information from a leading (virtual) fish to a follower (Fig. 2b), allowing us to establish89

how both spatial factors, and average swim speed (evaluated over its natural range, while also90

taking into account its ‘bursty’ nature resulting from rapid tail undulations followed by a friction-91

dominated glide, Fig. 2c; see Supplementary Fig. 7 for details), impact social response.92

Fish tend to follow/pursue the virtual leader at a relatively stable distance, with this distance93

increasing approximately linearly as a function of the leader’s speed (Fig. 2d-j), but with different94

“times to collision” (with respect to the current position of the leader, if the leader were to suddenly95

stop; Supplementary Fig. 8). The decomposed lateral (vx) and forward (vy) components of the96

follower’s speed, as a function of the spatial position of the follower relative to a leader positioned97

at x= 0, y= 0, are shown in Fig. 2e, f, respectively. As shown in Fig. 2g, the average lateral speed98

increases as a function of lateral distance (x-axis) up to a specific distance, rx = 0.07m (determined99

by finding the maximum lateral speeds following a bootstrapping procedure; see Supplementary100

Note 2 for details), indicated by the dotted line, following which it starts to decrease. Lateral speed101
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is minimally impacted by swim speed (as seen by the similarity of panels in Fig. 2e and the average102

plots in Fig. 2g). The magnitude of the forward speed component as a function of the front-back103

distance, shown in Fig. 2h, also increases up to a similar distance, ry = 0.07m (see Supplementary104

Note 2 for details), but, unlike lateral speed, it increases in absolute magnitude as a function of105

average swim speed of the leader.106

According to the above properties (speed control being proportional to the distance lag and

to the average swimming speed of the leader, plus a lateral point of speed reduction at a specific

distance), and following reverse engineering methods in biological studies28–31, we propose a par-

simonious bio-inspired PD controller, ‘BioPD’:
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where xF , yF (and respectively, xL, yL) are the positions of the follower (leader) in a global coor-107

dinate system resolved in the x- and y- axes according to the leader (Fig. 2a). rx and ry, describe108

the critical distances at which the strength of social interactions is largest (Supplementary Note 2).109

Kd and Kp are the derivative gain and proportional gain parameters, respectively, which are the110

two main parameters in the model. We first determined the derivative parameter, based on the rela-111

tionship between the average forward swimming speed of real and virtual fish (see Supplementary112

Note 2 for details), finding Kd =0.58 (Fig. 2i). The proportional parameter Kp is estimated based113

on the stable distance lag under different average swimming speeds of the leader, which for our114

4



zebrafish is found to be a constant with value Kp =2.3 (Fig. 2j).115

Despite its simplicity, we find that the BioPD model can account for all of the main features116

observed in our experiments, including the stable swim speed of the follower, which is matched to117

that of the leader (Supplementary Fig. 9a, b), a similar spatial probability density with respect to the118

leader and similar lateral and forward swimming speeds as a function of xe and ye (Supplementary119

Fig. 9c-f). This indicates that fish exhibit a simple PD controller when regulating schooling, and120

that they employ the same parameters regardless of the average swim speed of the leader.121

Speed input in a PD controller can be either perceived instantaneous speed or average speed122

over some period of time. Therefore, we further used our VR system to evaluate, directly, which123

features of the speed of conspecifics are employed in regulating social response. Previously, it124

has been suggested that the motion characteristics associated with burst-and-glide locomotion of125

juvenile zebrafish may provide an important social cue32. However, we find no evidence that this126

form of biological motion plays a role in schooling; zebrafish respond identically to continuous127

motion as they do to biological (bursty) motion (abstracted in Fig. 3a, but see Supplementary Fig.128

10 for a detailed comparison).129

This suggests that fine-scale instantaneous speed is not employed in the regulation of school-130

ing. To evaluate this further, we investigated how the temporal resolution of visual input influences131

social response. By systematically changing the temporal update frequency, such that the virtual132

fish is always visible, but that its position is only updated at a certain rate (e.g., if the frequency133

is 10 Hz, the position of the virtual fish will be updated 10 times per second, the frames between134
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which it does not change position, Supplementary Fig. 11), we find that only if the update rate falls135

below ∼5Hz is social response impacted (Fig. 3b). This indicates that zebrafish integrate informa-136

tion over approximately 0.2s, a timescale close to the typical period of their burst-and-glide gait137

(Supplementary Fig. 7), which may imply the use of spatial working memory33 and is captured in138

the model by averaging speed with a similar time window.139

To establish how robust the schooling response is in the face of incomplete information,140

we decoupled speed and position by manipulating the visibility of the virtual fish. As may be141

expected of animals that need to deal with regular occlusions of others, such as by vegetation, or142

in patches of high turbidity, they do not respond to the sudden disappearance, or appearance, of143

a conspecific (Fig. 3c, d and Supplementary Figs. 12, 13). By adjusting both the duration of the144

windows of time during which information is available (Supplementary Figs. 12, 13), as well as145

whether the perceived speed in these windows is, or is not, congruent with the displacement (i.e.,146

the average speed) between these windows (Supplementary Fig. 13), we again find evidence that147

the algorithm employed by zebrafish employs positional information as the input for speed control,148

and not estimates of instantaneous speed (Fig. 3c, d and Supplementary Figs. 12, 13).149

With the core assumptions of BioPD validated, we now ask whether it can account for further150

dynamical features of natural schooling. In order to establish this control law above, we employed151

virtual conspecifics that move in a constant direction and at a constant average swim speed. In152

reality, however, fish dynamically modulate both properties. By presenting exactly the same tra-153

jectories, obtained from real fish leaders, both to real fish and to agents employing BioPD (Fig. 4a,154
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b), we can compare directly the response of real followers with agents employing BioPD. We find155

that BioPD provides robust and effective response to the dynamic changes in speed and direction156

exhibited in the natural system, and results in highly-comparable pursuit behavior to that exhibited157

by real fish (Fig. 4e, f).158

Our VR systems allow us to take an even further step in establishing sensory-motor control;159

we can also ask whether leaders react differently to real followers versus followers employing160

BioPD. This can be thought of as a “Turing test” for the leader: is an agent employing BioPD161

sufficiently convincing to allow natural bi-directional interactions? To do so, we now allow two162

real fish, A and B, to interact in “the Matrix”, but each time fish A becomes a leader (i.e., occupies163

a frontal position), we can immediately replace the natural control of B with our BioPD control,164

and vice versa (Fig. 4c, d). Thus we can compare what we predict fish will do to what they actually165

do, for every pursuit event. We find that despite its simplicity, BioPD facilitates the maintenance166

of qualitatively similar, and effective, reciprocal social relationships among hybrid simulated-real167

individuals (Fig. 4g, h).168

Having established the response to a single conspecific, we now ask whether BioPD can also169

predict the response of real fish to two conspecifics16. To do so, we consider its response to two170

leaders swimming side-by-side at a range of inter-individual lateral distances and swim speeds171

(Fig. 4i, j). We simply applied the BioPD controller for an agent receiving sensory input from the172

two leaders, but taking into account the linear perspective in the fish eye (see Supplementary Note173

2 for details). We find that BioPD accounts, quantitatively, for a key experimental finding; that real174
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fish will both change their distance lag (Fig. 4k) and will suddenly switch from adopting a position175

in-between the ‘targets’ (here, the leaders) to deciding among them (i.e., swimming predominantly176

with one of the virtual fish) as a function of increasing the lateral distance, l, between the virtual177

leaders (Fig. 4l and Supplementary Fig. 14). Furthermore, it also accounts for the observed178

increase in the critical distance (lc) at which this transition occurs as a function of increasing swim179

speed (Fig. 4l and Supplementary Figs. 15, 16).180

Reverse engineering natural control laws—which have been subject to evolution by natural181

selection for millennia—could, in principle, provide new, simpler and/or more robust solutions for182

human-engineered problems18. The effective pursuit of mobile targets, along with the maintenance183

of appropriate spacing with respect to a target (which can include interception, or pursuit while also184

avoiding collisions, for example), is a central challenge in the effective control of autonomous ve-185

hicles, such as self-driving cars and guided aircraft and spacecraft. Man-made controllers, such186

as the widely-employed model predictive controller (MPC)34, have been shown to be optimal for187

certain tasks, but typically are highly complex, and need to be individually-optimized—a very188

time-consuming process—for each specific application (since they depend on an accurate under-189

lying model of the dynamical systems in which they are to be embedded). Natural systems, by190

contrast, are under the section to evolve highly robust and cheap strategies that approximate op-191

timal solutions under a wide range of conditions. Seldom, however, are such evolved solutions192

evaluated in situ in real physical systems.193

To gain insight into such potential application domains, we implemented, and compared194
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the pursuit performance of a state-of-the-art optimal MPC controller (see Supplementary Note195

3 for details) and BioPD in three very different robotic platforms; terrestrial vehicles, airborne196

drones, and watercraft (Fig. 1h), the task being to follow a virtual leader on a predefined sine-197

shaped trajectory (Fig. 4m, Supplementary Video 2). Furthermore, unlike the MPC controller,198

which required a complex and time-consuming optimisation procedure for each robotic system, we199

employed BioPD with exactly the same parameters as estimated from zebrafish in all scenarios.200

We found that without system-specific tuning, and despite its simplicity, BioPD exhibits highly201

robust and effective performance, providing very close to optimal control energy35 in the vehicle,202

drone, and roboboat control tasks (Fig. 4n and Supplementary Figs. 17-19). This proof of principle203

suggests that reverse-engineering evolved control laws may provide a complementary approach to204

traditional methods, especially when designing controllers that must be efficient and robust, yet205

require minimal sensing and computational requirements.206
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Methods285

Methodological overview We developed and utilized a virtual reality platform to reverse engineer286

the sensory-motor control algorithm for schooling behavior (Supplementary Fig. 1). To confirm its287

effectiveness, we compared the speed control of a real fish to another real fish in a traditional plat-288

form with that to a virtual fish in our system. Subsequently, we conducted open-loop experiments289

in the virtual environment with a single virtual fish, where we controlled the leader’s swimming290

properties, such as average speed, patterns, and visibility. By doing so, we developed a biolog-291

ically inspired proportional derivative control model for the following behavior and verified its292

assumptions. Furthermore, we estimated the model through various means, including simulations,293

13



experiments in the virtual reality system, experiments with two virtual leaders, and tests with three294

types of robots (terrestrial, airborne, and watercraft).295

Virtual reality experiments We conducted experiments with zebrafish (Danio rerio) of age 24 to296

26 days postfertilization raised in a room at 28 degrees on a 16-h light, 8-h dark cycle. The variation297

in age was to allow us to always use fish of a similar body length (1±0.1 cm). 498 zebrafish were298

used (See Supplementary Table 1). Experiments were conducted in a fish virtual reality setup299

procured from Loopbio GmbH (refer to ref. [17] for details). After a fish was introduced into300

the arena (a bowl-shaped container with a diameter of 34 cm and a depth of 9 cm at the water301

level), we allowed the fish to acclimate to the environment for 20 minutes. This was followed302

by a 10-min control, during which the fish was presented with a single virtual conspecific (1 cm303

in body length) swimming in a circle with a diameter of 16 cm. After this, the real fish was304

exposed to the virtual fish, initialized with various swimming conditions (See Supplementary Note305

1 for details). Each experiment lasted 90 minutes. We analyzed the data using custom Python 3.7306

code. All experiments were conducted in accordance with the animal ethics permit approved by307

Regierungspräsidium Freiburg, G-17/170.308

Simulations We utilized the BioPD algorithm to simulate the behavior of following a virtual309

leader in the VR experiment, as well as a real leader in a pair of fish performing leader-follower310

behavior extracted from real fish data. For following the virtual leader, we set the follower’s initial311

position to a range of -0.05 to 0.05 m on the x-axis and -0.05 to 0 m on the y-axis. We introduced312

variability by adding white noise to the follower’s speed control, with a standard variance of 0.016313

for the x-axis and 0.45 times the average speed of the follower for the y-axis. The maximum314
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swimming speed was limited to 0.1 m/s. In contrast, for following a real fish leader, we initialized315

the geometry position and swimming probabilities of the follower to match the starting point of316

leader-follower behavior in the pair of real fish swimming in the same arena. The only difference317

in this model from the previous one is that the leader is extracted from real fish leader data, which318

dynamically changes both average swimming speeds and directions. No noise was added in the319

second simulation.320

Parameter estimation for the model The BioPD model has four primary parameters (rx, ry, Kp,321

Kd), which we determined by measuring real fish data collected in the virtual reality experiments.322

In the following behavior, when the distance between the leader and follower is larger than the323

threshold distance rx (ry), the follower reduces its speed to follow the leader. Therefore, we mod-324

eled the turning point of speed as a first-order Gaussian derivative function, with the threshold325

distance corresponding to the peak of the function. We determined the threshold distance by boot-326

strapping (see Supplementary Note 2 for details). Since the follower must be within the distance327

threshold to catch up with the leader, we simplified the model to a traditional PD controller. By328

analyzing the PD controller, we found that the average swimming speed of the leader and follower329

is determined by a first-order linear function, where the slope is determined by Kd only, and the330

intercept is determined by both Kp and Kd. We obtained these two parameters through a similar331

bootstrap analysis, and detailed derivations are given in the Supplementary Note.332

Robotic experiments We tested both BioPD and an optimal controller on three different types of333

robots: the Crazyflie drone36, the SunFounders Robot PiCar-X, and a robot boat from MIT34. To334

create a virtual leader for the robots to follow, we programmed it to move in a sinusoidal curve.335
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We applied BioPD with the same mathematical model and parameters, which were scaled by the336

body size of the robots. Additionally, we considered a model predictive controller (MPC) based337

on our previous study34. Parameters are optimized for each type of robot. Further details can be338

found in the Supplementary Note 3.339
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Fig. 1. Schematic of the study of sensory-motor control of schooling behavior. a, The flow374

diagram of the sensory-motor control of the social response to neighbors. We reverse engineer the375

sensory-motor control (SMC) of following behavior to a model, which we term as ‘BioPD’ (see376

explanation in the main text). b, A “traditional” experiment in which two real fish swim together in377

one bowl-shaped arena. Note that trajectories are shown in 1:1 scale with respect to the dimensions378

of the bowl, but the size of the fish is enlarged by a factor of 3x to ensure better visibility. c, “The379

Matrix” system, where each arena contains a single individual, each of which can interact with a380

realtime volumetric projection of the other. d, Open-loop experiments with one virtual fish as a381

leader swimming back-forth at a recorded swimming speed (0.04 m/s in average). e, Experiments382

with two virtual fish swimming side-by-side as two leaders to verify the sensory-motor control. f,383

Experiments with two real fish interacting within “the Matrix” to verify the sensory-motor control384

of the following behavior. A virtual fish becomes a follower controlled by the BioPD when the385

real fish becomes a leader (e.g., the real fish swims in front). Otherwise, the virtual fish copies386

the position and direction of the real fish in the other arena. g, Evaluating the performance of the387

BioPD model by comparing it to a model predictive controller (MPC) in three robotic systems388

(terrestrial, airborne, and watercraft). See Supplementary Videos 1 and 2 for a glimpse of the389

experimental design.390
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Fig. 2. Reverse engineering sensory-motor control of fish to a bioinspired proportional-391

derivative controller, ‘BioPD’. a, The local coordinate system is based on the position and direc-392

tion of the leader. The real fish’s swimming speed is resolved into lateral speed vx and forward393

speed vy. b, Schematic to show the experimental setup, where a real fish follows one virtual fish394

which is swimming back-and-forth in a straight line. c, The virtual fish exhibits a realistic burst-395

and-glide swimming pattern for five different average swimming speeds v̄V F (0.04 to 0.08 m/s with396

an interval of 0.01 m/s). d, The higher the average swimming speed of the leader, the greater is the397

distance maintained by the follower to the leader. e-f, Lateral (e) and forward (f) speed control as a398

function of the position of the follower in the local coordinate of the leader with different average399

swimming speeds. g-h, Average lateral (g) and forward (h) speeds as a function of the follower’s400

position in the x (g) and y (h)-axis in the local coordinate of the leader. The shaded areas denote401

the standard deviation after 100 bootstraps. i, The distribution of the derivative parameter Kd is402

based on the maximum forward swimming speed at each average swimming speed of the leader. j,403

The comparison between the experiments and simulations.404
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Fig. 3. Evaluating the perceptual information utilized in the regulation of social response to405

a leader. a, Virtual fish swims with the same average but different instantaneous speeds: burst-406

and-glide as the control (i) or constant speed as the treatment (ii). b, Virtual fish swims with407

different update frequencies at 100 Hz as the control (i) or at 5 Hz as the selected treatment (ii)408

while keeping a fixed location between updates. c, Virtual fish swims with different visibilities409

(always visible as the control (i), or periodically become invisible (time being visible and invisible410

are both set to 0.2s) as the treatment (ii)) to decouple the presented position and speed information.411

d is the same as c, except the virtual fish jumps to a location further away by increasing its speed412

during the period of invisibility by a factor of 2 as compared to speed during being visible. Selected413

swimming performances, including relative position (iii-iv), lateral speed (v-vi), and forward speed414

(vii-viii), are presented (See Supplementary Figs. 10-13 for details).415
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Fig. 4. Evaluating the BioPD: simulations, experiments in “the Matrix” system and in two416

virtual leader scenarios, and using robotics. a-b, Positions of real followers (a, RF) and sim-417

ulated followers controlled by the BioPD (b, VF) relative to a real leading fish (positioned at the418

origin). c-d, Experimental verifications in “the Matrix” system. The virtual fish in the right arena419

is an ‘avatar’ of the real fish from the left arena if the real fish in the right arena is not swimming in420

front. Otherwise, the virtual fish (c, VF) in the right arena is controlled by the BioPD. The virtual421

fish in the left arena is always controlled by the real fish from the right arena. In the left arena, the422

real fish (d, RF) follows the virtual fish controlled by the real fish in the other arena. Virtual (c)423

/ real (d) follower’s positions relative to the real (c) / virtual (d) leader’s position in two arenas in424

“the Matrix” system. e-h, Distributions of relative distance in the y- (e,g) and x- (f,g) axis of the425

simulations (e, f) and experiments (g, h). Jensen Shannon Divergence, JSD= 0.03, 0.0, 0.08, 0.0426

for (e-h) respectively. i, The setup for two virtual fish leaders swimming side-by-side at different427

left-right distances and average swimming speeds. j, The definition of the coordinate system. Ori-428

gin is the center of the two virtual fish. Positive y points to the head direction of the virtual fish.429

k, The model predicts the relative distance between the real fish and the virtual fish swimming at430

different average swimming speeds. l, The model also predicts the bifurcations in the following431

behavior of the real fish when they follow two virtual leaders. m, Three robots are controlled by432

BioPD and model predictive controller (MPC) to follow a leader moving in a sinusoidal wave. n,433

A comparison of the control energy of BioPD and MPC.434
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