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Abstract
Conventionally, stippling is an effective technique for representing surfaces in pen-and-ink. We present new effi-
cient methods for stipple drawings by computer. In contrast to already existing techniques, arbitrary shapes can
be used in place of dots. An extension of Lloyd’s Method enables us to position small objects on a plane in a visu-
ally pleasing form. This allows us to generate new illustration styles. Similar methods can be used for positioning
objects in other applications.

1. Introduction

In science, especially in the fields of architecture and biol-
ogy, stipple drawings are widely used to illustrate books.
Stippling is a general illustration technique which is used
to represent tone and texture of a surface. The dots form
a so called Poisson disc distribution. Such a distribution is
characterized by the property, that around each object a disc
of given size can be placed that covers no other object of
the distribution. With stippling many different objects can
be represented.

Stipple patterns in the form of dotted lines represent struc-
tured surfaces, whereas dots of varying shapes are used for
rough surfaces. In other styles, small objects are distributed
to represent the objects. For synthetic stipple drawings, sev-
eral methods for placing points have been proposed, but so
far the use of algorithms for distributing small objects in-
stead of points, has not been introduced.

In our paper we present such methods. At the beginning,
the objects are randomly distributed. A special type of re-
laxation method (Lloyd’s Method) converts this distribution
into a Poisson disc distribution. Our work is an extension of
an earlier paper3 that introduced Lloyd’s Method to stippling
on the basis of points. The new method allows us to incor-
porate the shapes of the objects. While the original method
solely moves the objects, now their orientation can also be
changed. If objects are not convex or if they overlap, new
cases arise during the relaxation procedure. After review-
ing related work and some basic definitions we discuss the

method, show examples of stipple-drawings with different
objects and present further applications.

2. Related Work

As mentioned above, Lloyd’s Method was already applied
to stippling3. In our earlier paper we presented a semi-
automatic method that allows the user to synthesize such
drawings by computer. An initial point distribution is gen-
erated manually or from a given image by applying a half
toning method. During interaction, the user selects regions
and edits their points. The system allows to insert, delete or
to move points by special brushes. A particular brush en-
ables the user to convert a point set into a Poisson disc dis-
tribution. This is achieved by applying Lloyd’s Method that
moves the points into the desired distribution by computing
the Voronoi Diagram of the points and subsequently mov-
ing the points to the center of gravity of their Voronoi Ar-
eas (see below). Moving the points in such a way, the user
can achieve visually pleasing stipple drawings with tens of
thousands of points within some hours, whereas a manually
generated drawing would be by far more time consuming.

Secord15 extends the method by restricting the movement
of points by an underlying image. The gradient of the image
is used to constrain the movement of the points during re-
laxation: if the gradient is above a threshold, points are only
allowed to move at right angles to the gradient. This exten-
sion enables him to automatically convert a given image into
a stipple drawing.
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Meruvia et al.11 generate stipple patterns on 3D-objects by
triangulating the surface and by positioning the dots on the
triangle vertices. This is a very fast method but the resulting
patterns are not optimal. Ebert et al.9 use random point sets
(not Poisson disc distributions) to visualize volume data in a
style similar to stipple drawings. The method does allow to
enhance volume images, but is restricted to points.

The paper most closely related to our work was presented
by Hausner6. Based on Lloyd’s Method he developed an al-
gorithm to distribute small square tiles to form synthetic mo-
saics. Lloyd’s Method is used to position the tiles evenly on
the plane. Here the orientation is controlled by a gradient
field which was calculated in a pre-processing step from a
given source image. The method works in this case, because
the square tiles are quite compact convex objects and the au-
thor focuses on the Manhattan distance which allows him
to use the same iteration method for points and squares. We
will show later that for other objects such as small lines or
polygons the iteration in this form is not quite optimal.

Such small objects have to be distributed in several
applications. One example is cross-hatching: In a set of
articles17, 18, 14 stroke textures are used to pre-define opti-
mally positioned cross-hatchings of small strokes. The tex-
tures are combined to form a large non-photorealistic draw-
ing. While this method results in beautiful images, the user
has limited control over the drawing process. Deussen and
Strothotte4 use a variant of error diffusion for distribut-
ing small strokes in a drawing. Ostromoukhov13 distributes
small convex polygons to halftone images artistically. A
point set similar to a Poisson disc distribution is generated
by a spring mass system. The Voronoi Diagram is calcu-
lated and the Voronoi Areas of the points are used to gen-
erate small polygons that represent the grey scale level of
the image.

Instead of offering fixed positions for strokes and other
small objects, in our paper we present a technique that al-
lows to efficiently distribute sets of objects on the plane. The
placement can be constrained by polygonal borders, the po-
sitioning can be more or less uniform. The user has full con-
trol over the distribution process e.g. he/she is able to control
the orientation of the objects during iteration, may switch
between different relaxation variants and/or can stop the it-
eration after some steps, to obtain distributions that are not
too even.

Besides creating non-photorealistic drawings, other ap-
plications can be found. One field of application is botany,
where sets of plants with different shape –defined by their
two-dimensional outline on the ground– have to be arranged
for complex ecosystems. Another field of application is ani-
mation: the iteration can be used for various kinds of anima-
tion effects.

Converting objects instead of points into a Poisson disc
distribution requires two problematic steps: Firstly, a fast

method for calculating Voronoi Diagrams of arbitrary ob-
jects is needed. Such a method was proposed by Hoff et al.7

and can be found in Appendix A. Secondly, the relaxation
must be implemented efficiently. In addition to the move-
ment of the objects their orientation has to be taken into ac-
count. We show different methods to incorporate the shape
of objects and demonstrate their usefulness by showing ex-
ample drawings. In the appendices the fast calculation of
Voronoi Diagrams and mass moments is described.

3. Lloyd’s Method

We assume that we are able to calculate the Voronoi Dia-
gram of a given set of objects on the plane (cf. Appendix A).
To introduce the Llody’s method8 we see the process in a
broader view: The Voronoi Diagram of a given set of objects
can help to solve optimisation problems1. For example a cost
function

F(p1, ..., pn) =
n

∑
i=1

∫
Vi

f (‖p− pi‖2)φ(p)dp (1)

has to be optimised for a set of pointsp1, .., pn. The func-
tion φ(p) denotes the desired density of points in space and
f (‖p− pi‖2) is a simple cost function using the Euclidian
distance.

The cost function is optimised locally using Voronoi Re-
gions. The Voronoi Diagram is computed and each point is
moved to the center of gravity of its Voronoi Region. This
ensures that after each iteration the point fulfils the optimi-
sation goal for its local area.

The iteration is repeated until it converges. In practice the
movement of the points is stopped if the differences are be-
low a given threshold. In this case the distribution is called a
Centroidal Voronoi Tessellation. The algorithm is known as
Lloyd’s Method1. The convergence of the process has been
proven analytically only for some special cases5. Neverthe-
less, experiments with various object sets show convergence
in almost all cases. A local oscillation of an element over
some iterations occurs rarely.

(a) (b)

Figure 1: Point set and its Voronoi Diagram: a) without re-
laxation; b) after 50 iterations.

In Figure 1 the relaxation algorithm is applied to a point
set. At the beginning, the shape of the Voronoi Regions is
very irregular, during the iteration most of the inner regions
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reshape to hexagons. If the pixel-based algorithm of Ap-
pendix A is used, the border of the drawing area prevents
points from spreading out all over the plane. In an analytic
implementation, the outer Voronoi Regions have to be closed
separately before calculating the center of gravity. This can
be done by intersecting the Voronoi Regions with the polyg-
onal border of the image plane or a given object.

The Lloyd’s Method was introduced into computer graph-
ics by McCool and Fiume10 in the context of sampling. They
also proposed a method called dart throwing that generates
similar point patterns12. Random points are produced, the
points are added to the already existing point set, if they do
not fall into the disc of a point. The method works well for
low densities, if the density is near the limit that is given by
the number of points and the overall area of the discs, points
are added very infrequently and the computation is costly.

(a)

(b) (c) (d)

Figure 2: a) Rotation of an object due to relaxation; b) Lines
and their Voronoi Diagram in the initial distribution; c) after
150 iterations without rotation; d) after 150 iterations with
rotation.

4. Lloyd’s Method for Line Segments and Polygons

In general, the relaxation can be applied to arbitrary objects,
provided that their Voronoi Diagram can be calculated. For
each object the center of gravity is determined. During iter-
ation, the object is moved so that its center of gravity lays
upon the center of gravity of its Voronoi Region. Addition-
ally, it is possible to rotate the objects.

To do so, we need some mathematical background for the
determination of the geometrical moments and the main in-
ertia axis which is given in Appendix B.

In our pixel-based relaxation approach, the object as well
as its Voronoi Region is represented pixelwise by a charac-
teristic functionψA(x,y). To determine the mass moments
the sum in Eq. (3) of appendix B is computed over all pixels

that belong to the object and its Voronoi Region respectively.
The characteristic functionψA of an objectA, is defined by

ψA(x,y) =
{

1, i f (x,y) ∈ A
0, i f (x,y) /∈ A

(2)

The following formulae (cf. Appendix B) determine the mo-
ments up to the order of one:

m0,0 =
N−1

∑
x=0

M−1

∑
y=0

ψA(x,y),

m1,0 =
N−1

∑
x=0

M−1

∑
y=0

x ·ψA(x,y),

m0,1 =
N−1

∑
x=0

M−1

∑
y=0

y ·ψA(x,y)

ForA=V(ei ,S) the center of gravity is computed by (cx,cy):

cx = m1,0/m0,0,

cy = m0,1/m0,0.

Similarly for A = Qi (the object) the mass centroid (zx,zy) is
computed. We determine the central moments of order one
(µ1,1) and two(µ2,0,µ0,2):

µ1,1 =
N−1

∑
x=0

M−1

∑
y=0

x̃ · ỹ · ψA(x,y),

µ2,0 =
N−1

∑
x=0

M−1

∑
y=0

x̃2 ψA(x,y),

µ0,2 =
N−1

∑
x=0

M−1

∑
y=0

ỹ2 ψA(x,y).

Using these moments and mass centroids we are able to cal-
culate the main inertia axes (Eq. 4 Appendix B) and the de-
siered rotation angleϕ for the object (Eq. 5) . This allows us
to set up the algorithm for our extension of Lloyd’s Method
that is able to incorporate object rotations:

Algorithm (MODIFIED LLOYD METHOD)

Input A set of objects{Qi}k
i=1 on the plane and a density

functionρ(p).
Output A relaxed centroidal Voronoi tessellation and a re-

laxed object-distribution.
1.Determine the mass centroids and main intertia axes

of the objects{Qi}k
i=1

repeat
2.Determine the Voronoi-Regions{Vi}k

i=1 of the
objects{Qi}k

i=1.
for i=1 to k do begin

3.Calculate the mass centroidszi of the Voronoi-
RegionsVi

4.Move the mass centroidsci of the objects into the
mass centroidszi of the Voronoi-Regions.

5.Call the Procedure ORIENTATION(Qi , Vi),
which adapts the angle of the objects main axis

c© The Eurographics Association and Blackwell Publishers 2003.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Several variations of the iteration to fill a bended object shape: a) Iteration with rotation according to case 3; b)
Point-based iteration at right angles to gradient; c) Region-based iteration at right angles to gradient; d) Region-based iteration
according to gradient; e) at a given angle to the gradient; f) cross-hatching.

according to an angleϕi .
end

until the pointszi satisfy some convergence criterion
end

Algorithm (ORIENTATION (Qi , Vi))

Input A Voronoi-regionVi and an objectQi , with mass-
centroid lying upon the mass-centroid of the Voronoi-
region.

Output The ObjectQi turned around its mass centroid with
an angleϕi .

In the subroutine ORIENTATION the adaptation of the
iteration to the geometric shape of the objects is performed.
We assume that first the mass centroid of the object is moved
over the mass centroid of the corresponding Voronoi Region,
and that the orientation is adapted. In the implementation we
experimented with several variants for the calculation of the

angleϕi . Without loss of generality we restricted ourselves
to line segments as well as convex and concave polygons:

1. If we setϕi to zero, we end up with the basic Lloyd
Method that distributes objects properly. Here we can
separate two cases: In the first case the objects are re-
garded as to be point objects at the objects center of grav-
ity, in the second they are treated as objects with exten-
tions. In Figure 2(a) a set of lines is shown. Applying the
region-based Lloyd Method we achieve an even distribu-
tion as shown in Figure 2(b). Please note that the itera-
tion works well with the very badly distributed initial set
shown in Figure 2(a).

2. It is also possible to orient the main inertia axis of the ob-
jects according to a given gradient field. If the main axis
is rotated to be at right angle to such a field, we obtain a
direct extension of the method proposed by Hausner6 that
now incorporates the object shape in combination with
Euclidean distances.
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3. Heuristically, we also can assume that the direction of
the main inertia axies should be similar for each input
object and its Voronoi Diagram. Doing so, we rotate the
main inertia axes of the objectQi usingϕi within each
iteration into the direction of the main inertia axes of its
corresponding Voronoi RegionV(ei ,S). In Figure 2(c) the
difference is shown. Of course, this operation fails for an
object like a disc that has no clear main extension. In this
case, the rotation has also no influence on the output.

4. Another idea which we have not implemented yet is to
decrease the disturbance of the angleϕi during the itera-
tion.

The variants of the iteration can be mixed while working
with an object set. Similar to what was proposed earlier3,
we build an interactive editor that allows us to model sets of
objects in various ways. The user is able to move objects,
insert or delete them using a number of “brushes”. A special
variant of the editor allows us to apply one or more steps of
each variant of the iteration. This kind of mixing allows us
to create various distributions for the objects.

In the first steps the basic Lloyd Method might be applied
to get a good initial distribution of the objects. In Figure 3(a)
such a distribution is shown. The iteration results in a nice
hatching like style with nearly no intersections. If too much
lines are inserted, such intersections cannot be avoided but
our graphical variant of the iteration is surprisingly stable for
these cases.

In Figure 3(b) the point-based variant of Lloyd’s Method
is applied but the lines are oriented at right angles to the gra-
dient (case 2). After the relaxation, the centers of gravity of
the lines are evenly distributed, and due to the orientation of
the lines visual patterns occur. This can be avoided by con-
sidering the shape of the objects as done in Figure 3(c). Now
the lines are evenly distributed according to the gradient. In
Subfigure (d) another variant of the iteration is shown: lines
are oriented at a certain angle to the gradient, two sets of
lines are overlaid. This creates a cross-hatching-like result.

5. Further Results

Additionally, we demonstrate how to change the drawing
style for classic stipple drawings. Figure 4 shows a detail
of a grass hopper eye that was stippled conventionally with
our stippling algorithm3 using nearly uniform dots (b). Sub-
figure (c) shows a similar image using dots of varying size.
Our extension of Lloyd’s Method allows us to place the dots
in a way that no overlapping occurs.

In Figure 5 another illustration is shown. Several objects
were distributed for the fish. In the interactive editor the
small objects were distributed according to a given source
image. First, the image was represented using dots, later the
user converted some of the dots into other objects using a
special “brush”. To perform the relaxation of the objects,
the extended Lloyd Method was used by applying another

(a) (b) (c)

Figure 4: Extension of stipple drawings: a) input image; b)
detailed view; c) version with varying dot size.

type of brush. In the drawing we also used an orientation for
those parts were lines have to run parallel to each other. As
we were not able to implement a gradient here –in Figure 3
the gradient was given by the shape of the tube– an “orienta-
tion brush” was used. The same could be achieved by using
a hand-drawn gradient field.

The generation of the fish still needed some hours. Most
of the time was spent in editing and selection of the points.
The generalized relaxation for sets with several hundred ob-
jects is computed with 3-6 iterations per second and there-
fore plays no significant role during editing.

6. Future Work

In the future we will apply the relaxation to other illustra-
tion styles and extend our algorithm to various types of cross
hatchings. Also a size-dependent stippling method has to be
implemented so that objects can be illustrated on differently
sized displays.

Another interesting field of research is the specification of
complex ecosystems. We will integrate various density func-
tions and modifications like using different 3d shapes for the
objects. Doing so, we hope to be able to generate various
distributions ranging from aggregated to evenly spaced sets.
This is an extension of work done in2 in which eco systems
were modelled by using efficient specification algorithms.
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Appendix A: Voronoi Diagrams

Let n objectsS= {e1,e2, ...en} be defined in two dimen-
sional space and a distance measure‖‖ be given. This can be
the Euclidian norm but any other norm will work. For each
pair of elementsei ,ej ∈ Sthe bisectorB(ei ,ej ) is defined by
all pointsp∈ R2 with equal distance toei andej :

B(ei ,ej ) = {p∈ R2;‖ei − p‖= ‖ej − p‖}

The plane is divided into two half spaces by this bisector, we
define one of this half spaces by

D(ei ,ej ) = {p∈ R2;‖ei − p‖< ‖ej − p‖}.

The half space contains all points of the plane that are nearer
to ei than toej . The Voronoi Region of an elementei ∈ S is
the Region of all points nearer toei than to any other element
of S

V(ei ,S) =
⋂

ej∈S\{ei}
D(ei ,ej )

The Voronoi Regions of each two elements are disjoined be-
cause there is nop ∈ R2 which belongs at the same time
to D(ei , p) andD(ej , p) for any ei ,ej ∈ S, i 6= j. The set of
Voronoi Regions of all elements ofS tessellates the plane,
but some of the regions are open.

(a) (b)

Figure 6: a) point set and its Voronoi Diagram; b) object set
and its Voronoi diagram.

To calculate the Voronoi Diagram of arbitrary objects we
extend the distance function. The distance between a pointp

and an elementei is defined as the minimum distance ofp to
points fromei

‖ei − p‖= min‖q− p‖,q∈ ei , p∈ R2

The bisector in this case is not a straight line, i.e. for a
point and a line segment it contains a line segment and two
paraboloids (cf. Fig. 6).

While Voronoi Diagrams of point sets can be calculated
efficiently, the sets for general objects are hard to compute.
Fortunately, Hoff et

al.7 propose a simple method that uses graphics hardware.
In this approach, the Voronoi Diagram is calculated point-
wise for each pixel of the image plane. Looking from the
negativez direction using a parallel projection, all elements
are positioned in thez= 0 plane. Each element is represented
by a special 3d shape that contains the distance to the ele-
ment in each of its pixels depth values. In the case of a point
object this shape is a cone, in the case of a line object it con-
sists of two half cones and their straight connection (see also
Fig. 7).

If these objects are colored individually, the Voronoi Re-
gions can be obtained by reading back the image viewed
from the negativez-direction and by determing the pixels
of the desired color7.

Appendix B: Calculation of Mass Moments

In the second appendix we give some mathematical back-
ground for computing geometrical moments and the main
inertia axis16. Let p= (x,y) be a point on the plane. Geomet-
rical moments of the orderk+ l for a given density function
f (x,y) are defined as:

mk,l =
∫ +∞

−∞

∫ +∞

−∞
f (x,y)xkyl dxdy.

The mass centroidc = (cx,cy) of the object is then defined
as

c =
1

m0,0
(m1,0,m0,1).

A central coordinate is defined as

p̃ = (x̃, ỹ) = (x−cx,y−cy).

With the help of these central coordinates the central mo-
ments of orderk+ l are defined as:

µk,l =
∫ +∞

−∞

∫ +∞

−∞
f (x,y)x̃kỹl dxdy

In the discrete case the geometric (Eq. (B)) and the central
(Eq. (B)) moments are calculated as a finite sum over all
pixels of the givenN×M-picture. We receive:

mk,l =
N−1

∑
x=0

M−1

∑
y=0

f (x,y)xkyl (3)
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(a) (b) (c)

Figure 7: Construction of 3d shapes: a) shapes for a point and the body of a line segment; b) shape for two adjacent line
segments viewed from above. The half cones can be omitted partially; c) projection of two shapes onto a plane and resulting
bisection.

and

µk,l =
N−1

∑
x=0

M−1

∑
y=0

f (x,y)x̃kỹl .

The two-dimensional inertia tensor is given as

J =
(

µ2,0 µ1,1
µ1,1 µ0,2

)
The eigenvalues ofJ form the maximal and the minimal in-
ertia momentsj1, j2. These are computed by:

j1,2 =
1
2
(µ2,0 +µ0,2±

√
(µ2,0−µ0,2)2 +4µ2

1,1. (4)

The angleϕ of the main inertia axis is the angle of the eigen-
vectorv1 of J which belong to the eigenvaluej1:

ϕ =
1
2

arctan(
2µ1,1

µ2,0−µ0,2
). (5)
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