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Fig. 1: Guided relevance feedback for the targeted refinement of incoherent areas in the Semantic Concept Space. This user guidance
component tours through the space and highlights potentially uncertain areas, suggesting a recommended action for refinement.

Abstract— We present a framework that allows users to incorporate the semantics of their domain knowledge for topic model refinement
while remaining model-agnostic. Our approach enables users to (1) understand the semantic space of the model, (2) identify regions of
potential conflicts and problems, and (3) readjust the semantic relation of concepts based on their understanding, directly influencing the
topic modeling. These tasks are supported by an interactive visual analytics workspace that uses word-embedding projections to define
concept regions which can then be refined. The user-refined concepts are independent of a particular document collection and can be
transferred to related corpora. All user interactions within the concept space directly affect the semantic relations of the underlying
vector space model, which, in turn, change the topic modeling. In addition to direct manipulation, our system guides the users’ decision-
making process through recommended interactions that point out potential improvements. This targeted refinement aims at minimizing
the feedback required for an efficient human-in-the-loop process. We confirm the improvements achieved through our approach in two
user studies that show topic model quality improvements through our visual knowledge externalization and learning process.

Index Terms—Topic Model Optimization, Word Embedding, Mixed-Initiative Refinement, Guided Visual Analytics, Semantic Mapping

1 INTRODUCTION

Efficiently categorizing the contents of large text collections into the-
matic groups is a common task for scholars in the humanities and social
sciences. These data and domain experts usually embark on a process
of summarizing documents, extracting concepts, modeling their rela-
tions, and finally, aggregating the obtained information to build their
knowledge. The generated knowledge is typically externalized in vari-
ous resources, including traditional books and papers, but also exten-
sive knowledge bases [47]. However, even given the eagerness with
which experts strive to model and document their knowledge and intu-
ition, oftentimes available resources do not capture all specific aspects
of a domain’s semantics [22]. The shortage of domain-specific knowl-
edge representations in accessible formats has sparked a bustling re-
search area [56] at the intersection of linguistics and machine learning.
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Simultaneously, domain-knowledge-independent machine learning
techniques are becoming more reliable and accessible. For instance,
topic modeling algorithms have wide applicability across a multitude
of domains as they augment the time-consuming task of categorizing
document collections into thematically-related groups. Despite their
usefulness, the quality of their results highly depends on the suitability
of the parameter choices and how well they fit and reflect the charac-
teristics of the analyzed document collection and domain semantics.
However, as such models are typically black boxes, they are not readily
understood by non-machine-learning-experts. Thus, there is a need for
machine learning refinement techniques that abstract the complexity
of underlying models, enabling users to understand, diagnose, and re-
fine the results. This user demographic does not desire to understand
the inner-workings of machine learning but would rather to teach the
machine their semantic knowledge while remaining model-agnostic.

Promising visual analytics solutions have been proposed to address
such challenges in a collaborative human-machine effort. For example,
to model the semantic relations of concepts in a corpus, ConceptVec-
tor [44] has been proposed as an interactive lexicon building approach
using word embeddings. On the other hand, UTOPIAN [8] enables
users to interactively train a topic model, resulting in a clustering of
documents into thematic groups. While the first approach is designed
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to consider the user’s knowledge for top-down concept generation, the
second one is data-driven, generating topics bottom-up. Techniques
combining high-level analysis concepts with low-level model interac-
tion, e.g. through bidirectional semantic interaction [12], have proven
effective since “the power of the computational models can be lever-
aged without their complexity” [19].

We present a visual analytics technique that tightly links these two
perspectives to allow users to externalize their domain knowledge for
topic model refinement without understanding the inner-workings of
such models. Our lead motivation for such an iterative refinement
process is to enable users to teach [50] the machine learning model
(through concept refinement), and in turn, the model to respond by
learning a new refined representation (through a topic model update)
that is presented to the users to show them the effects of their inter-
actions. Hence, our technique relies on two independent hierarchical
structures, (1) the concept hierarchy, representing the user’s seman-
tics (top-down), and (2) the topic hierarchy that is based on the au-
tomatically computed results of a topic model (bottom-up). Both hi-
erarchies operate on the same vector space but are presented in two
separate views. The concept view is used as the interactive view for
domain knowledge externalization, while the topic view is a reactive
component for inspecting the topic model updates caused by refining
semantic relations in the first view. This duality is captured in the topic
and concept representations as two superimposed canvases, facilitating
the analysis of associations [26].

Thus, the main challenge for our technique is to define accurate map-
pings from the users’ interactions back to actionable instructions for
the topic model optimization. On the visualization side, the challenge is
to find an accurate and faithful spatialization of concepts and topics on
a canvas, while reducing clutter and retaining semantic neighborhoods.

We designed Semantic Concept Spaces as a mixed-initiative tech-
nique tailored to support users in modeling their domain knowledge
through defining semantic relations between concepts. Our approach
(1) provides different entry points and abstraction layers for the users’
analysis; (2) integrates users in every step of the semantic concept cre-
ation; (3) allows for targeted refinement through guided relevance feed-
back, as well as, concept discovery through serendipitous exploration;
(4) enables cross-corpus and model-agnostic learning to allow the trans-
ferability of the learned concepts to other topic models and similar doc-
ument collections; and (5) abstracts from the refined semantics to up-
date domain-specific concepts, avoiding future cold starts [48].

Figure 2 depicts the architecture of our approach, starting with pro-
cessing a document collection to extract relevant keywords and embed-
dings [35]. These build the basis for the semantic similarity that gener-
ates scored keyword vectors as input for topic modeling, they also ini-
tialize the interactive concept generation. This step extracts seed-words
for the concept generation, optionally including user-defined structures.
To define a meaningful spatialization, concept neighborhoods are cal-
culated using t-SNE [28]. After the building of the initial concept hier-
archy, all elements of the visualization are projected [38] onto a can-
vas in layers. The visual analytics interface is the main workspace for
the user’s interaction, this enables users to inspect concepts and topics
to [T1] understand their relationships, [T2] diagnose potential con-
flicts, [T3] refine the concept space based on their domain understand-
ing, and [T4] update the topic modeling based on the refined concept
space. A continuous quality monitoring and refinement recommenda-
tion supports these tasks and enables targeted user guidance.

We evaluated our technique with three approaches. Starting with a
mixed-method expert study, six participants used Semantic Concept
Spaces on a model refinement task. Second, a quantitative evaluation
of the model improvement achieved by experts, across eight model
quality measures. Finally, four independent annotators rated the quality
of these concept spaces and topic model results.

In summary, this work contributes an iterative visual analytics ap-
proach that captures user semantic knowledge to inform machine learn-
ing systems. Our technique provides user guidance and relevance feed-
back for overcoming the “looseness” of the interaction mapping. We
demonstrate and test it on a case study in topic model refinement.

Fig. 2: The human-in-the-loop workflow for Semantic Concept Spaces.

2 BACKGROUND AND RELATED WORK

This research is an entry into the burgeoning space of interactive and
explainable machine learning applications [21,33,37]. In the following
discussion, we will relate our work to research in the areas of semantic
interaction for visual analytics, and, more specifically, interactive topic
modeling and content analysis.

Semantic Interaction We are inspired by the call by Endert et al.
for interaction “beyond control panels,” where data is spatialized and
the interaction with that spatialization is the primary mechanism for ma-
nipulating the data space [18]. Semantic interaction is a type of direct
feedback users can provide to embed their semantic understanding into
a visual workspace [19,20]. In this paradigm, user interactions are used
to feed-forward into model refinements. For example, the global layout
in ForceSPIRE [20] is adjusted based on users moving words and doc-
uments to externalize their knowledge in the workspace. Cavallo and
Demiralp [6] employ both forward and backward-projection interac-
tions to enable user interaction with the dimension reduction algorithms.
Forward-projection enables users to change the high dimensional vector
and see how the projection is changed, and backwards-projection uses
direct manipulation to move nodes and see how the input vector changes.
In the present work we use semantic interaction to enable users to mod-
ify a word2vec word embedding space [41] by modifying the groupings
of words into concepts. As there may be many ways to adjust the seman-
tic space, we provide suggested interactions as a form of guidance [9].

Topic Modeling and Content Analysis Topic Modeling is used
to understand large corpora of text and summarize the knowledge
contained in them. The basic premise of topic modeling is to cluster
groups of documents and label them, obtaining topics. An overview of
probabilistic topic modeling algorithms can be seen in the survey by
Blei [4]. Several works explicitly address the embedding of the domain
knowledge into the topic space. Andrzejewski et al. [3] use Dirichlet
forest priors to split and merge concepts using domain knowledge,
improving topic descriptors. Chen et al. developed the MDK-LDA
variant on LDA which takes into account domain knowledge directly
to provide better topic descriptors [7]. Furthermore, approaches that
combine word embeddings with topic modeling can be beneficial for
learning both models jointly [42], as well as improving topic model
representations for short texts through word embeddings [36, 43, 58],
or creating improved word embeddings using LDA [46].

Exploratory visualizations for understanding topic spaces include
ParallelTopics [10], for exploring single and multi-topic documents
using parallel coordinates. The focus of our work, however, is not on
viewing the topic modeling itself, but finding an intuitive way for the
users to guide the modeling process. Visual topic modelling approaches
often include some interactive mechanisms for users to modify the mod-
eling output. TopicPanorama [55] creates a graph of topic relations ex-
tracted from multiple sources. Interactive tools are embedded to allow
users to modify the graph matching to suit their needs. Hierarchical-
Topics [11] is a visualization for understanding a large dataset at differ-
ent levels of granularity. Interactions allow users to adjust the hierarchy.
UTOPIAN employs a semi-supervised iterative feedback loop for users
to steer the modeling process [8]. ConceptVector [44] enables users to
embed domain knowledge interactively, through guiding the building of



concepts which are then used to analyze documents. We follow a simi-
lar approach in allowing users to refine the concept space which is used
as the substrate for topic modeling. This idea of an interactive loop for
refining topics appears also in the work of Hu et al. [30], in which users
guide the modeling process through constraints on the topic descrip-
tors. Hoque and Carenini embed similar feedback into a visualization
system in the ConVisIt project [29]. In our previous work, we reported
a user-guided refinement process for topic modeling based on “voting”
for models which have subjectively higher quality [15]. Speculative
execution has also been used to preview the outputs of topic modeling
and allow users to intervene and guide the process [16].

3 MODELING THE SEMANTIC CONCEPT SPACE

To model the semantic concept space of a corpus, we consider all the
words it contains and all their embeddings as a foundation (these are
a subset of all word in a language’s vocabulary). Based on this set
of words, we build two separate, parallel hierarchies; the concept and
the topic hierarchies. Both contain four abstraction levels, sharing the
lowest level of all base words. These two structures inform the global
importance and weights of the words but are kept strictly separate,
to guarantee a detachment between the user-defined concepts and the
concrete topic modeling approaches. This, in turn, ensures model
transferability and cross-corpus learning.

We generically refer to all words (also n-grams) in the corpus, as well
as words transitively contained in their embedding vectors, as “words.”
Base Words are all words that are neither part of the higher levels of the
concept nor of the topic hierarchies.
They can be promoted to become key-
word and/or descriptors through user
interaction. On the other hand, de-
moted keywords and/or descriptors
traverse down the hierarchy to be-
come base words. As suggested by
their name, these form the basis of the two data hierarchies.

The Concept Hierarchy is user-driven and reflects the semantic re-
lation between the words based on the domain knowledge externaliza-
tion of users. Descriptors build the lowest level above the base word
and are all the words that describe a concept (one level up) but that are
not concepts or super concepts themselves. Descriptors have a strict
parent-child relation (1:n) to concepts. Concepts define the users se-
mantics and are used as the main level of interaction. They are the link
between the descriptors (their children) and the super concepts (their
parents). Although a word can only be either a descriptor or a concept
(exclusive relation), super concepts can include concept words. The
reason for this decision is that in some corpora there are multiple super
concepts that only contain one concept each. Hence, Super Concepts
are automatically computed as a summary of the underlying region.
Users can define the level of abstraction, i.e., the number of super con-
cepts interactively. However, in contrast to concepts, the parent-child
relationship between concepts and super concepts cannot be manually
adjusted but is computed to give a faithful overview of the current state
of the concept hierarchy at the time of viewing.

In contrast, the Topic Hierarchy is data-driven. It reflects the struc-
ture of the underlying corpus based on the selected topic modeling ap-
proach. Keywords are all words contained in all corpus documents, in-
cluding all descriptive document keywords. Documents are the given
unit of analysis in a corpus and are each represented by their top n-
keywords. Topics are computed using a topic modeling algorithm and
are each represented by their top m-keywords. Note, that the number
of top keywords n,m for document and topics, respectively, can be ad-
justed by the user. By default both parameters are set to 15 keywords.

All words used in this approach are processed through a linguistic
pipeline [13, 14], that includes stemming, POS tagging, n-gram extrac-
tion, stop-word removal, and scoring. As described in our previous
works [15, 16], we treat each word as a weighted vector initialized us-
ing a user-selected scoring function [39]. This section discusses the
modeling of the semantic concept spaces, including the creation of the
concept hierarchy. The topic modeling hierarchy, on the other hand,
is subject to the concrete algorithm used. Since our approach is inde-

pendent of concrete topic modeling techniques, in this paper, we do
not discuss the topic modeling process in detail. For more information
on topic modeling and the concrete algorithm used throughout this pa-
per, please refer to our previous work [16]. Rather, in this paper, we,
focus on the model-agnostic optimization of topic modeling through
concept space refinement. Section 5 discusses this iterative refinement
process and the interplay between the concept and topic hierarchies,
in more detail. Both hierarchies operate on the same underlying word
vectors. Changes in the concept hierarchy, therefore, influence the scor-
ing of words and, in turn, affect the topic modeling. This section dis-
cusses the four step process of modeling the underlying data structure
of the semantic concept space. This includes building the concept hier-
archy, as well as deriving a spatialization of all objects in the concept
and topic model views based on the relations of the underlying vector
space model. This spatialization is used to initialize the two views, as
described in Section 4. To facilitate the readability of this section, we
use a simplified example of two generic agenda items from recent US
presidential debates, namely, healthcare and taxes.

3.1 Interactive Concept Generation
The first step in this modeling pipeline is the generation of weighted
concept vectors. Assuming that the users’ domain understanding can
effectively guide the automatic computation in this initial step, we allow
users to optionally intervene and interactively edit suggested concept
keywords which are used as priors for the further computation. This
initial concept generation is described in following four-step process:

(1) Seed Concept Extraction – After pre-processing and annotat-
ing all the words in the document collection to be analyzed, we extract
seed words. We rely on (a) Latent Dirichlet Allocation [5], as well as
a (b) Document Descriptor Extractor [15] to extract the most descrip-
tive keywords in a corpus based on word frequencies, tf-idf [51], log-
likelihood ratio [39], and G2 [45] metrics. Note, that these two methods
are only used as a heuristic for an initial fast separation of the overall
corpus space. We do not apply LDA for topic modeling. The extracted
seed words are considered the first concepts and are expanded in the
next step to concept vectors. In our example, this step might return two
keywords like medical and taxes.

(2) Concept Vector Expansion – In this step, the initial concept
words are enriched with semantically similar words using the word
embedding service ConceptNet [52] to create concept vectors. Words
that are not part of the corpus, but contained in an enriched vector are
discarded to focus the vector space and avoid skewness. Note, that
we extract word embedding vectors for all words in the corpus but
only vectors associated with concept words are called concept vectors.
All words in a concept vector are regarded as descriptors for their
respective concept. In our example, the concept vectors might contain
the following descriptors: ~medical:<system,health,relief,care> and
~taxes:<deduction,money,cuts,relief>.
(3) Interactive Editing and Enrichment – After the first two un-

supervised steps, we involve the user in the concept generation. Similar
to our proposed topic backbone [16], users have the option to adjust the
seed concepts and their vectors as they see fit. They can as well intro-
duce new concepts or remove descriptors to adapt the generated con-
cepts to their understanding. However, as we cannot always assume that
users have existing knowledge about the corpus before exploring the
visualization, this processing step is optional. If skipped, the concept
vectors from the previous step will remain unchanged. A user might,
for instance, choose to add the descriptor healthcare to ~medical.

(4) Scoring and Ranking – After the generation of the concept
vectors, in this step, we use the scoring functions from the Document
Descriptor Extractor (1b) to rank the descriptors of each concept. The
ranking and scores of each concept is used for weighting them later
on. For instance, the words system and relief in our example concepts
could be ranked low as these words are, in the one case, too generic
and, in the other, too undescriptive (i.e., occurring in both concepts).

3.2 Concept Neighborhood Computation
Based on the weighted concept vectors, this step computes semantic
concept neighborhoods to determine the spatialization of all the words



Fig. 3: Semantic Abstraction Levels for Concepts. By default, the entry point for the visualization (0) shows all major concepts. Users can opt to
start at a lower abstraction level (-2), revealing more concepts, or choose a higher abstraction level (+2), resulting in fewer initially visible concepts.

in the analyzed corpus. The output of this step is, therefore, a set of 2D-
coordinates {x,y} for each word, anchored by concept neighborhoods.
We rely on t-distributed Stochastic Neighbor Embedding (t-SNE) [28]
for the computation of the concept neighborhoods based on the word
embedding vectors. To guarantee a more stable projection result we
use the concept vectors as anchors throughout this work. Furthermore,
we configure the t-SNE calculation with the following parameters; a
perplexity of 5, a theta of 0.5 and 5000 learning iterations. These were
determined based on trials with different corpora using a projection
inspection approach [54]. As the perplexity parameter describes the
expected minimum number of neighbors each point should have, to en-
sure a convergence with few errors (i.e., separable while preserving ob-
ject distances), it is essential to maintain a partly overlapping set of de-
scriptors in the enriched concept vectors. In the following, we describe
the three-step process for computing semantic concept neighborhoods.

(1) Corpus and Topic Keyword Insertion – In order to consider
all relevant words in the projection, in this first step, we combine all
corpus and topic keywords (each represented by their word embedding
vector) with all extracted concepts (represented by their respective
concept vectors). We use all word embedding vectors in the second
step to determine the initial positioning of the concept vectors. These
positions, in turn, are used as anchors in the third step.

To ensure that the concept space is representative of the analyzed
corpus, in this step we additionally assign the top twenty keywords
from each document to their closest concept vector as descriptors. In
our example, we might add keywords like company or spending to
~taxes, as well as affordable to ~medical. Note that this technique is

independent of the concrete topic modeling approach, as long as each
topic is represented by a keyword vector and each document is assigned
to a topic. In this paper, we use the Incremental Hierarchical Topic
Model (IHTM) [16] throughout, as it is deterministic and provides the
required topic-document-keyword hierarchy.

(2) Initial Concept-Anchor Setting – To meaningfully initialize
the t-SNE projection, in this step we compute {x,y}-coordinates for all
extracted concepts and set these as anchors for the projection in the next
step. We determine these coordinates based on a run of t-SNE on the
complete set of word vectors in the corpus. This first run uses random
initial positions for the words as it is only employed to determine a
meaningful spatialization for the semantic concepts. Therefore, other
than the {x,y}-coordinates for the concepts, the word positions of this
run are discarded and recalculated in the next step.

(3) t-SNE Reduction – To retain a stable projection after t-SNE
convergence, in this step, we use the previously determined concept
positions as anchors. We then run t-SNE a second time to determine
the {x,y}-coordinates for all word vectors in the space. In later steps,
when users edit and change the concept hierarchy, we re-run this step
on-demand to update the concept space. In our example, each of the

two concept vectors, as well as their associated descriptors have a
determined position as {x,y}-coordinates in the 2D space.

3.3 Concept Hierarchy Building
Based on the neighborhoods determined by the word embedding pro-
jection, in this step, we build the concept hierarchy relations, getting
rid of descriptor overlap by assigning each descriptor to only one con-
cept. This is achieved based on the following four-step process:

(1) Parameter and Constraint Setting – The abstraction level of
the concept space has a considerable impact on the visual analysis and
refinement process. We therefore present users with a choice of dif-
ferent entry points in the visual analytics interface. We provide non-
overlapping level-of-abstraction sliders to adjust the semantic abstrac-
tion levels for concepts and super concepts. For example, Figure 3
shows three out of five abstraction levels for concepts.

The parameters chosen to determine these abstraction levels are two-
fold: The minimum semantic cosine similarity threshold εsimilarity, and
the minimum number of descriptors or concepts in a neighborhood
εneighborhood . By default the similarity threshold is
set to εsimilarity = 0.4, and the neighborhood param-
eter is set to εneighborhood = 6 for concepts and to
1.5× εneighborhood for super concepts. Changing the
abstraction slider adjusts εneighborhood , directly resulting in a higher or
lower level of abstraction. Based on these parameters we perform a hi-
erarchical, density-based clustering to obtain the concept hierarchy, as
described in the next steps.

(2) Semantic Similarity Update – Beside the word positioning,
to perform the hierarchical clustering, we use the above mentioned
semantic similarity.

We keep words inside the same cluster (i.e., concept) if they are sim-
ilar with respect to their cosine similarity. We check this at two points
during clustering. First, when deciding which words could initially
form a cluster using the εsimilarity threshold. Secondly, when clusters
overlap, only clusters which have a high word-embedding coherence
are merged, Otherwise, all overlapped members are redistributed to
their most similar cluster. The word-embedding coherence defines the
threshold for the minimal acceptable inter-cluster coherence on the cur-
rent abstraction level, and is dependant on the εsimilarity and the cur-
rent concept abstraction level. Hence, updating the semantic similarity
based on the εsimilarity threshold is essential to ensure a coherent seman-
tic concept hierarchy. In our example, the word system and the concept
medical might not meet the εsimilarity threshold.

(3) Quadtree Mesh Generation – The sec-
ond criterion used in the clustering is neighbor-
hood preservation. Based on the {x,y}-coordinates
previously obtained for each word, we generate a
quadtree [24] mesh, such that every word is posi-
tioned in its own quadrant. The quadtree recursively



partitions the 2D space into squares, where each non-empty square is
further divided into four equal-sized squares. Hence, each point (i.e.,
word) has its own leaf node. Coincident points are stored as a linked
list. The quadtree is used in later steps as an index for collision detec-
tion and neighborhood search.

(4) Hierarchical Density-Based Clustering – Based on the
εsimilarity and εneighborhood thresholds, we calculate the concept hierar-
chy in two separate clustering iterations, one for concepts and another
for super concepts. We perform an agglomera-
tive, density-based clustering [59] that assigns each
word in the space to a concept, and, in turn, each
concept to a super concept. Based on the quadtree,
we extract the εneighborhood nearest neighbors of
each concept word and form initial concept clus-
ters. If a concept does not have enough neighbors
(εneighborhood) or these neighbors do not satisfy εsimilarity, we do not
create a cluster. Once two clusters overlap, their overlapping children
are either split up or the two clusters are merged (depending on their
pairwise cosine similarity). After the initial clustering is formed, all
descriptors not belonging to a cluster are assigned to their most similar
concept. The process is repeated to group concepts into super-concepts
using their respective parameters. After clustering, our example con-
cepts become: ~taxes:<cuts, deductions, spending, company> and

~medical:<healthcare,health,care,affordable>. Note, that for ~medical
the word health is added, as it is among its nearest neighbors.

3.4 Layered Canvas Mapping

Based on the spatialization of all words and the generated concept
hierarchy, the last step in modeling the semantic concept space is the
layered mapping of all elements on a canvas. In the following, we
describe the five-step layout process.

(1) Transformation and Rescaling – To maximize available screen
space, all data points are transformed and rescaled to the boundary of
the rectangular viewport. The canvas on which the points are mapped
can then be interactively panned and zoomed by users during analysis.

(2) Concept-Anchored Projection – Based on the rescaled canvas,
as well as the adjusted concept hierarchy, we recompute a concept-
anchored t-SNE reduction and project the result onto the canvas. In
addition to the words being projected as points based on their respective
{x,y}-coordinates, we include a bounding box for every word based
on its length and size (i.e., concepts are shown larger than descriptors,
etc.) The quadtree index is also updated during this step.

(3) Overlap Reduction – Since some of the word vectors might be
projected onto close coordinates on the canvas, in this step we reduce
the potential overlap. Iterating over the quadtree index, we detect
areas of potential occlusion based on the object position, as well as
its bounding box. The overlapping objects are moved away from each
other until the process has reached a local minimum.

(4) Color Mapping – The layout process results in
{x,y}-coordinates which reflect semantically sim-
ilar neighborhoods. In addition to this spatial en-
coding, we use the LAB Color Space [57] to as-
sign each concept a color based on its respective
2D-position in that space. Descriptors are assigned
the colors of their parent concept. This double en-
coding of similarity reveals descriptors that are pro-
jected in a neighborhood of a different color, indicating that their un-
derlying word embedding is in conflict with the concept hierarchy.

(5) Voronoi Tessellation – To structure the concept space, we rely
on the positioning of the extracted concept hierar-
chy. To enhance the visual association of the words
in the space to super concepts (creating a high-level
overview), we partition the space based on the ex-
tracted super concepts. We employ a Sweepline
Voronoi Algorithm [25] to determine super concept
boundaries which can be visualized on the concept
space canvas on demand.

4 VISUAL ANALYTICS WORKSPACE

The generated data structures and spatialization, described in sec-
tion 3, builds the foundation of the visual analytics workspace.
The Semantic Concept Space is designed as a layered,
interactive canvas that consists of two stacks of lay-
ers; (1) the Concept View and (2) the Topic View.

Design Rationale – Building on the basis of the
word positioning, we designed the two views to be
separate, super-positioned canvases. Users can inter-
act with one view at a time, while the other is toggled
inactive. To facilitate comparison between views, the
inactive view is shown with a low opacity in the background of the ac-
tive one, making its elements shine through the canvas. Each view is
composed of three layers, representing its hierarchy levels above the
base words. The layers of the Concept View are initialized with the
extracted concept hierarchy, and the Topic View layers with the topic
modeling result. A concept refinement process enables users to directly
adapt the concept hierarchy to their semantic knowledge. They can pro-
mote words up the hierarchy (base word→ descriptor→ concept) or de-
mote them. Only the super concept layer is not interactively adjustable,
as it is supposed to reflect a high-level view of the complete space. At
any point of this iterative process can users trigger a recomputation
of the t-SNE projection to adjust the word spatialization to the new
concept hierarchy. On the other hand, the topic modeling view can not
be adjusted directly but is used for inspecting and analyzing the topic
modeling result. Only through recomputing the topic modeling algo-
rithm (on-demand) do the layers of the topic modeling change to adapt
to the concept refinements. This duality of views enables users to teach
the machine learning model their domain knowledge, as well as the ma-
chine learning model to respond through learning the new semantics.

Visual Encoding – Our visual workspace is designed to support
(1) finding different elements on the canvas, as well as (2) the spatial as-
sociation of words. As a second level task users are expected to (3) de-
code the type of word object at hand. To design an appropriate visual
encoding we consulted a study of the design space of keyword sum-
maries [23] that indicates that there is a trade-off in the effectiveness of
typography versus marks with respect to our tasks; search speed (1&2)
and value judgement (3). According to their findings font size attracts
the attention of users and performs better in search tasks. In addition,
according to Alexander et al. [1], the perceptual bias for estimating
font sizes is negligible. We, hence, represent each word object by de-
fault with a label and enable users to toggle on a circle as an additional
mark. Both the circle and the label sizes encode the object level in the
data hierarchy and, thus, are doubled going up the hierarchy. Further-
more, for the topic view, we designed a topic glyph that represents
the topic or document association with different concept regions. This
glyph can be used as another alternative representation for the object
marks on the canvas layers.

4.1 Concept View
The concept view, Figure 4(a), is the entry point to the visual an-
alytics workspace. As shown in Figure 3, users can vary the
semantic abstraction level of concept and
super-concepts. Defining the entry point of
their analysis is equivalent to choosing a
refinement strategy. Some users prefer to
start at a detailed level and refine the con-
cept space by deleting non-descriptive words
(bottom-up refinement), while others prefer
to add descriptors (top-down refinement) to
an initially abstract view. After configuring
the initial concept view, users can start exploring and interacting with
the concept layers, as described in the remainder of this section.

Descriptor Layer – There are three types of descriptors in the con-
cept hierarchy; (1) descriptors from the concept generation step (sub-
section 3.1), called concept descriptors; (2) descriptors from the neigh-
borhood computation step (subsection 3.2), called topic descriptors;
and (3) user-defined descriptors. Each of these descriptors is directly
assigned to a concept. Users can toggle the visibility of each of the de-



(a) Concept View showing an overlay of all visualization layers. (b) Topic View depicting two selected topic glyphs.

Fig. 4: Duality of Concept and Topic Views. Selected layers from each view ‘shine through’ the other view to give context. In this example, the
left side of the (a) concept view represents a region on renewable energy (bottom) and terrorism (top), while the corresponding (b) topic view
places the topic on oil production to renewable energy and the topic on a terror attack in Libya between the two concepts as it is related to both.

scriptor groups. When visible, descriptors can be represented by a col-
ored dot and/or a small label.The color of a descriptor is based on the
position of its parent concept, while its position is based on its weighted
word embedding vector. This enhances the detection of outliers, i.e., as
colors directly reflect the user-refined concept hierarchy.

A single descriptor can be selected and deselected through a toggle-
click. Selections can be (1) deleted from concept view, i.e., demoted to
become a word; (2) promoted to become a concept; or (3) (re-)assigned
to an existing concept. A group of descriptors can also be used to create
a concept, promoting a selected one to a concept and all others as its
new descriptors. In addition, users can add a word to the descriptor
layer, effectively promoting it to become a descriptor.

Concept Layer – This is the central layer for the refinement of the
concept hierarchy. Concepts are represented by a colored dot and/or a
medium-sized label.In contrast to descriptors, the color and position
of concepts are synchronized in order to anchor the concept space. A
single concept can be (1) demoted to become a descriptor, redistributing
its descriptors; (2) deleted together with all its associated descriptors
(becoming base words); or (3) swapped by one of its descriptors. A
selected group of concepts can be (4) merged to form one joint concept.

Super Concept Layer – The highest level abstraction in the concept
hierarchy is formed by super concepts. These are represented by large,
faded-gray labels positioned in the background.Super concepts are
generated automatically and are non-interactive. However, users can
vary the super concept abstraction level. In addition to the labels,
as described in Figure 3.3, super concepts structure the space into
subdivisions. These are represented by a Voronoi tessellation.

4.2 Topic View
To build this view, Figure 4(b), we rely on a spatialization of the
keyword vectors of documents and topics. These vectors consist of a
weighted set of the most descriptive key-
words extracted by the underlying topic
model [16]. These weights represent the im-
portance of a keyword to their respective
document or topic. In addition, every key-
word has its own word embedding vector
and weights, corresponding to its global im-
portance in the corpus. The former weight
is the learned weight by the topic modeling
algorithm, while the latter is influenced by
the concept hierarchy manipulation to teach the model. This section
describes all layers of the topic view, as well as, the topic glyph design.

Keyword Layer – This layer corresponds to the descriptor layer
of the concept view. Keywords are all descriptive words extracted by
the topic modeling. Some of them are at the same time descriptors in
the concept hierarchy. They are represented by a black label and/or
a circle. Keywords are assigned to documents. However, in contrast
to the strict descriptor–concept assignment, in topic hierarchy, more
than one document can share the same keyword. Other than showing or
hiding them from the canvas, keywords are not interactively adjustable.

Document Layer – The main unit of analysis in a corpus are
the documents. These are represented by their most descriptive key-
words.In addition to circles and labels, documents can also be depicted
using the topic glyph. This indicates all related concept regions of a
document, as described at the end of this section. Selecting a document
reveals all its corresponding keywords. If one of its keywords is also a
descriptor it gets highlighted in color, otherwise, document keywords
are shown in gray. Moreover, hovering over a document object shows
the underlying text for close-reading.

Topic Layer – The top layer in this view is the topic layer. Similar
to documents, topics are depicted by their top keywords. They are also
represented by labels, circles, as well as topic glyphs. Selecting a topic
shows all the documents assigned to it.

Topic Glyphs – To facilitate the association of topics and docu-
ments to concepts, the topic glyphs relate both though spikes that point

to their most related concepts in the embed-
ding space. For each concept in the con-
cept hierarchy, we include one spike such
that the percentage of how similar a given
topic t and the concept c is proportional to
the length of the spike. We calculate the
Euclidean distance between the two objects
as dist(c, t), and the normalized cosine sim-
ilarity of their respective word embedding
vectors as sim(c, t). The distance marking
the end point of the spike x is thus the nor-

malized product of the two factors: dist(t,x) = sim(c, t)×dist(c, t). In
addition to being the scaling factor for each spike’s length, the cosine
similarity sim(c, t) is also mapped to the opacity of the spike, making
the ones pointing to similar but distant concepts more
visually prominent. To facilitate finding the locations of
the concepts associated with a glyph spike, we map the
color of each spike with the color of the corresponding
concept. We further orient the spikes to point to their
associated concepts. Hence, using this representation,
we can reveal topics and documents that are mixtures
of different concepts. Some of which, are intentionally
bringing together aspects of two concepts, e.g., the topic
on the attack on Libya in Figure 4(b), bringing together
the concepts terrorism and oil production. In other cases,
topics are only associated with one concept and are correctly placed
atop that concept, showing almost no visible spikes. Overall, these
spikes can be seen as the directions in which topics or documents are
pulled, based on the semantics of the concept space.

4.3 Concept Space Interactions
Users are supported in their exploration and analysis through a number
of instruments. The most noteworthy interactions are:

Navigation through Word Search – We provide a search query
interface and base words that are not found in the current hierarchy can
be added as new descriptors.



(a) Direct manipulation after lasso-selection of descriptors. (b) Guided relevant feedback suggesting to switch descriptor and concept.

Fig. 5: Two options for Concept Refinement. The direct manipulation enables exploratory refinement, while the guided relevance feedback is
designed for targeted refinement. Both options can be used anytime throughout the visual analytics process to adjust the concept hierarchy.

Lasso Selection – To facilitate
the selection of multiple objects in
the space with one interaction, we
implemented a lasso selection. Indi-
vidual items can be added to, or re-
moved from existing selections.

X-Ray Lens – Users might want to inspect a neighborhood
in more detail, for example, to look for spe-
cific words, or to understand why an area
might be empty in a specific layer. We, there-
fore, enable them to peek through all the lay-
ers at once using a distortion lens. When ac-
tivated in one of the views, the lens can be
used to reveal all objects in a particular posi-

tion throughout the hierarchy. The lens only operates on the active view.
Guided Tours – Lastly, users can toggle the ‘magic wand’ icon

to start a guided refinement tour [40] through the semantic space. This
targeted refinement zooms the canvas on the most uncertain part of the
concept space and suggests a refinement that the user can accept or
reject to go to the next suggestion.

5 INTERACTIVE LEARNING OF THE USER’S SEMANTICS

The foundations of our mixed-initiative technique are the user guidance
and learning components. These constantly monitor the quality of the
concept space to tailor the suggestions for refinement of the most un-
certain areas. However, as serendipitous exploration has been deemed
useful for content exploration [2], our approach is designed to encour-
age exploratory refinement. When needed, users can request guided
refinement suggestions on demand. Both of these options are part of
the concept refinement, designed to teach the system the users’ seman-
tics. The counterpart to this knowledge externalization consists of the
topic model learning the new semantics, as well as the corresponding
adaption of the topics to the learned word associations.

The main challenge of such an approach is the lack of specificity in
the user interactions, i.e., the performed semantic interactions are not
directly linked to actionable steps for topic model refinement. We there-
fore rely on learning the ‘importance’ of words for the given corpus, as
well as their relations. Hence, the weighted word vectors are the com-
mon ground used for learning. In addition to corpus-specific concept
refinements, we learn global word associations to enable knowledge
transfer across comparable document collections. For example, if users
refine a concept space for a specific presidential debate, they can reuse
that space to initialize the concept extraction for another presidential
debate, avoiding a cold start to the second analysis. Overall, for every
word in the system we keep track of several scores, including its rele-
vance for every concept, topic, and document, as well as for the corpus
and globally. To learn the importance of a word, its level in the concept
hierarchy is weighed-in, with super concepts having the largest impact.

During the refinement process, users have two controls to start a
new cycle, on-demand. They can update the spatialization of objects
by clicking the ‘update t-SNE’-button. On the other hand, users can
retrain the topic modeling by clicking the ‘update TM’-button. To avoid
confusion, the positioning of objects on the screen only changes when
triggered by the users though these controls.

5.1 Concept Refinement
As shown in Figure 5, we offer users two ways to refine the concept
space; (1) direct manipulation and (2) guided relevance feedback. Tasks
performed during concept refinement include: adjusting the concept
hierarchy based on the users’ domain knowledge; cleaning up potential
projection errors; resolving word chaining issues (i.e., two words linked
through their association with a third, polymorphic word); as well as,
finding ‘hidden’ concepts based on the topic modeling result.

Actions can be carried out on selected objects in the canvas. All
available commands fall under three primitive types: (1) change of hier-
archy level: (a) promoting, (b) demoting; (2) change of a parent-child
relationship: (a) reassign children, (b) reassign parent; (3) splitting or
merging siblings. Within the concept hierarchy, every level supports cer-
tain interactions: super concepts are not interactive; concepts support
(1b, 2a, 3); descriptors support (1, 2, 3); while base words support (1a).

Direct Manipulation As described in subsection 4.1, users can
directly interact with words in the concept view. The interactions
available in the context menu change based on the selected object types.
Users are typically offered sophisticated interactions that combine more
than one of the three primitive actions. For example, as depicted in
Fig. 5(a), for a selection of descriptors, users can ‘create a concept
from the selection.’ This is equivalent to (1a) promoting the descriptor
clicked (in this case: ‘college’) to become a concept, then (2) assigning
all other descriptors in that selection to the newly created concept.

Guided Relevance Feedback Actions can also be recommended
to the user. The intuition behind this targeted refinement is that the
system offers users a guided tour through the data-space, pointing
them to potential problems, with the goal of achieving maximum gain
for minimum feedback. To start a tour, users click the ‘magic wand’-
button which opens up a suggestion window, displaying the first
refinement recommendation, as shown in Fig. 5(b). Simultaneously, the
concept map gets zoomed to the region of refinement, centralizing and
highlighting the objects concerned. Users can then accept or reject the
suggestion, or choose a different interaction to perform. Internally, this
action prompts the refinement recommender to reevaluate the semantic
space based on information collected through the constant quality
monitoring and fill up the recommendation queue.

Quality Monitoring – In order to make more informed decisions
for the user guidance, the system tracks several quality criteria across
actions: the scatter of word clusters (words in the same concept cluster
or neighborhood) based on cluster-density, intra-cluster variance, and
inter-cluster variance. Here, we rely on several cluster validity mea-
surement techniques [32], including the root-mean-square standard
deviation [27], as well as the S Dbw validity index [27]. In addition,
for every word, we keep track of its neighborhood count, semantic sim-
ilarity to its children and/or parent, as well as its spatial distance to
children and/or parent. Furthermore, the quality monitoring compo-
nent evaluates the internal quality of the topic modeling based on the
criteria outlined in our previous work [16].

Refinement Recommendation – Based on the results of the quality
monitoring, the recommender keeps a constantly-updated queue of
words and their suggested actions. This queue is formed from words
that are chosen based on their importance to the corpus using tf-idf
scoring [51]. The intuition is that users should be presented with
refinements affecting the worst-performing, high-impact words, in



order to achieve substantial improvements and give minimum feedback
for maximum gain. Words important to the whole corpus (high tf-
idf) should be concepts, while important for single documents (low
tf-idf) should be descriptors. After retrieving the top 50 high-impact
words using tf-idf, the recommender loop starts by (1) ranking them
based on the quality metrics; (2) sorting possible refinement actions for
each word, as well as word clusters, using a decision tree; and finally,
(3) adding the words along with their most suitable recommendation to
the queue. The queue is reevaluated if the concept space changes. The
recommended actions come from the three primitive interaction types
listed above. An example of a recommendation is depicted in Figure 1.

5.2 Topic Modeling Adaptation

As described in subsection 4.2, we depict the associations (semantic
similarity) of topics and documents to concepts through topic glyphs.
During refinement, four different cases of topics (and
documents) can be observed. (1) Single-Concept
Topics are related to only one concept and placed atop
that concept, the corresponding glyph has no large spikes.

These topics are coherent with the concept structure and
do not require further refinement. (2) Unrepresented
Topics that are not related to any concept. They are
placed atop an empty region in the concept space, with

no large spikes visible in their glyphs. If relevant, users can introduce a
respective new concept to the empty area, otherwise, the top topic key-
words have to be inspected further. (3) Multi-
Concept Topics are related to a close neighborhood of
concepts. They are placed in-between the related con-
cepts, with small spikes to these concepts in the corre-
sponding glyph. If closely related, users can merge the concepts, other-

wise, no refinement is needed. (4) Concept-
Incoherent Topics are related to multiple concepts
across the space. They are placed in-between the related
concepts according to similarity, with large spikes point-

ing to these concepts in the corresponding glyph. This is the most criti-
cal case, it has to be resolved through targeted concept refinement and
a closer inspection of the topic hierarchy.

In the refinement, users can investigate words that are deemed im-
portant to a topic but are not relevant for concept distinction. These
words are typically less descriptive (in terms of their unique semantic
contribution) to a topic than modeled by the algorithm. For example,
in a topic model, based on a bag-of-words-representation, (frequent)
verbs, adjectives, and adverbs can cause documents to seem similar
even though they are not. To avoid such chaining effects, we use the
learned weights and scores from the concept refinement to readjust the
keyword weighting for the topic model training. These act as “must-
link” and “cannot-link” constraints [3] to introduce the user-defined
notion of relevance to the topic modeling. Ideally, a stable and deter-
ministic topic model [16] should be used in this process. However,
probabilistic models are also applicable but take longer to converge due
to inconsistencies between their individual runs [4].

6 EVALUATION

Methodology – We evaluated our approach with in three stages. (1) To
asses the usefulness and usability of our technique, we conducted
an expert mixed-initiative study [31] with six participants, involving
two phases of semi-structured interviews, as well as a pair-analytics
session [34]. (2) Based on the concept space refinements of the study
results, we automatically computed the topic modeling improvements
across eight quality metrics [16]. (3) To assess the perceived quality
difference, we asked four independent annotators to rank the quality
of five different concept spaces and their associated topic modeling
results. This section reports the results of all three stages, grouped into
quantitative and qualitative insights.

Dataset and Controls – For our evaluation we sought a dataset
with a broadly familiar content, where the expected topic distribution
is known. To ensure comparability with our previous work on topic
modeling refinement [15, 16], we chose to use the second US Presiden-

tial Debate between Romney and Obama in 2012, as our corpus for all
studies. In this dataset, we treat every speaker utterance as a document.

Participants and Tasks – After conducting a pilot study, we de-
signed the expert user study for a target group of people generally in-
terested in politics. Based on our experience in previous works, we en-
visioned that scholars in the social sciences and the humanities would
fit this profile, we therefore invited two political scientists Pol{1,2} and
two linguists Ling{1,2} to take part in the study. As a control group, we
recruited two computer scientists CS{1,2} with no prior knowledge in
debate analysis. For the annotation task, we invited two political scien-
tists Pol{3,4} and two linguists Ling{3,4}. Across the three stages, our
goal was to assess the technique’s support for the four tasks [53] of
[T1] understanding, [T2] diagnosis, and [T3] refinement of the con-
cept space, as well as, [T4] progressively updating the topic modeling.

6.1 Qualitative Results: Expert Feedback

The six sessions of the expert study, 1.5h each, were structured into
three parts. We started with a semi-structured interview (40 mins) in
which the explanation of the approach was interwoven; we checked
the expectations of the participants before introducing new concepts.
Second, we gave the participants full control over the tool and asked
them to refine the concept space. In this pair-analytics session (30 mins),
we encouraged participants to think-aloud. Lastly, we ended the study
with another semi-structured interview (20 mins) that incorporated the
participants’ expectation statements from the first part, as well as a
reflection of the analysis process. All sessions were screen-captured
and audio-recorded for further analysis.

Initial Feedback Regardless of their prior experience with topic
modeling or familiarity with the data, all experts saw benefits in our
technique and potential application areas. Some of them were more
familiar with automatic content analysis, like Ling1, who stated that
she “[had] a mixed experience with using topic models, [as] they
sometimes extract useful concept but often contain nonsense words.”
On presenting her the idea of our approach she commented: “I find it a
very helpful concept to be able to include prior knowledge, we often do
that after modeling, but it is also good to do before.” On the other hand,
CS1 declared that he had no previous experience in using topic modeling
but has developed similar machine learning techniques before. He
observed that “the idea of relevance feedback is good because you adapt
what you see, but with a topic modeling black-box, you don’t know
what the machine learns, which [he] would like to be able to evaluate.”

When asked about his expected workflow, Pol2 was quite certain with
the way he wanted to proceed in the refinement, stating that he “would
try to differentiate between situational and general concepts.” However,
when questioned about the guided refinement, he responded that “[he is]
not sure about the guidance component, it might speed up the process,
but it’s not transparent.” CS2, on the other hand, described his expected
workflow as follows: “My workflow would be to start with looking at
concepts, to figure out outliers, then group concept descriptors.”

Observations During the Refinement Process Before they
started their interactive sessions, we asked participants to rate different
concept space abstractions. We got mixed feedback on the favored entry
point to the analysis from the different participants. Pol1, for example,
stated that she would be interested in “the system to suggest a full space
and [that she] would clean up the unsuitable details” As opposed to
this bottom-up refinement, Ling1 said: “A full space is too cluttered
for me, I need to understand the problems, then build up my solution.”
Ling2 also favored a top-down refinement stating that “starting with
fewer concepts is helpful for the exploration.” All participants agreed
that interactively choosing an entry point to the analysis is a desirable
functionality that they would make use of, depending on their tasks and
data, different abstraction levels would make sense for the refinement.

The participants then generally continued with exploring the seman-
tic space first, to get a better understanding of the corpus. At this stage
many used the x-ray lens to explore empty regions in the concept and
topic views, or find related words to an object. For instance, Pol1 was
interested in exploring a topic on gun violence and used the lens to find



related keywords. After some refinements, she remarked that “it is sat-
isfying to clean this mess and see the model respond,” describing the
interface as a “neat combination of ecstatically pleasing components.”

During the exploration of the space, Ling2 pointed out that “the tool
is good at identifying communities.” After observing the the concept
regions, Ling1 found a region in the space that she deemed incoher-
ent, commenting: “This is a fuzzy area.” The contained descriptors in-
cluded a moderation cluster, temporal keywords, and person names, she
pointed out that “[she] wouldn’t use these words.” She continued by
selecting the entire region using the lasso tool and deleting its content.
She then stated building up new concepts that, in her opinion, described
the underlying phenomena more accurately than the previous space.
She then updated the projection and topic modeling, observing a better
semantic representation. The effects of direct manipulation were also
praised by Pol2; he stated “I can now build my own semantics and theo-
ries to test out.” Similarly, after observing some positive changes in the
semantic space, Ling2 said: “It’s like adding my intuition to a stupid
machine.” She also commented on the guided refinement, finding the
suggested operations useful, only disagreeing with one proposed action.

Overall, the refinement process was well received by all users. Most
of them went through several iteration cycles (up to eight during 30
mins), often trying out the effects a refinement would have on the topic
modeling and claiming that they had a better intuition of the expected
model after the first few cycles. When asked about their final goal for
refinement (or stopping criterion), most participants stated that it would
be a trade-off between the importance of the result (e.g., when used
for further analysis) and their familiarity with the domain semantics.
Pol2 observed that “not every topic has to be coherent to be helpful,”
meaning that his final goal would not be to make each topic perfectly
fit only one concept but rather to make them meaningful.

Usability and General Assessment All experts enjoyed inter-
active refinement session. In her general feedback, Ling1 immediately
cautioned that “it’s so easy to use topic modeling results in a wrong
way, I find it good to explore the space and understand the reasons for
the results.” The same sentiment was shared by Ling2, who stated: “I
like the idea that I can use my knowledge to put things in order, that’s
really useful and very satisfying.” On the other hand, Pol2 proposed to
use our approach for communication, saying: “I would like to use this
tool for presentation, it would be a nice feature to animate though the
regions and create a storyline” However, he also requested that “[he]
would like to be able to track the changes happening in the topic mod-
eling over the different refinement cycles.”

Reflecting his workflow CS2 commented: “I was adjusting concepts
to reduce topic spikes, but then I started asking why a topic is [placed]
there and how the system understands my interactions.” He continued
that “the color encoding of the words was useful to find outliers.” How-
ever, CS1 commented that “since [he is] not an expert in with these data,
[he] would like to verify the performance of the topic modeling automat-
ically.” Nevertheless, “[he] like[d] the design of the interactions, [that
he] can insert words directly on the canvas and not in a side panel.”

The most notable additional features suggested by experts include; a
feature to start typing to autocomplete a concept and jump anywhere
in the space (CS2); to add a space-out or blow-up button for a selected
area (Ling1); to “deep-search” for similar concepts (Ling1), and finally
to enable zoom-dependant resizing of text labels (Pol2).

6.2 Quantitative Results: Quality Assessments
Based on the logging results of the expert studies, we can compare the
automatic quality metrics for the topic modeling. We did not observe
any significant difference in the refinement results across the three user
groups. Experts and non experts, alike, were able to enhance the topic
modeling results through our technique. The average relative change,
from the initial model to the refined model, based on the eight observed
quality metrics [16] was as follows: Coherence (-5.49%); Separa-
tion (-12.09%); Distinctiveness (331.31%); Point-wise Mutual Infor-
mation (4.32%); Certainty (0.66%); Branching Factor (-26.47%);
Compactness (-11.77%); and Topic Size (1.45%). Hence, while on
average the topics became slightly less coherent and separated, they
became significantly more distinct during the refinement.

Compared Output Semantic Concept Space Topic Modeling Result

Manual Refinement 1.00 (0.00) 2.00 (0.70)
Guided Refinement 2.25 (0.43) 1.50 (0.51)

Default Model 3.25 (0.82) 2.75 (1.09)
High-Abstraction 4.00 (0.71) 4.25 (0.82)
Low-Abstraction 4.50 (0.87) 4.50 (0.50)

Table 1: Ranked output of the concept space and the corresponding
topic modeling (scale: 1–best, 5–worst) according to the annotators’
perception of quality, the standard deviation is shown in parentheses.

The last stage of our evaluation is the assessment and ranking of five
models by four annotators. The manual refinement model was gener-
ated by a participant in the first study. The other models were created
following the guided refinement suggestions, the initial model at the de-
fault level of abstraction, and the initial model at high and low abstrac-
tion levels. Annotators were given the agenda of the debate and asked to
rank the concept view, as well as a keyword-list of the corresponding top
topic descriptors. In our annotation guidelines, we asked them to base
their ranking on four criteria: completeness, coherence, separability, de-
scriptiveness. The results, as shown in Table 1, confirm that the manual
refinement of the concept space yields the most well-perceived concept
view, while the guided topic refinement leads to the highest ranking
topic modeling result. This might be due to overlooked, uncertain re-
gions during the manual refinement. In their annotations, they pointed
out that incoherent areas are mainly comprised of clusters of names or
general words, like tomorrow, country, etc. This suggests a potential im-
provement through domain-specific filters for non-informative words.

7 DISCUSSION AND CONCLUSION

Typically statistical machine learning algorithms, such as topic models,
do not incorporate the semantic relations between objects. It is rare that
topic models consider the semantic similarity between keywords or doc-
uments. Rather, they rely on keyword scoring and statistically induced
relations between objects to group them. On the other hand, domain
experts see implicit relations between objects and attributes that they
cannot incorporate into the machine learning models. Modeling user se-
mantics independent of the topic model is challenging as the user model
cannot be tuned to give the best topic model outputs without rapid, iter-
ative feedback. Typically feedback is constrained by algorithmic pa-
rameters and is challenging for non-machine-learning-experts [15].

Semantic Concept Spaces1,2 contributes an approach to bring the
expression of user semantics closer to the actual ML model. Users can
see the big picture of the concept space and generate new ground truth
data through their interactions and knowledge externalization, a form
of “machine teaching”. The modifications applied to the concept space
become transferable knowledge which can be used to initiate models
used on other data. We introduce a design that is based on two parallel
hierarchies: the concept and the topic hierarchies. The interactions take
place in this data space and thus the whole system is “model agnostic.”

In the future we envision improvements to the recommendation
system, for example, verbalizations of system decisions [49] could
help a user know the reasoning behind a recommended interaction and
provide better guidance for model refinement. Because the goal of
this project is to capture the semantics of natural language, there is
also a lot of opportunities to engage with this data through a natural
language interface, for example, verbally expressing a list of descriptors
which would make a concept faster than searching the concept space
and adding them. Study participants expressed a desire to compare
consecutive topic models during the refinement process. This could
potentially be achieved through topic matching [17].

1The system is available as part of the lingvis.io Framework [14] under:
http://concept-spaces.lingvis.io/

2This work has received funding from the DFG/SPP-1999 VALIDA project
(number 376714276) and the DFG Research Unit FOR2111/QI project 8. It
was further supported by the SFB/Transregio 161 (number 251654672), projects
A03 and A04, as well as NSERC Canada Research Chairs.

http://lingvis.io/
http://concept-spaces.lingvis.io/
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