
Volume 0 (1981), Number 0 pp. 1–2 COMPUTER GRAPHICS forum

Sketching in Gestalt Space: Interactive Shape Abstraction
through Perceptual Reasoning

J. Kratt1, T. Niese1, R. Hu2, H. Huang2, S. Pirk3, A. Sharf4, D. Cohen-Or5, O. Deussen1

1University of Konstanz, Germany, 2Shenzhen University, China, 3Stanford University, USA,
4Ben-Gurion University of the Negev, Israel, 5Tel Aviv University, Israel

1. Conjoining Gestalt Groups

In this Section we provide a detailed overview about the computa-
tion of the different parts of the energy function that is used to re-
solve conflicts between Gestalt groups in 3D. In our work the input
consists of 3D models that have already been segmented into low-
level elements. In order to find all potential Gestalt groups formed
by these elements, we extend the 2D Gestalt rules to 3D. Similar
to Nan et al. [NSX∗11], we build a proximity graph G that con-
nects the 3D elements of our scene to their direct neighbors. For
each element pi one node in the graph is constructed. Furthermore,
for each element pi, we find its closest neighbors, p j, and connect
them with an edge ei j having an associated weight that is related to
the Hausdorff-distance between the elements. Based on this graph
we find potential Gestalt groups.

Once we have identified Gestalt groups, each element p is as-
signed labels fp of the corresponding Gestalt groups they belong
to. Some elements get more than one label, resulting in an over-
segmented scene. Nan et al. employ an approximate multi-label
graph-cut energy minimization [DOIB12] to solve this combina-
torial problem efficiently. The result is the joint labeling f , which
assigns a single Gestalt label to each element and minimizes an ob-
jective energy function. This function consists of three terms: data,
smoothness and label costs. In this Section we explain our adapta-
tions to the energy function in order to work on the 3D elements of
our model. In the following LP, LS and LR are the sets of elements
that belong to a proximity, similarity or a regularity group.

1.1. Label Cost

Within the optimization, the label cost term favors configurations
with only few and cheap labels and is defined as:

Fcost = ∑
l∈L

hl ·δl( f ),

where L describes the entire set of labels and hl is the actual cost
value of label l. δl( f ) being an indicator function. This function
has either a value of 1, if there exists at least one element that is
assigned the label l, 0 otherwise. The label cost given by hl de-
pends on the type of Gestalt group and measures the affinity for a

specific principle. Since our implementation works on 3D elements
we have to adjust the individual costs compared to the definition
given by Nan et al. In particular, for proximity groups we measure
the volume density in 3D space. For regularity groups we directly
exploit the structure of the pattern, defined by the underlying path
in the proximity graph, rather than computing the cost in frequency
space.

• Proximity Groups: The cost value for a group that follows the
law of proximity is defined by the difference between the volume
of the convex shape and the unified volume of the elements :
hl =p∈LP vol(CH(p))−

⋃
(vol(p)).

• Similarity Groups: Similarity label cost is computed as the sim-
ilarity variance among elements within the group:
hl =(pi,p j)∈LS

var(sim(pi, p j)), where sim()∈ [0,1] measures the
similarity between two elements. sim() returns a value of 0 if two
shapes are equal.
• Regularity Groups: For regularity Gestalts, the cost is defined

by the inverse density multiplied by the variance of edge lengths
and angles between edges of the corresponding path: hl =p∈LR

(vol(CH(p))−
⋃
(vol(p)))× var(||ei||)× var(α j)× ||LR||−1,

with 0 ≤ i ≤ n and 0 ≤ j < n for a given path (e0,e1, . . . ,en) in
G that was detected to follow a regular pattern.

1.2. Smoothness Cost

Elements that are close together are more likely to belong to the
same Gestalt group. To consider this in the optimization, Nan et
al. define the smoothness cost as the inverse Hausdorff-distances
between neighboring elements, which can also be directly applied
to our 3D elements:

Fsmooth = ∑
p,q∈N

= d(p,q)−1,

where N is the set of all neighbor elements in G and d(p,q)−1

represents the inverse Hausdorff-distances between elements p and
q. The inverse distances are further normalized into the range [0,1]
using the minimal and maximal distance appear in the graph.
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1.3. Data Cost

The data cost term reflects how well elements fit to their assigned
Gestalt groups and is defined as:

Fdata = ∑
p∈P

D(p, fp),

where D(p, fp) is the data cost value for an element p assigned
to label fp. The evaluation of the individual cost depends on the
type of Gestalt group. Similar to the label cost, we have to adapt
the computations to work on 3D elements:

• Proximity Group: The data cost for an element p with respect
to its proximity group LP is measured as the closest Hausdorff-
distance of p from all other elements in the group: D(p, fp) =

min
q∈LP\{p}

d(p,q).

• Similarity Group: The data cost for an element p that belongs to
a similarity group LS is defined by the average similarity dis-
tance of p from all other elements in the group: D(p, fp) =

1
|LS\{p}| ∑

q∈LS\{p}
sim(p,q). Again, sim()∈ [0,1] is the used sim-

ilarity measure, returning 0 if two shapes are equal.
• Regularity Group: The data cost of an element p that is part of a

set LR of regularly aligned elements is computed by measuring
the distance of p to its ideal element p′, that would be perfectly
aligned with the regular pattern: D(p, fp) = d(p, p′).

In order to compute the data cost for an element that belongs
to a regularity group, we have to determine the ideal position of
the element, that perfectly aligns with the regular structure of the
group. This is done by taking the average edge length and the
average angle of the underlying path. Having these two values, we
can construct a path that has no variation in edge length and angles
between two successive edges. This path serves as approximation
for the perfect regular aligned pattern and we can compute the
distances.

2. Energy Function

To account for the visual importance of Gestalt groups we finally
introduced our visibility terms (group dominance and element vis-
ibility) into the energy function:

E( f ) = ∑
p∈P

(1−A(p, fp)) ·D(p, fp) ∑
p,q∈N

Vp,q +

∑
l∈L

(1− τ̄l) ·hl ·δl( f ), (1)

where A(p, fp) is the visibility value and D(p, fp) the data cost
for an element p if the label fp is assigned to it. Vp,q is the smooth-
ness cost for two neighboring elements p and q. The term hl ·δl( f ),
weighted by the average group dominance τ̄l , represents the label
cost with L being the entire set of labels. Since the optimization
seeks for minimizing the energy function, we have to invert the
visibility terms in order to favor visible groups for abstraction.
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