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Abstract: This paper provides a brief overview of uncer-
tainty visualization along with some fundamental consid-
erations on uncertainty propagation and modeling. Start-
ing from the visualizationpipeline,wediscuss how thedif-
ferent stages along this pipeline can be affected by uncer-
tainty and how they can deal with this and propagate un-
certainty information to subsequent processing steps. We
illustrate recent advances in the field with a number of ex-
amples from a wide range of applications: uncertainty vi-
sualization of hierarchical data, multivariate time series,
stochastic partial differential equations, and data from lin-
guistic annotation.
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1 Introduction

Virtually any information comes with some aspect of un-
certainty. The way we visually represent uncertainty can
have a strong influence on how we perceive such informa-
tion. Still, uncertainty is often neglected in general, and
thus rarely considered in visual analysis and dissemina-
tion processes. There are two reasons for this: First, we
tend to interpret visualizations as truthful because they
are easier to understand in this case; less straightforward
interpretation, as usually accompanied by uncertain data,
must be learned. Second, many visualization techniques
cannot handle uncertain data; then, the only option is to
consider the most likely realization of the data and omit
aspects of uncertainty.

Let us illustrate the topic and the aforementioned
problems for the simple example of weather forecasts.
Ideally, one would like to have a definite forecast con-
cerning temperature and rain, although weather cannot
be predicted with pin-point precision. Showing only the
most likely temperature and rain, i. e., without the fore-
cast range, it is virtually impossible to assess how much
one can trust the weather forecast. Interestingly, there
are different ways in which weather forecasts are commu-
nicated, for example, in TV news shows in the U.S and
Germany. A probabilistic representation, as often used in
North America, will tell the viewer the percentage of a
certain event (rain in a given region), this way conveying
the uncertainty, whereas in Germany,weather charts often
just show the most likely outcome of the forecast as a sin-
gle illustration.

In the example of weather forecasts, we can directly
convey uncertainty by numbers or simple visualizations
like bar or line charts. However, what can we do if we
have complex data like massive tree structures, multivari-
ate data, or simulation results from science and engineer-
ing along with uncertainties? Here, it is already challeng-
ing to find visual representations that ignore uncertainty,
but the problem becomes even more pronounced for un-
certainty visualization.

In this paper, we want to provide a brief introduc-
tion into the general topic of uncertainty visualization, dis-
cussing some background, terminology, and fundamental
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Figure 1: The visualization pipeline where uncertainty can be introduced and propagated in any stage.

concepts. Here, we emphasize the need for making the en-
tire visualization process uncertainty-aware, and for ap-
propriate quantitative modeling and propagation of un-
certainty. We also illustrate recent advances in the fields
with examples covering a wide range of applications and
types of data. Specifically we discuss possibilities to vi-
sualize uncertainty in hierarchical data, as well as mul-
tivariate time series. Furthermore, we elaborate on mod-
eling uncertain physical phenomena with the example of
stochastic partial differential equations, and illustrate the
diverse kinds of uncertainty that are present in the appli-
cation field of linguistic annotation.

2 Overview of uncertainty
visualization

In the visualization community, uncertainty refers to infor-
mation fromwhich disagreement and credibility can be in-
ferred. Orthogonal to these assessment aspects, we distin-
guish between measurement uncertainty (e. g., accuracy
and precision), completeness uncertainty (e. g., missing
values and sampling), and inferenceuncertainty (e. g., pre-
diction andmodeling) [41]. Other communities prefer risk,
confidence, or trust [38]. The latter term has become in-
creasingly popular in the visualization community since
it reduces uncertainty visualization to one question:What
reveals imperfect information and separates it from more
trustworthy data?

These different aspects of uncertainty indicate that
there is more to uncertainty visualization than just the di-
rect rendering of images. To this end, we will use the vi-
sualization pipeline [22, 14] to illustrate how uncertainty
plays a role in the different stages required for visualiza-

tion. For more detailed background information and cov-
erage of work in uncertainty visualization, we refer to sur-
vey papers such as [36, 10, 7, 44]. Our discussion adopts
the structure of [44], walking through the different stages
of the visualization process.

2.1 Visualization pipeline

The process of creating visual representations of data is
commonly described by the visualization pipeline; see
Fig. 1. Briefly, the process emerges from a real-world phe-
nomenon that we want to study or explore. For this pur-
pose, data is acquired, e. g., by taking measurements or
collecting observations about the phenomenon. Usually,
the raw data needs further processing or modeling to be
represented, stored, and passed to the following stages
of the pipeline. Next, filtering and transformation extract
meaningful aspects of interest from thedata (e. g., subsets,
similarities, order, and grouping). To display suchdistilled
data, graphical elements are generated and shown to the
user during visual mapping and rendering.

The crucial consideration to be made here is that any
stage of the pipeline can introduce uncertainty into the
visualization process (cf. Fig. 1). We argue that uncertain-
ties introduced in earlier stages are discarded later in the
pipeline when stages are oblivious to the uncertainty, and
as a result, the credibility of the visualization is impaired.
To provide faithful visualizations each stage needs to be
made aware of the uncertainty and explicitly propagate it
so that we have a chance to communicate it to the user. In
the following subsections, we discuss the different stages
and how theymay introduce or propagate uncertainty. For
uncertainty-aware computing, the uncertainty has to be
modeled appropriately. Despite the numerous meanings
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of uncertainty, it is often treated as a probability or proba-
bility density that quantifies how likely, representative, or
credible an observation is.

With this view from the visualization pipeline, we can
distinguish between visualization of uncertainty, and the
uncertainty in visualization [10]. While the former is con-
cernedwith thedisplay of uncertainty indata and the topic
we focus on, the latter considers how the visualizationpro-
cess introduces inaccuracies and distortion of the data,
which is also a form of uncertainty. In other words: we
need to compute how uncertainty is propagated through
the pipeline (starting from uncertain input data) and how
the stages of the pipeline add uncertainty.

2.2 Real-world uncertainty

With the different flavors of uncertainty outlined ear-
lier, there are manifold different examples in the real-
world phenomena under investigation. We encounter un-
certainty in many domains, e. g., in engineering or ma-
chining where it is equivalent to accuracy or precision, in
natural language it can mean ambiguity of a word or sen-
tence. While uncertainty may already be part of the phe-
nomenon that should be studied 1 , it is not required right
from the beginning for uncertainty visualization since un-
certainty can also be introduced in later stages.

2.3 Uncertainty in data collection

To study a phenomenon we need to observe it in some
way 2 —for example, by taking measurements of weather
conditionsusing sensors, askingpeople questions in a sur-
vey, gathering historical evidence, or other means of data
collection. This data acquisition process can also intro-
duce uncertainty. Measurements may be inexact or noisy,
sensors could temporarily fail, people may be uncertain
about their answers, and the samplingmay be unrepresen-
tative, leading tomissing and insufficient information.

2.4 Data processing and modeling

Usually, the collected data from the previous stage needs
to be processed further before use (e. g., data cleansing or
unification) 3 , which can introduce further uncertainty.
For example, incomplete data records are removed and
leave a gap, missing data is inferred (interpolated), preci-
sion is lost or made up when converting records of differ-
ent sources to the same format (e. g., nanosecond to a mil-
lisecond resolution, high dynamic range imagery to sRGB

color space). The raw data is often used to create models
or abstract representations, such as continuous functions
through parameter estimation or syntax trees through syn-
tactic parsing of text.

2.5 Uncertainty-aware filtering and
transformation

In step 4 , the data is prepared for display. Showing all
data is often not desired since it is too much information
to cognitively process by a human or even toomuch to dis-
play. Instead, subsets of the whole data may be selected
that will be subject to display, e. g., using only records
of a relational database that match a specific query, or
sampling a continuous function with a particular resolu-
tion. The data is usually transformed into another repre-
sentation that can be more easily understood. Such trans-
formations include projecting high-dimensional data to
2D or 3D, or organizing data into groups by clustering.
Both examples introduce uncertainty. Projections need to
discard or aggregate information to reduce dimensional-
ity and cannot always preserve the relationships between
data items. Some clustering algorithms can yield proba-
bilistic assignments to clusters, introducing uncertainty
about clustermembership onpurpose (e. g., Gaussianmix-
ture model).

Transformations andfiltersmust bemade aware of the
uncertainty in the pipeline so that they can take it into ac-
count, quantify it, and propagate it explicitly. However,
due to the nonlinearity of many of these techniques, it is
not trivial to do this and uncertainty might be distorted
considerably.

2.6 Visual mapping of uncertainty

The transformeddata from theprevious stage is ready tobe
brought to screen. This visual mapping step 5 translates
data into a graphical representation, i. e., it defines how
visual variables (such as color, shape, size, and position)
are used to convey the data values and their relationships.
In a scatter plot, for example, coordinates are mapped to
the position of dots, and coloring can be used to encode
group membership of the dots.

Well-known examples of uncertainty visualization for
simple data records are error bars or box plots that spa-
tially encode data variability. Frequentist approaches to
depicting probabilities use a finite set of samples to show
possible events or realizations of random objects such as
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samples from a bivariate distribution in a scatterplot. Us-
ing summary statistics or fuzzy arithmetics, specific mea-
sures such as standard deviation, quantiles, or maximal
ranges can be shown as for confidence intervals.

Visual mapping is at the core of visualization. Accord-
ingly, there are manifold techniques available for uncer-
tainty visualization; see the survey papers listed earlier.
On a generic level, choices of visual variables for encoding
uncertainty are discussed and evaluated by MacEachren
et al. [33].

2.7 Interaction and integration

We actively include the human in the visualization pro-
cess, as typical for visual analytics systems. We do this by
allowing the user to react to the visualization at any stage
of the pipeline 7 . This couldmean loading a different data
set, changing data cleansing strategies or assumptions of
the data model, refining a data query, or requesting a dif-
ferent chart type.

Such interactions can be quite uncertain, e. g., enter-
ing your daily calorie consumption may be based on a
rough estimate only. We can support uncertain interac-
tion, e. g., by providing fuzzy selection tools or allowing
users to specify their confidence about their input [25, 21].

The integrationof uncertainty throughout thepipeline
is challenging for many reasons and requires each stage to
be made aware of the uncertainties in the system. Explicit
propagation to subsequent stages is complicated due to
nonlinear transformations and series of transformations.
Wu et al. [46] showed an example of uncertainty integra-
tion into the visualization process. For uncertainty visual-
ization systems,we recommendassessing thepipeline and
targeting the most impactful parts regarding the analysis
tasks and goals.

2.8 Perception, cognition, and evaluation

Finding effective mappings for uncertainty that can be un-
derstood and read accurately by a human is challenging
due to the limited number of visual variables and percep-
tual restrictions ofwhat a human canprocess anddifferen-
tiate (stage 6 ). Even more challenging is the mapping of
data with uncertainty, where we have to take special care
that the perceived uncertainty matches the data uncer-
tainty. It turned out that even experts struggle with judg-
ing the encoded uncertainty of comparably simple visual-
izations such as error bars correctly [5].

Beyond the perceptual aspects of uncertainty dis-
plays, conveying relationships such as covarying proba-
bilities or dependency poses a cognitive challenge [27].
Assessment of the effectiveness, readability, and inter-
pretability of uncertainty visualizations and interaction
with the pipeline, is a crucial component. Controlled lab-
oratory and large scale crowd-sourced user studies are
means to evaluate approaches for uncertainty visualiza-
tion [26].

3 Hierarchical data

Let us now illustrate the generic considerations from the
visualization pipeline by a few concrete examples of visu-
alization techniques. This section starts by discussing a vi-
sual mapping technique for hierarchical data with uncer-
tainty, which is an example of handling uncertainty in the
respective stage 5 in the visualization pipeline (cf. Fig. 1).
There aremany specializedmethods to visualize hierarchi-
cal data; Schulz et al. [40] provide a survey of hierarchy vi-
sualizations.

Treemaps have been shown to be effective in convey-
ing implicit hierarchical information [17]. They divide the
canvas according to the relative size of sub-hierarchies (ag-
gregated data values). The challenge for such techniques
is to find a balanced solution combining readability, com-
pactness, and visual scalablity. Uncertainty visualization
adds another challenge: certain and uncertain aspects of
data values propagate differently, which is related to the
modeling stage 3 . For example, the mean μ propagates
differently from the standard deviation σ. The aggregation
of values from children to parent nodes is a summation of
the children’s random variables: X1,...,n = ∑ni Xi. For propa-
gation of independent probabilities from n child nodes to
their parent node, the formulas for mean and standard de-
viation are:

μ1,...,n = n
∑
i
μi, σ1,...,n = √ n

∑
i
σ2i (1)

Thus, the presence of uncertainty violates the visual sum-
mation of sub-hierarchies, which is common tomany non-
uncertainty-aware treemap techniques; therefore, there is
a direct implication of the uncertainty model on the re-
quirements for the choice of visual mapping 5 later in the
pipeline.

Fig. 2 shows one possible solution: an uncertainty-
aware Bubble Treemap [19] that deliberately introduces
whitespace. Unlike snapshot-oriented financial treemaps,
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Figure 2: SP-500 stock data for the course of a single week. Vari-
ances are shown by using undulating outlines with an amplitude
corresponding to the amount of variance. © 2018 IEEE. Reprinted,
with permission, from Görtler et al. [19].

it shows the Standard & Poor’s 500 index (S&P 500) over
the course of one week, grouped by sectors and sub-
industries. The size of the circles represent the mean clos-
ing prize of the stock for the given week. We use the con-
tour to illustrate the standard deviation of each stock. The
treemap shows that most stocks were stable during the
given period of time, while some had larger variations. By
looking at thewaviness of the contours, it is relatively easy
to identify the stock with the biggest changes, since the
variance is reflected in all the contours of the respective
sub-systems. In this case, the reason for the big changes
were a 5-for-1 stock split,which led to single stockonlyhav-
ing a fifth of the original value.

An alternative technique relies on rectangular
treemaps that can be made uncertainty-aware, e. g., using
well-balanced transparency-baseduncertaintymasks [42].
This lead to an optimization problem that can be solved to
address the readability of rectangular treemaps, which, in
particular, depends on the aspect ratio.

Both examples of visualization techniques extend the
mapping step 5 so that it can explicitly show data uncer-
tainty, thus supporting perception and processing by the
human recipient (stage 6 ). They are designed in a way
that avoids introducing additional uncertainty, i. e., here,
we focus on visualization of data uncertainty, and not on
uncertainty in visualization.

4 Multivariate time series

Our next example is the visualization of time series
of multivariate data. For background reading on multi-
variate data, we refer to a survey by Liu [31]. We pick
Time Curves [1] as a starting point. They reduce high-
dimensional data items to two dimensions while illustrat-
ing the temporal succession by connecting consecutive
points using a Bézier curve. On point-level, this allows
for statements regarding similarity, whereas the geomet-
ric characteristics can be interpreted on curve-level (point
density, degree of stagnation, oscillation, regularity, etc.).

Here, we want to focus on the uncertainty associated
with an ensemble of Time Curves [9]. To assess credibil-
ity and disagreement, we can consider the representative-
ness of a TimeCurve. Suchanapproach requires a quantifi-
able description to assess if a Time Curve is representative
or exceptional. For this purpose, we use a non-parametric
statistical approach called functional band depth [32] that
establishes an order from most-representative to least-
representative using convex hull inclusion testing. This
refers to the transformation and filtering stage 4 of the vi-
sualization pipeline.

Fig. 3 shows a health-related example: 16 patients of
the Massachusetts General Hospital/Marquette Founda-
tion (MGH/MF) Waveform data set [45]. When displaying
the complete set of Time Curves, cluttering prohibits use-
ful analysis (Fig. 3 left). Since themetric uses convex hulls,
we can abstract most curves into two convex hulls, one
for 50% and one for 75% most-representative patients,
retaining the most-representative Time Curve (Fig. 3 mid-
dle). This visual mapping (stage 5 ) corresponds to the
univariate boxplot (Fig. 3 topmost), hence the name Time
Curve Boxplot. Inspection of the outliers (Fig. 3 right), i. e.,
Time Curves that are not completely contained in the 50%
or 75% convex hull, shows that not only spatial but also
temporal inclusion are of relevance. The scarf plot (Fig. 3
bottom) depicts the true extents of inclusion in the re-
spective high-dimensional hulls, both temporal and spa-
tial. This additional visualization reduces the visualiza-
tion uncertainty that is inherent to the dimensionality re-
duction underlying the Time Curves. Works addressing vi-
sualization of uncertainty arising from dimensionality re-
duction [24, 43] explicitly show the error of these meth-
ods.

The visual analysis is heavily based on including the
human-in-the-loop for exploring the uncertainty from the
ensembles of multivariate time series (stage 7 ). More in-
formation can be found in the paper by Brich et al. [9].
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Figure 3: Ensemble of 16 patients from the MGH/MF data set shown by Time Curves (top) and scarf plot (bottom). The Time Curve plots in the
center and to the right use the boxplot metaphor to depict the area corresponding to the 50% quantile (dark gray) and 80% quantile (light
gray). A regular boxplot glyph with box and whiskers is shown at the top for reference. © 2022 Computer Graphics Forum published by Euro-
graphics – The European Association for Computer Graphics and John Wiley & Sons Ltd. Reprinted, with permission, from Brich et al. [9].

5 Stochastic partial differential
equations

Awareness of uncertainty is particularly important when
modeling physical phenomena mathematically by partial
differential equations (PDEs). In this example, the uncer-
tainty comes from the real-world phenomenon (stage 1 )
and the corresponding simulation that solves the PDEs
(stage 2 ). Therefore, our discussion focuses on the early
stages of the visualization pipeline.

Measuring or looking up data at several distinct spa-
tial points yields information about these points, but may
leave uncertain what happens in between these points.
These uncertainties are modeled by a stochastic source
term or a random coefficient. Let (Ω,A,ℙ) be a complete
probability space, where Ω denotes the non-empty set of
elementary events,A the σ-algebra of measurable events,
and ℙ the probability measure. On D := [0, 1]2, the unit
square as the spatial domain, a simplified model for sub-
surface flow through a porousmediumwith uncertain dis-
continuous porosity is given by the random elliptic PDE,
cf. [3] and the references therein:

−∇ ⋅ (a(ω, x)∇u(ω, x)) = f (x) for ω ∈ Ω and x ∈ D.

The solution to this equation is denoted by u : Ω ×D → ℝ,
the random jump-diffusion coefficient by a : Ω ×D → ℝ+,
and the source term by f : D → ℝ. Together with ade-
quate boundary conditions this is a well-posedmathemat-
ical problemadmitting a uniqueweak solution u. The coef-
ficient a models the spatially dependent diffusivity of the
porous medium. High values of a correspond to low diffu-
sivity areas and low values of a correspond to high diffu-
sivity areas of the porousmedium. Themagnitude of these
values as well as the position of the diffusivity areas are
practically measured for a real-world simulation and are
prone to the uncertainties described above. Fig. 4 shows
examples for three different coefficient samples ω ∈ Ω.

For eachfixedω ∈ Ω,when computing anumerical ap-
proximation uh to the solution u, the accuracy of the spa-
tial approximation indexed by h depends strongly on how
the uncertain areas are resolved. The areaswhere the jump
from low to high diffusivity occurs lead to steep solution
curves, i. e., high solution gradients, and thus need high
spatial resolution to be approximated accurately. Fig. 5 il-
lustrates an approach that uses high resolution across the
whole domain, however, at the cost of high computation
effort. To circumvent this we may start on a coarse ini-
tial resolution and refine adaptively only where needed
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Figure 4: Different samples of the random coefficient with varying
jump magnitudes and positions demonstrating the uncertainty of
the problem.

Figure 5: Standard uniform mesh with evenly sized elements (left)
and corresponding spatial approximation to the PDE solution (right).

as illustrated in Fig. 6. A-posteriori error estimation tech-
niques, cf. [20], allow us to detect areas in which the ap-
proximation error is high and to focus only on them. Even
though this approach is more involved it may reduce the
overall computational cost to compute a satisfactory nu-
merical approximation uh to the solution u.

With stochastic PDEs and their numerical solvers, we
have a method that allows us to model physical phenom-
ena with uncertainty, such as subsurface flow, and com-
pute an efficient representation. This information can then
be processed further along the visualization pipeline. The
example of Fig. 6 provides an implicit visualization of the
uncertain coefficient via the adaptivity in themesh: higher
resolution in the mesh corresponds to lower numerical er-
ror (comparable to the uniform resolution of Fig. 5). How-
ever, this visual mapping (stage 5 ) provides only some
aspects of uncertainty. A direct visual representation of
the full stochastic solutions is infeasible because there is
not enough visual space available. Therefore, future work
could address appropriate data reduction (stage 4 ) and
corresponding visual mapping (stage 5 ) for stochastic
PDEs.

Figure 6: Successively refined meshes generated adaptively w. r. t.
to the uncertainty in magnitude and position of the diffusivity areas
given by the coefficient (upper left, right, and lower left). Corre-
sponding spatial approximation to the PDE solution (lower, right).

6 Linguistic annotation

Annotated natural language data plays a critical role in
theoretical and computational linguistic researchby facili-
tating empirical investigations on specific phenomenaand
serving as abasis for thedevelopment ofNatural Language
Processing (NLP) models. In recent years, uncertainty has
been acknowledged as a problem for linguistic annotation
[4, 8, 12], although only relatively few concrete solutions
have been proposed [2, 13, 29, 34, 37]. Uncertainty visual-
ization hasmuch to offer in this area, particularly if uncer-
tainties can be resolved as part of an ongoing statistical
machine translation [35].

With respect to linguistic data, uncertainty is already
present at stage 1 of the visualization pipeline, since am-
biguity and underspecification is an inherent part of lan-
guage structure, with ambiguities found at both the token
(word) level and higher phrasal levels. Languages also use
systems of oppositions, whereby a marked form is con-
trasted with an unmarked one to signal a semantic effect,
as for example in Differential Object Marking, shown be-
low in Example (1) for Marathi. Here, the unmarked (nom-
inative) object is unspecified for definiteness/specificity
via the absence of marking. In the presence of overt (ac-
cusative) marking, the only available interpretation is that
there is a particular elephant that was killed.
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(1) a. siṃhā=ne
lionm=erg

hattī
elephant.m.nom

mār-lā
kill-perf.3.m.sg

‘The lion killed a/the elephant.’
b. siṃhā=ne

lion.m=erg
hattī=lā
elephant.m=acc

mār-le
kill-perf.3.n.sg

‘The lion killed the elephant.’

In the absence of knowledge about this kind of structural
markedness in the data, uncertainty about the analysis
and interpretational properties can arise. This is particu-
larly true for work with historical corpora, where data are
limited and no new data can be adduced.

A common type of linguistic ambiguity is class am-
biguity, referring to cases where a token allows for more
than one classification. One particular example that has
been discussed in relation to the annotation of histori-
cal linguistic data is the status of clauses introduced by
the itemwente (‘because/that/but’) inMiddle LowGerman
(c. 1200–1650 CE) texts, as in the following Example (2) [8].

(2) vnde
and

ik
I
sach
saw

et
it
. vnde
and

betugede
attested

et
it
. [wente
wente

dit
this

is
is

godes
god.gen

sone]
son

‘and I saw it and attested it because/that/but this is
god’s son’ (Buxteh. Ev., [23])

Without context, the clause introduced by wente can in
principle be a main or a subordinate clause, since dur-
ing this language stage cues such as sentential punctu-
ation, capitalization, and word order do not systemati-
cally distinguish between the two. This is just one exam-
ple of howuncertainty is particularly pertinent when deal-
ing with (typically non-standardized) historical linguis-
tic data, where annotators cannot rely on native-speaker
judgments.

Another common source of uncertainty is boundary
ambiguity at the phrasal level, where linguistic material
can be segmented into smaller units in multiple ways, re-
sulting in alternative boundary divisions. Information on
how to resolve the ambiguity may not be present in the
immediately available data, or may be resolved in a po-
tentially biased manner (e. g., by using learned informa-
tion on probabilities froma given corpus). For example, (3)
illustrates a scope ambiguity that results in two poten-
tial readings. Without more context, the ambiguity can-
not be resolved, but a language model that has learned
likelihood of associations from data/texts that associate
African-Americanswith criminality in a biasedwaywill al-
ways resolve the ambiguity in favor of Reading 2.

(3) African-American criminals and lawyers presented
themselves at court.
Reading 1: Both the criminals and the lawyers are
African-American.
Reading 2: Only the criminals areAfrican-American.

The occurrence of ambiguity in natural language can thus
also lead to a perpetuation of existing biases in data. Mak-
ing a differentiation and concomitant visualization of am-
biguities and the context in which they are (un)resolvable,
is an important factor in the on-going discussions on bias
in artificial intelligence [11, 30, 6, 39, 18].

During the annotation process, i. e., at the data pro-
cessing and modeling stage 3 , uncertainty arising from
linguistic ambiguity is currently usually treated in one of
three ways, none of which is fully adequate: (i) stochas-
tic treatment, (ii) assignment of an ‘other’/‘miscellaneous’
label, (iii) left unannotated. Under a stochastic treatment
(cf. Most Frequent Class Baseline [28]), the interpretation
that is the most likely is chosen, such that the linguis-
tic material in question is assigned a single interpreta-
tion and the ambiguity is lost altogether (cf. the scope am-
biguity in Example (3)). Under the second approach, the
ambiguous material is assigned a special label, as in the
case of wente-clauses, cf. Example (2), which are anno-
tatedwith a unique tag in the Corpus ofHistorical LowGer-
man [8]. This goes some way to capturing ambiguity/un-
certainty but does not adequately represent the particular
type or source of the issue. A third and common approach
is to leave ambiguous/uncertainmaterial unannotated, ul-
timately leading to data loss. Crucially, under all three ap-
proaches the nature and source of the ambiguity/uncer-
tainty is not adequately represented.

More sophisticatedmodeling and in turn visualization
of uncertainty in language data via the proposed visualiza-
tion pipeline has the potential to play an important role in
furthering our understanding of natural language and im-
proving language technologies. As mentioned, ambiguity
is an inherent property of all natural languages and thus
worthy of study in its own right, particularly as, compared
to other inherent properties such as variation and change,
it has been less exhaustively researched. Moreover, ambi-
guity is generally acknowledged to play an important role
in language change (cf. ‘reanalysis’, [15, 16]), although the
precise mechanisms involved remain unclear in the ab-
sence of methodologies which explicitly harness ambigu-
ity as a nuanced and multifaceted phenomenon. An in-
teractive system that allows a user to identify and flag in-
stances of unresolved ambiguity and uncertainty as such,
as well as to resolve it interactively for purposes of exper-
imentation or as more data becomes available via the vi-
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sualization pipeline would serve to further the state of the
art considerably.

7 Conclusion
We have given a brief introduction to uncertainty visual-
ization, discussed sources of uncertainty throughout the
visualization pipeline, and presented visualization exam-
ples andapplications. Typical use cases include somekind
of probabilistic modeling to quantitatively describe un-
certainty, which is critical for propagating and eventually
visualizing uncertainty. Our examples come from a wide
range of different applications, demonstrating the utility
of uncertainty visualization. The examples also show that
uncertainty may have different importance at the differ-
ent stages of the visualization pipeline: some emphasized
the earlier stages of data acquisition and modeling, oth-
ers later stages of filtering, visual mapping, and interac-
tion. Therefore, there is not a single solution that would
be able to cover a wide range of uncertainty-related prob-
lems. Instead, there is need to take a broader perspective
at the visualization problem and select and prioritize an
appropriate combination of techniques. Overall, we hope
that our paper has triggered awareness for the high rele-
vance of uncertainty in visualization for data analysis and
communication.

We see several directions of future research in the
field. For example, there is a lack of enough practical
software implementations and software ecosystems for
widespread application of uncertainty visualization. Simi-
larly, more research is needed to cover further examples of
data types and visual analysis with uncertainty propaga-
tion. Furthermore, we still need a better understanding of
the cognition of uncertainty and improved techniques for
evaluating uncertainty visualizations.
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