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Abstract

In this paper we revisit the problem of blue noise sampling with a
strong focus on the spectral behavior of the sampling patterns. We use
the mathematical relationship between the radial power spectrum and
the radial distribution function to synthesize two types of blue noise
patterns: ideal blue noise patterns that have a power spectrum in form of a
step function and produce almost no coherent aliasing, and effective blue
noise patterns that have a high effective Nyquist frequency and produce
a controlled amount of aliasing. We give a definition for this effective
Nyquist frequency in stochastic sampling and propose an error metric that
characterizes the amount and spectral distribution of aliasing. We show
that our blue noise sets avoid most of the artifacts caused by oscillations in
the power spectra of existing blue noise patterns. Finally, we present a new
algorithm for constructing point sets with a given power spectrum.

1 Introduction

A fundamental problem in computer graphics is that high image frequencies
cannot always be removed by prefiltering which necessarily leads to some
form of aliasing. One solution is to use sampling patterns with a blue noise
power spectrum, which reduces the visibility of this aliasing by mapping it to
incoherent noise.

Even though the blue noise properties are defined in the frequency domain,
most methods for constructing blue noise patterns work purely in the spatial
domain, usually by placing geometric constraints on the sample positions.
Most of the resulting sampling patterns work very well if the image being
sampled is dominated by low frequencies. An issue that has been ignored so
far, however, is that these sampling patterns can produce artifacts at higher
frequencies (Figure 1). Ironically, these artifacts are in fact low-frequency
aliasing—exactly the kind of image error blue noise sampling was originally
designed to prevent. As can already be seen in Figure 1, this aliasing is caused
by oscillations in the high-frequency region of the sampling patterns’ power
spectrum.
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Our goal is to construct sampling patterns that conform more closely to the
original definiton of blue noise: a wide zero-region and a flat high-frequency
region. As a reference, we define ideal blue noise as a power spectrum that has
the shape of a step function (see the last column of Figure 1). To optimize the
blue noise properties of such a spectrum, we show how to derive the maximum
frequency at which the step can occur. The point sets corresponding to this
maximum frequency differ significantly from the well-known Poisson disk
patterns prevalent in computer graphics.

To assess the blue noise qualities of a sampling pattern we introduce two
useful measures for the shape of the spectrum: the effective Nyquist frequency
νeff and the spectrum oscillation Ω. These two measures suggest two broad
categories of blue noise patterns:

• low aliasing blue noise is characterized by low oscillation in the spectrum,
which guarantees that aliasing is mapped to broadband noise. This class
contains stochastic and jittered grid sampling as well as the proposed
ideal blue noise. The challenge for this category is to maximize the
effective Nyquist frequency without causing oscillations.

• high effective Nyquist blue noise is characterized by a high value of νeff,
which guarantees a large range of low frequencies that can be sampled
without aliasing. This comes at the cost of more oscillation at higher
frequencies and therefore an increased risk of coherent aliasing. The
class contains most blue noise patterns proposed in recent years. The
challenge for this category is to keep the oscillation as low as possible.

For this second category, we design effective blue noise sampling patterns
whose power spectra are flat except for a single peak. The resulting patterns
achieve a good tradeoff between νeff and Ω: the effective Nyquist frequency is
comparable to that of many high-quality blue noise patterns, but by controlling
the shape of the spectrum, we can limit the oscillation and hence the amount
of coherent aliasing that can be introduced during image-plane sampling.

The algorithm used to construct sampling patterns that match a given
power spectrum is discussed in Section 4. It is conceptually similar to the
recent method by Zhou et al. [ZHWW12] in that it exploits the connection
between Fourier analysis and spatial statistics to translate the construction
problem into the spatial domain. However, in contrast to Zhou et al., our
method is based on a one-dimensional statistic called the radial distribution
function, which also underlies our theoretical arguments in Section 3.

We evaluate the presented sampling patterns in detail in Section 5 and show
that for image-plane sampling, they perform as well or better than commonly
used sample points. We conclude with a summary and a discussion of open
questions in Section 6.

2 Background and Related Work

Aliasing is often unavoidable in computer graphics, since many signals aren’t
band-limited and exact prefiltering is only rarely possible. Stochastic sampling
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can reduce the visibility of this aliasing by replacing it with incoherent noise
[DW85, Coo86]. Better results can generally be obtained with blue noise sam-
pling. The original motivation for blue noise sampling was mainly empirical
and followed from psychovisual arguments regarding the visibility of aliasing.
Yellot [Yel83] proposed that aliasing is least conspicuous if

1. the power spectrum of the sample points is noisy and without concen-
trated spikes, and

2. the spectrum is close to zero for low frequencies.

A more rigorous motivation for blue noise sampling can be obtained using
arguments from signal processing [Mit91].

2.1 Constructing Blue Noise Point Sets

Constructing sampling patterns with blue noise properties is a nontrivial task
that has received a lot of attention in the last 20 years [LD08]. The problem is
usually approached by arranging points using certain geometric constraints
such as large mutual distances between sample points, centroidal Voronoi
tessellations, etc. Constructing blue noise patterns is still an active area of
research; a few recent publications are [SGBW10, Fat11, SHD11, CYC∗12].

Most construction algorithms work in the spatial domain, even though
the “blue noise” property itself is defined in the Fourier domain. The only
construction algorithms we are aware of that take frequency properties into
direct account are the paper by Mitsa and Parker [MP92] and the recent
work by Zhou et al. [ZHWW12]. Zhou et al. construct point sets matching a
given power spectrum by performing a gradient descent optimization on an
energy derived from the autocorrelation function. A similar approach based on
simulated annealing was proposed in the context of solid state physics [RT97].
We present a third algorithm for constructing point sets with a given spectrum
in Section 4.

2.2 Analysis of Sampling Patterns

Fourier analysis is the standard method for studying the properties of sample
patterns [Uli93, LD08]. In Appendix A, we summarize our conventions for the
Fourier transform and power spectrum and list the most important variables.
We also normalize many of the quantities used in this paper to make their
value independent of the number of sample points N.

As an alternative to Fourier analysis, it is also possible to characterize point
sets using spatial statistics [IPSS08]. Spatial statistics are widely used in many
domains that study the arrangement of point-like objects, such as solid-state
physics, geology, and astronomy, but have seen little use in computer graphics.
Two main statistics are particularly relevant in our case: the autocorrelation and
the radial distribution function (RDF).

The autocorrelation A f (ddd) =
(

f (xxx) ? f̄ (−xxx)
)
(ddd) measures the self-similarity

of a signal f under translation by a vector ddd. For a sampling pattern s, it is easy

4



to show that its power spectrum is related to its autocorrelation via a Fourier
transform

P(ννν) = N−1F [As(ddd)].

Up to normalization, As(ddd) is therefore equivalent to the “differential distribu-
tion function” p(ddd) proposed by Wei and Wang [WW11].

The RDF measures the distribution of point distances and is also known
as the pair-correlation function [IPSS08]. It gives the probability of finding
another point at a certain distance from a reference point. The bottom part of
Figure 1 shows the RDFs for several prominent sampling patterns. Lau and
Ulichney [LUA03] did use RDF diagrams to qualitatively illustrate the spatial
distribution of points, but we aren’t aware of other applications in computer
graphics. The RDF g(r) is related to the radial power spectrum P(ν) by a Hankel
transform

P(ν) = 1 + nH[g(r)] (1)

(see Appendix B). We will use the RDF and its relation to the radial power
spectrum extensively in the remainder of this paper.

RDF and autocorrelation both measure the distribution of inter-point dis-
tances and are closely related; the main difference is that the RDF is a function
of the scalar distance whereas the autocorrelation is a function of the vector
distance. We primarily focus on the RDF in this paper because it is easier to
handle analytically. Its dependence on absolute distances is not a restriction,
since sampling applications generally call for isotropic point sets.

3 Low-Oscillation Blue Noise

The example in Figure 1 demonstrates that low-frequency noise occurs in the
sampled image if the power spectrum oscillates; we will explain this in detail
in Section 5.2. In this section we construct two classes of blue noise patterns
that prevent such artifacts by limiting the amount of oscillation.

3.1 Ideal Blue Noise

We begin with an idealization of blue noise which we call ideal blue noise. The
power spectrum of ideal blue noise is zero in low frequencies and constant in
high frequencies, i.e.,

Pideal(ν; ν0) = n
δ(ν)

2πν
+ H(ν− ν0).

Here we have included the DC peak and used the Heaviside step function H (cf.
Figure 2a). It has been shown that it is possible to construct point distributions
with such a power spectrum [ZHWW12] but what is the largest value of ν0 for
which Pideal(ν; ν0) is realizable?

There are two necessary conditions a power spectrum P(ν) must fulfill to
be realizable by a point distribution [CTS03, UST06]: since both P(ν) and the
associated RDF g(r) are non-negative by definition, we must have

g(r) ≥ 0, P(ν) ≥ 0. (2)
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Î Ŝ Î ? Ŝ

? =

Figure 3: The spectrum of the sampled signal Îs is obtained by convolving
the original spectrum with the Fourier transform of the sampling function.
Aliasing occurs when the replicated spectra Î overlap the central spectrum on
the right-hand side.

Because both functions are linked via a Hankel transform, these two conditions
severely limit the range of realizable power spectra. Our experiments so
far suggest that these realizability conditions are not only necessary but also
sufficient: for every power spectrum/RDF pair that fulfills Eq. (2), we have
been able to find corresponding point distributions.

For the ideal blue noise spectrum Pideal the associated RDF is

gideal(r) = 1−
2πν2

0
n

jinc(2ν0r).

This follows from Eq. (14) and the Hankel transforms in Table A.3. Solving
gideal(r) ≥ 0 for ν0, we obtain

ν0 ≤ νmax =
√

n/π.

In other words, νmax is the highest realizable position of the step: Figure 2(a)
demonstrates that for ν0 > νmax, the RDF gideal becomes negative. The only
way to move the position of the step further to the right is to increase the
sample density n. The figure also shows one resulting point set for ν0 = νmax.
Note that the point distribution differs significantly from usual Poisson disk
patterns in that it contains many closely spaced point pairs. We will evaluate
this sampling pattern in more detail in Section 5.

3.2 Quantifying Blue Noise

By comparing the power spectra in Figure 1, we see that ideal blue noise has
a narrower zero region than classic blue noise patterns. Increasing the zero
region beyond νmax requires us to sacrifice some of the flatness of P(ν) in
the high-frequency region. We will discuss a controlled way to do this in the
next section. As a preparation, we introduce two numerical measures that
characterize the shape of the power spectrum: the effective Nyquist frequency
νeff measures the size of the zero region and indicates the range of frequencies
that can be represented with almost no aliasing; the oscillation Ω measures the
amount of oscillation in the power spectrum, and therefore the risk of coherent
aliasing.
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For uniform sampling with sample spacing d, the range of frequencies
that can be reconstructed without aliasing is given by the Nyquist frequency
νc = 1/2d. This simple relationship between spectral properties and sample
distances unfortunately breaks down for non-uniform sampling, but it is
possible to define the equivalent of the Nyquist frequency directly in the
frequency domain.

In general, the spectrum of a sampled image Is is given by Îs = Î ? S, where
Î is the original image spectrum and S the Fourier transform of the sample set
(cf. Appendix A.1). This relationship is visualized in Figure 3. This diagram
suggests that the range of aliasing-free frequencies roughly equals half the
radius of the zero-region in the power spectrum. To formalize this idea, we
consider the average energy in the power spectrum up to a certain frequency ν

Pavg(ν) =
1

πν2

∫
|ννν′ |<ν

P(ννν′)dννν′

and define the effective Nyquist frequency νeff as the largest frequency so that
Pavg(2νeff) stays below a given threshold

νeff = max{ν : Pavg(2ν) ≤ Eτ}. (3)

We found that a threshold of Eτ = 0.1 gives useful results. As expected, the
effective Nyquist frequency of ideal blue noise is νeff ≈ ν0/2.

To measure the amount of oscillation of the power spectrum, we use the
standard deviation of P(ννν) from the 1-level

Ω =

(
1
|R|

∫
R
|P(ννν)− 1|2 dννν

)1/2
.

Here, R is the integration domain and |R| its area. We exclude the zero-region
of the power spectrum by integrating over the ring R = {ννν : 2νeff ≤ |ννν| ≤
40νhex}.

This definition is conceptually similar to the strict Nyquist frequency in
the case of uniform sampling: Frequencies below νeff can be sampled and
reconstructed with little error. Frequencies above νeff, on the other hand, are
replaced by aliasing. In this case, the magnitude of Ω determines whether this
noise is, on average, closer to white noise (Ω small) or colored noise (Ω large).

3.3 Effective Blue Noise

The ideal blue noise patterns from Section 3.1 prevent coherent aliasing by
keeping the power spectrum flat, but this comes at a cost: The effective Nyquist
frequency of these patterns cannot be higher than

√
n/4π, which is about 58%

of the maximum Nyquist frequency of a hexagonal lattice. In this section,
we discuss a class of blue noise patterns that offer a much higher Nyquist
frequency (up to 86% of νhex) by introducing some oscillation into the power
spectrum. By directly influencing the shape and the amount of oscillation,
we obtain effective blue noise patterns that combine a high effective Nyquist
frequency with comparatively low oscillation.
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3.3.1 Increasing the Effective Nyquist Frequency

The main problem when constructing blue noise patterns with an effective
Nyquist frequency higher than the νmax of ideal blue noise is that we cannot
choose P(ν) arbitrarily due to the constraints imposed by the realizability
conditions in Eq. (2). In general, finding power spectra that are realizable is a
nontrivial problem because the space of functions that obey the realizability
conditions is not easy to parametrize [GP06, UST06].

We briefly note two ways of constructing realizable power spectra with a
higher effective Nyquist frequency that we ultimately discarded due to the lack
of control over the shape of the spectrum. One option is to subject an ideal
blue noise pattern to an optimization method such as Lloyd’s method [Llo82,
BSD09, CYC∗12]. Even though this gradually increases νeff, all of these methods
operate in the spatial domain and give us no direct control over the height
and shape of oscillations in the power spectrum. Another option is to exploit
the duality between RDF and power spectrum: As we show in Appendix D, it
is possible to generate point sets whose power spectrum matches the RDF of
another (dual) point set. This approach gives access to a large set of realizable
power spectra, but it also lacks the direct control over the spectrum that we
seek.

3.3.2 Designing Effective Blue Noise Power Spectra

To obtain more direct control over the effective Nyquist frequency and the
amount of oscillation, we study the following generalization of the ideal blue
noise spectrum

Peff(ν; ν0; p0) = n
δ(ν)

2πν
+ Gσ ? (p0δ(ν− ν0) + H(ν− ν0)) .

Compared to Pideal we added a Dirac peak of power p0 at the step frequency ν0.
Both this peak and the step function are optionally convolved with a Gaussian
kernel Gσ with standard deviation σ. Figure 2(b) illustrates the shape of this
power spectrum.

This family of blue noise spectra has three interesting properties:

1. Aside from the single peak at ν0, there are no oscillations.

2. The width and height of the peak can be controlled by adjusting the
smoothing radius σ and the peak energy p0.

3. The ideal spectrum Pideal is included as a special case.

Not all spectra in this family are realizable, however, and due to the realizabil-
ity conditions, the parameters cannot be adjusted independently. The main
challenge therefore is to find combinations of the three parameters ν0, p0, and
σ that are realizable and yield good sampling patterns.

We explored this family of effective blue noise patterns empirically and
searched for configurations where at the same time

• ν0 is as high as possible,

9
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• coherent aliasing is kept at an acceptable level (by appropriate choice of
p0 and σ), and

• energy at frequencies below and above ν0 are free of impurities, i.e.,
P(ν) ≈ 0, ν < ν0 and P(ν) ≈ 1, ν > ν0.

Figure 4 shows some of the results we generated. Ideal blue noise with
ν0 = νmax is used as a starting point and is depicted to the left (a). We then
increase ν0 to 1.33νmax (b, c) and 1.66νmax (d, e). For each of those pairs, we
show one result with a small σ and one with a large σ.

Generally, the more we increase the peak height, the further we are able
to push ν0 and thus the effective Nyquist frequency. If we take this too far,
however, strong aliasing can show up in the sampled image. The zone plate
renderings at the top of Figure 4 demonstrate that visible moiré patterns
emerge once P(ν0) > 4. We can reduce these artifacts by increasing the amount
of smoothing σ. This has two effects: It decreases the height of the peak and
increases its width, which means that aliasing is scattered over a wider range
of frequencies. The highest effective Nyquist frequency we could produce
without severely contaminating frequencies below or above ν0 is depicted in
column (d).

The best compromise we found between a high effective Nyquist frequency
and coherent aliasing is shown in (e); in the remainder of the paper we will
refer to it as effective blue noise. This configuration yields an effective Nyquist
frequency comparable to classic blue noise patterns but without sharing their
high-frequency oscillations that may lead to additional aliasing (cf. Table 1).

4 Spectrum Matching Algorithm

Before we evaluate the performance of the new proposed sampling patterns
in Section 5, we briefly describe the algorithm we used to synthesize sam-
pling patterns from the power spectra we designed in the previous section.
As mentioned in Section 2.1, similar algorithms have already been proposed
by other researchers. In our tests, the annealing approach by Rintoul and
Torquato [RT97] converged only slowly and didn’t give good results for rea-
sonably large point sets. The paper by Zhou et al. [ZHWW12] wasn’t available
when we started this work, but judging from the examples in that paper, the
results seem to be very similar. We look forward to comparing both approaches
in more depth in the future.

From an algorithmic point of view, our method is very similar to that of
Zhou et al.: Both algorithms synthesize the point sets by reformulating the
problem in the spatial domain, and both iteratively update the positions of all
points by applying a force to each point

xxx′i = xxxi + h× FFFi, (4)

where h is a step size parameter and F is a force that depends on the current
point positions. The main difference between both algorithms is how they
calculate the forces in Eq. (4): Zhou et al. propose a force based on gradient
descent, whereas ours is motivated geometrically.
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We now describe our approach in more detail. First, the “target” power
spectrum to be matched Pt(ν) is transformed into an equivalent RDF gt(r)
using a numerical Hankel transform (Appendix B). Since both functions are
one-dimensional, our approach can only synthesize isotropic point sets. The
current point set is initialized with a random distribution of points. To evolve
the point set towards the target distribution, we let all particles attract or repel
each other using forces of the form

FFFi = ∑
j 6=i

f (|xi − xj|)
xxxi − xxxj

|xxxi − xxxj|2
. (5)

The function f (r) determines the degree of attraction or repulsion and is
defined as follows:

f (r) =
∫ r

0
g(x)dx︸ ︷︷ ︸
G(r)

−
∫ r

0
gt(x)dx︸ ︷︷ ︸
Gt(r)

. (6)

It may seem surprising that f is defined in terms of the integral of the RDF
difference. This can be explained as follows: Since the RDF measures the
density of points at a certain distance, G(r) measures the average point density
in circular regions of radius r. Consider a fixed distance r0. If G(r0) > Gt(r0),
the current point distribution contains too many point pairs that are closer than
r0, compared to the target distribution. In this case the point set as a whole
has to spread out, so f (r0) should be repulsive to make room. Conversely, if
G(r0) < Gt(r0), too many pairs have a distance greater than r0, so the points
have to move closer together; in this case, f (r0) should be attractive. In both
cases, the choice f (r) = G(r)− Gt(r) fulfills this condition.

In each full iteration, we first calculate all the forces FFFi and then update the
positions according to Eq. (4). The main parameter during each iteration is
the step size h, which is chosen adaptively depending on the largest force as
in Zhou et al. [ZHWW12]. We use an additional temperature parameter T to
reduce the step size whenever the optimization gets stuck

h = T
Fmax√

N
, Fmax = max

i
‖FFFi‖.

The energy E = ‖g(r)− gt(r)‖2 tracks the progress of the optimization. The
optimization is considered stuck if E hasn’t reduced during the last 20 iterations;
in this case, the temperature is reduced by a constant factor. The algorithm
terminates once the temperature has fallen below 10−3.

The number of bins we use for calculating the RDFs and the force f is set
to Nbins = N. Significantly fewer bins lower the resolution of the force and
can lead to inaccurate results, and significantly more bins lead to noisier RDF
estimates. We consider the RDF in the interval [0, 0.5); smaller intervals can be
used to speed up some of the computations [WW11], but we have found that
this reduces the quality of the results for RDFs that decay slowly.

Since a certain amount of noise is inevitable when estimating RDFs from
finite point sets, we optionally smooth the histograms using a Gaussian kernel.
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Method νeff Ω δmin δavg Q6 Note
Lo

w
A

lia
s. Random 0 0.05 0.01 0.47 0.35 F

Jittered Grid [Coo86] 0.24 0.27 0.05 0.59 0.37 F
Dart Throwing [LD08] 0.58 0.99 0.76 0.80 0.42
Ideal Blue Noise 0.58 0.03 0.09 0.64 0.36 F

Ef
f.

N
yq

. Effective Blue Noise 0.86 0.75 0.55 0.80 0.40
CCCVT Centroids [BSD09] 0.89 1.22 0.75 0.88 0.53 O
El. Halftoning [SGBW10] 0.89 1.29 0.74 0.88 0.52 O
FPO [SHD11] 0.90 4.06 0.93 0.93 0.47 O

H
ex

. CVT Centroids [Llo82] 0.98 2.82 0.80 0.94 0.85 R,O
Rank-1 [DKD08] 1 11.1 0.99 0.99 0.997 R

Table 1: Comparison of several frequency and spatial statistics of sampling
patterns. The last column marks methods that are (F)ree of coherent aliasing
and methods that are either (R)egular or show strong (O)scillations in their
power spectrum. The results are averages over ten sets containing 4096 points.

There is no simple rule for choosing the optimal width σ of the Gaussian,
since this involves a tradeoff between reducing noise vs. keeping relevant
information in the RDF. In our experiments, good values for σ were between
0 and 16/Nbins. All the results in this paper have been generated with σ =
8/Nbins, and no parameters had to be adjusted manually.

5 Evaluation

We now evaluate our ideal and effective blue noise patterns and study some of
their properties. First, we briefly compare their main characteristics to other
sampling patterns. We then use two classes of synthetic test images to evaluate
their performance during image-plane sampling: cosine waves and a variation
of the standard zone plate. For cosine waves we include a theoretical error
analysis and show how the power spectrum affects the error introduced by
sampling. The zone plate is used to demonstrate how our sampling patterns
behave over large frequency ranges.

5.1 Properties

Table 1 summarizes the most important characteristics of our blue noise sets
and compares them with other well-known sampling patterns. We have sorted
the sampling patterns into the two categories mentioned in the introduction:
those with low aliasing, and those with a high effective Nyquist frequency. For
reference, we have also included two point sets that are closer to the hexagonal
lattice.

The effective Nyquist and oscillation measures from Section 3.2 are shown
in the first two columns. We see that for traditional blue noise patterns, a high
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νeff comes at the cost of a high oscillation as well. This interdependence was
sometimes referred to as the noise-aliasing tradeoff [DW85, Gla95]. The point
sets constructed in this paper demonstrate that it is possible to achieve high
values of νeff with only little oscillation, so the tradeoff is not strict.

The smallest and average nearest-neighbor distance is measured by δmin
and δavg [SHD11]. The value of δmin corresponds to the Poisson disk radius
while δavg roughly measures how uniform the points are distributed. Our point
sets have comparatively low values for both measures. Even though a large
separation between samples can be beneficial, as exemplified by the success of
Poisson disk patterns, it is not a prerequisite for efficient blue noise sampling.

Q6 is the bond-orientational order, which measures how close to a hexagonal
arrangement a point distribution is [KTT00]. Point sets with Q6 < 0.5 have a
high amount of “orientational disorder” or anisotropy. Both presented point
sets are irregular in this sense.

5.2 Analysis of Sampling Artifacts

In this section we derive an estimate for the error introduced by blue noise
sampling, or more specifically, for the spectrum of this error. This analysis
will clarify how the shape of the power spectrum affects the amount and
the spectral distribution of aliasing in the resulting image and why the low-
oscillation patterns constructed in Section 3 perform better than other blue
noise patterns. A similar analysis was already performed by Dippé and
Wold [DW85], but they only derived the sampling error for constant functions.

Recall from Section 3.2 that the spectrum of a sampled image Is is given by
Îs(ννν) = S ? Î(ννν), with S being the Fourier transform of the sampling pattern
and Î the Fourier transform of the original image. For sampling patterns with
a finite number of points, the function S has two components: a DC peak at
the origin and a “noisy” remainder S′, so we can write

Îs(ννν) = [nδ(ννν) + S′(ννν)] ? Î(ννν).

Likewise, we will denote by P′(ν) the power spectrum without the DC peak.
The error introduced by sampling is the difference between the sampled and
the original image

E(ννν) = | Îs(ννν)− Î(ννν)|2 = |S′ ? Î(ννν)|2. (7)

Note that we are primarily interested in the low-frequency region of E(ννν)
up to the Nyquist frequency of the pixel grid, which describes the frequency
distribution of aliasing. The high-frequency region of E(ννν) is removed by
the reconstruction process. For a constant image function, Eq. (7) gives us
E(ννν) ∝ |S′(ννν)|2 = P′(ννν), which is the result by Dippé and Wold.

As an important and illustrative class of non-constant images, we now
consider plane cosine waves of the form

Ifff (xxx) = cos(2π fff · xxx), Îfff (ννν) =
1
2
(
δ(ννν− fff ) + δ(ννν + fff )

)
.
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Plugging this into Eq. (7) gives the sampling error

Efff (ννν) =
1
2

∣∣S′(ννν− fff ) + S′(ννν + fff )
∣∣2.

This error is bounded from above by the following term which depends only
on the power spectrum:

Efff (ννν) ≤
P′(ννν− fff ) + P′(ννν + fff )

2
+
√

P′(ννν− fff )P′(ννν + fff ) (8)

The proof is elementary and shown in Appendix C. Even though this is
only an upper bound, we will see that it accurately predicts the frequency
characteristics of the sampling error.

A few things can be read off directly from this formula. Obviously, the
sampling error is obtained by combining shifted copies of the power spectrum.
If P′(ν) has a peak around frequency f0, sampling a cosine with the same
frequency will cause copies of this peak to overlap at the origin. The width of
this peak then determines the appearance of this aliasing: A broad peak leads
to broadband aliasing which appears as unstructured noise, whereas a narrow
peak produces low-frequency aliasing that appears as structured noise.

This is illustrated in Figure 5 which compares the upper bound of E f (ν)
with actual sampled images. As can be seen, ideal blue noise and effective blue
noise produce the cleanest images at low frequencies. Dart throwing performs
especially badly since its power spectrum is non-zero for all frequencies, so
E f (ν) can never be zero. Ideal blue noise produces high-frequency noise quite
early, but as we increase the signal frequency, this noise quickly takes the
shape of white noise, as shown by the flat response in the last two rows. In all
these cases, the visual appearance matches the predicted sampling error in the
curves to the right.

Both effective blue noise and farthest-point optimization (FPO) can cause
coherent aliasing for certain image frequencies, as demonstrated in the last
two rows of Figure 5. The slow decay of a traditionally constructed sam-
pling pattern like FPO means that every peak in the spectrum can potentially
cause artifacts. For effective blue noise, on the other hand, only one range of
frequencies is affected because it contains a single peak only.

5.3 Application to Image-Plane Sampling

We test the image-plane sampling qualities of our blue noise patterns using
a variant of the common zone plate test function [Mit90]. This function is a
radial sine wave of the form z(r) = 1

2 [1 + cos(αr2)]. Aliasing is unavoidable
when sampling z since the local frequency of z increases linearly with the
distance r from the origin.

One problem with the standard definition of the zone plate is that it is hard
to configure. Since we would like to configure the zone plate renderings with
respect to particular frequencies (such as peaks in the power spectrum or the
Nyquist frequency of the pixel grid νpx), we used the following generalized
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zone plate function

z′(r) =
1
2
(
1 + cos[ν(αr + φ)]

)
The frequency ν, the parameter α, and the phase φ are defined as

ν := νcutνpx νcut ≥ 0,

α := min(r/rcut, 1) rcut > 0,

φ := max(r− rcut, 0).

Here, νcut denotes the maximum frequency that is produced by z′ relative to
νpx, and rcut the desired distance of this maximum frequency to the origin. For
all zone renderings in this paper, we have tiled toroidal sets of 4096 points
over the image-plane, and used a Lanczos filter with a support of width 4 for
resampling.

Figure 1 already demonstrated that—in contrast to traditional blue noise
patterns—ideal blue noise produces virtually no coherent aliasing, except
for a small amount close to the step. This observation is confirmed by Fig-
ure 6, which directly compares ideal blue noise to dart throwing, which is
the strongest competitor in the low-aliasing category. We focus on the low-
frequency region by setting νcut = 5, rcut = 1. When using only one sample
per pixel, the difference is negligible, but already at 4 spp, the improvement for
low frequencies is evident.

The right-hand side of Figure 6 shows a similar comparison for methods
with a high effective Nyquist frequency. The method by Schlömer et al. [SHD11]
offers one of the highest effective Nyquist frequencies (cf. Table 1), but low-
frequency image content appears not quite as clean as with effective blue noise
sampling. Effective blue noise also shows no coherent aliasing beyond the
narrow range of frequencies around 2νeff.

6 Conclusion

In this paper, we have revisited the problem of blue noise sampling with
a stronger emphasis on the shape of the power spectrum than most other
recent publications. Starting from the observation that oscillations in the power
spectrum can lead to aliasing artifacts we have proposed two improvements to
standard blue noise patterns:

• ideal blue noise, which has a step-like power spectrum, and

• effective blue noise, which has a single configurable peak but is otherwise
flat.

Both blue noise types perform well in image-plane sampling tasks: low fre-
quencies are represented at least as clean as with other sampling patterns, but
high frequencies are less likely to lead to aliasing, because they are mapped to
white noise more efficiently.
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The main tradeoff is in the representation of middle frequencies, and in
practical applications this should determine the choice of sampling pattern.
There are good reasons to choose sampling patterns with higher oscillations, or
even regular sampling patterns, for example if we know that the image being
sampled contains little energy in frequency ranges that can cause aliasing, or
if the artifacts that do occur are negligible compared to the increased image
quality in medium frequencies. The advantage of sampling patterns like ideal
blue noise is that they guarantee a low amount of coherent aliasing at the cost
of a lower effective Nyquist frequency. Patterns like effective blue noise trade a
better representation of low frequencies for a higher risk of coherent aliasing
in middle frequencies. This is basically the classical noise-aliasing tradeoff,
but we have shown that we gain considerable control over this tradeoff by the
ability to directly shape the power spectrum.

We are confident that putting a stronger focus on the spectral properties of
sampling patterns instead of their geometric properties is a fruitful avenue for
further research. Some interesting open questions are:

• We have only studied a very limited subset of realizable blue-noise
spectra, namely step functions and step functions with a single bulge
at the transition. Differently shaped power spectra might perform even
better for image-plane sampling.

• All currently known methods for constructing point sets from the power
spectrum rely on iterative optimization and are therefore restricted to
offline processes. Generating similar patterns on-line would require a
completely different algorithmic approach.

• We introduced a new way to predict the frequency distribution of the
aliasing error in Section 5.2. Can we derive more general predictions
from this analysis or extend it to other interesting classes of signals?

• The sampling patterns we have proposed have the unique property that
only a single range of image frequencies can produce coherent aliasing.
Is it possible to exploit this by treating those frequencies specially during
prefiltering or postfiltering?
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A Conventions and Notation

A.1 Power Spectrum

Given a point set P = {xxx1, . . . , xxxN}, the power spectrum is defined as

P(ννν) = N−1|S(ννν)|2,

with the sample function s and its Fourier transform S

s(xxx) =
N

∑
i=1

δ(xxx− xxxi), S(ννν) =
N

∑
i=1

e−2πννν·xxxi . (9)

We denote the radial average of the power spectrum by P(ν). For conciseness,
we will typically use the term “power spectrum” even for this 1D profile.
Figure 1 shows plots of the low-frequency region for several popular blue noise
power spectra.

A.2 Normalization

We normalize many of the quantities used in this paper to make their value
independent of the number of sample points N. Instead of the absolute number
of points, we use the number density n = N/V, which measures the average
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a f (r) + bg(r) ↔ aF(u) + bG(u)
f (ar) ↔ a−2F(u/a)

disk(r) ↔ 2π jinc(2u)
H(r− a) ↔ δ(u)/2πu− 2πa2 jinc(2ua)
δ(r)/2πr ↔ 1

Table 2: Common Hankel transform pairs used in the text.

number of points per unit area; for points distributed in the unit torus, we
simply have n = N. Distances are normalized by the largest minimum distance
of a hexagonal lattice, dhex = (2/

√
3n)1/2, and frequencies are normalized by

its Nyquist frequency, νhex =
√

N/2.

A.3 Hankel Transform

The Fourier transform of a circularly symmetric function f (r) = f (r, θ) is also
circularly symmetric and called the Hankel transform H [Bra99]. This transform
is obtained from the the standard Fourier transform

F(u, φ) =
∫ ∞

0
r f (r)

∫ 2π

0
e−2πiru cos(θ−φ) dθ dr.

by rewriting the inner integral using the definition of the Bessel function J0,

F(u) = H[ f (r)] = 2π
∫ ∞

0
r f (r)J0(2πru)dr. (10)

The inverse Hankel transform is identical to the forward transform,

f (r) = H[F(u)] = 2π
∫ ∞

0
uF(u)J0(2πru)du.

The main properties of the Hankel transform follow from the properties of
Fourier transforms in 2D; we list the most important ones in Table A.3. The
unit disk disk(r) and the Heaviside step function H(r) are defined as

disk(r) =

{
1 r ≤ 1
0 r > 1

, H(r) =

{
0 r ≤ 0
1 r > 0

.

B Radial Distribution Function

The radial distribution function g(r) measures how the distances between pairs
of points are distributed: It is proportional to the probability ρ(r) of finding
another point at a certain distance r from an arbitrary reference point,

g(r) = ρ(r)/n.

The normalization by n−1 ensures that g(r)→ 1 as r → ∞. For random points
with point density n, the probability of finding another point at distance r from
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any particle must also be n; in this case, the RDF is constant and the power
spectrum is flat with a DC peak at the origin,

gPoiss(r) = 1, PPoiss(u) = 1 + n
δ(u)
2πu

.

For other point distributions, g(r) oscillates around 1; this oscillation indicates
how much the point set differs from a random arrangement. Important infor-
mation can be read off directly from the RDF, such as the minimum distance
between points and the distance at which the points become uncorrelated.

Throughout the paper we exploit the close relationship between the RDF
and the power spectrum of a point set. The power spectrum P(ννν) is defined as

P(ννν) =
1
N

S(ννν)S∗(ννν) =
1
N ∑

k,j
e−i2πννν·(xxxk−xxxj). (11)

By setting rrrjk = xxxk − xxxj and pulling out the k = j terms, we can write

P(ννν)− 1 =
1
N ∑

k 6=j
e−i2πννν·rrrjk =

∫
R2

e−i2πννν·rrrρ(rrr)drrr. (12)

The function ρ(rrr) measures the density of points at distance rrr. To recover
Eq. (11), we can set ρ(rrr) = ∑k 6=j δ(rrr − rrrjk)/N, but we usually treat ρ(rrr) as a
continuous function.

For isotropic point sets, the density is circularly symmetric, so ρ(rrr) = ρ(r).
In this case, Eq. (12) turns into a Hankel transform

P(ν)− 1 = H[ρ(r)] = nH[g(r)]. (13)

For numerical computations, a different notation is preferable. Since g(r)→ 1
as r → ∞, the Hankel transform becomes easier to evaluate if we rewrite
Eq. (13) as

P(ν) = 1 + nH
[
g(r)− 1

]
+ n

δ(ν)

2πν
,

g(r) = 1 + n−1H
[

P(ν)− 1− n
δ(ν)

2πν

]
.

(14)

Another advantage of this representation is that the main components of a
typical power spectrum become evident, namely the DC peak at ν = 0 and the
oscillation around 1, which is due to the Hankel transform of g(r)− 1.

C Sampling Error Bounds

This section proves the inequality from Eq. (8). To simplify the notation, we set
a ≡ S′(ν− f ) and b ≡ S′(ν + f ); both values are complex numbers.

E f (ν) =
1
2
|a + b|2

=
1
2

[
|a|2 + |b|2 + (ab̄ + ab̄)

]
≤ 1

2

[
|a|2 + |b|2 + 2|a||b|

]
The identity |S′(ν)|2 = P′(ν) now gives the stated inequality.
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Figure 7: Comparison of dart throwing to its dual. The two point sets are dual
in the sense that the radial power spectrum of the first point set has the shape
of the RDF of the second point set and vice versa.

D Duality of RDF and Power Spectrum

An interesting way to investigate realizable power spectra is to consider the
relation between RDF and power spectrum from Eq. (14). If we leave out the
DC peak, power spectrum and RDF become dual in the following sense

P(ν) = 1 + nH [g(r)− 1] , g(r) = 1 + n−1H [P(ν)− 1] .

A direct consequence of this duality is that if g(r) is a realizable RDF, then
P(ν) := g(ν/n) is a realizable power spectrum (this follows directly from
the scaling properties of the Hankel transform). What is beautiful about this
observation is that we immediately have access to large number of realizable
RDFs and power spectra, namely those that correspond to classical blue noise
patterns (Figure 1). For example, if we use the RDF of a dart throwing point
set with gdart(r), we can construct a dual point set such that Pdual-dart(ν) =
gdart(ν/n) (see Figure 7). Although this approach does not provide a way to
control the amount of aliasing induced by the realized point set, it does give
the guarantee that the power spectrum is realizable.

E Closeups

In the following, you find enlarged versions of the most important renderings
from Figures 5 and 6. Note that it is difficult to faithfully reproduce these
images due to the resampling process of a PDF viewer or printer.
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Low Aliasing Methods
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Figure 8: Results for the low aliasing methods in Figure 5.
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High Effective Nyquist Methods
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Figure 9: Results for the high effective Nyquist methods in Figure 5.
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Low Aliasing Methods
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Figure 10: Results for the low aliasing methods in Figure 6.
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High Effective Nyquist Methods
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Figure 11: Results for the high effective Nyquist methods in Figure 6.
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