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ABSTRACT  

Helicopter pilots often have to deal with bad weather conditions and degraded views. Such situations may decrease the 
pilots' situational awareness significantly. The worst-case scenario would be a complete loss of visual reference during 
an off-field landing due to brownout or white out. In order to increase the pilots' situational awareness, helicopters 
nowadays are equipped with different sensors that are used to gather information about the terrain ahead of the 
helicopter. Synthetic vision systems are used to capture and classify sensor data and to visualize them on multi-
functional displays or pilot's head up displays. This requires the input data to be a reliably classified into obstacles and 
ground.  

In this paper, we present a regularization-based terrain classifier. Regularization is a popular segmentation method in 
computer vision and used in active contours. For a real-time application scenario with LIDAR data, we developed an 
optimization that uses different levels of detail depending on the accuracy of the sensor. After a preprocessing step where 
points are removed that cannot be ground, the method fits a shape underneath the recorded point cloud. Once this shape 
is calculated, the points below this shape can be distinguished from elevated objects and are classified as ground. Finally, 
we demonstrate the quality of our segmentation approach by its application on operational flight recordings. This method 
builds a part of an entire synthetic vision processing chain, where the classified points are used to support the generation 
of a real-time synthetic view of the terrain as an assistance tool for the helicopter pilot.  
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1. INTRODUCTION  

Helicopter pilots encounter numerous perceptional problems during a flight mission. Landings in environments such as 
desserts or snowfields are problematic due to dispersed dust or snow when the helicopter approaches the ground. Other 
hazardous situations are night flights, which allow only for degraded visibility. An additional aid in such situations are 
modern sensor systems that support navigation by providing additional visual cues in the cockpit or the pilot’s head-up 
display. To generate such cues, sensor data must be classified. State of the art systems for improving the situational 
awareness of the pilot are Lidar (Light detection and ranging) systems. Such systems emit light pulses to measure the 
time of flight of reflected light [25]. The scanned range values are recorded in a regular two-dimensional projection plane 
and thus a visualization possibility is a depth image seen from the helicopter. The range values can be transformed into a 
global coordinate system when the position and orientation of the helicopter is known exactly. 

In addition, navigational values such as flight altitude, speed, and direction are captured and can also be taken into 
account. A typical system delivers a point cloud with approximately 10-20.000 measured points every 300 milliseconds. 
The results are shown at the depth image 1a), the corresponding point cloud 1b), and the classification of a deployed 
operational ground classification in 1c). 
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Figure 1. (a) Depth image: Each range value recorded by a Lidar sensor is stored in a pixel and coded as grey value. (b) 
Range values are transformed to 3D coordinates. The camera perspective differs from (a) to (b), the green box indicates 
corresponding pixels. (c) Classification result of the operational system. Unclassified pixels are green while ground pixels 
are brown. 

In a next step, the data points are used to generate surface and terrain models. Surface models contain all measured data 
elements such as ground, obstacles, and vegetation. These models are used to determine potential collision points 
without differentiating between various types of obstacles.  

In contrast, the focus of our "Advanced Synthetic Vision System" (ASVS) is on terrain models. Such models are used to 
prepare the collected data for obstacle segmentation. Measured points that are classified not to belong to the ground must 
be analyzed for being potentially dangerous, examples are power lines, man-made objects and trees. The "Helicopter 
Terrain Awareness and Warning System" [6] describes how obstacles from segmented point clouds are converted into 
appropriate visualizations for the pilots. 

In our system, two separated hardware devices process the obtained sensor data, firstly the sensor in which the data is 
recorded and classified. Secondly, a mission computer running our ASVS that is not only used for generating a virtual 
representation of the environment, but also for detecting additional man-made objects such as buildings or power lines. 

In the paper at hand, we propose a new method, implemented as part of our ASVS, for the classification of ground points 
(highlighted in dashed lines with white background in Figure 2). It is based on active contours and allows an adaptive 
formation of the ground while the data is collected. An efficient implementation of active contours helps us to deal with 
the real-time requirements during the flight. 

 

Figure 2. Processing chain from collecting data by a Lidar sensor up to visualization of classification results. The 
highlighted element in dashed lines with white background shows our approach method. 

 

2. RELATED WORK 

To classify Lidar point clouds into ground points and non-ground points multiple methods exist. In related papers, 
triangulation methods combine Lidar data with bird's eye views or ground based Lidar data [7]. A number of filter 
operators are applied to pre-process the data (cf. [20] for an overview). In this survey, it is distinguished between 
classification methods based on segmentation, morphological filters, interpolation, Triangular Irregular Networks 
(TINs), and active contours.  



 
 

 

 

 

 

Figure 3. Evolving triangulation: (a) the three points with the lowest elevation form the start triangle. (b) State after a few 
insertions of points with the next higher elevation. The start triangle is subdivided and extended. (c) A mesh modeling a part 
of the terrain under the point cloud becomes visible. (d) The result on sensor data by the triangulation method is comparable 
to the operational classification method with more unclosed ground area in Figure 1(c). 

2.1 Segmentation methods 

The first method describes how to find homogenous regions in unordered airborne scanned point clouds without the need 
of meshing. Lidar points are clustered and analyzed in their local neighborhood. Different classes have a typical 
statistical behavior for their elevation and slope [10]. Rabbani et al. use a smoothness-constrained segmentation to fit 
planes onto clustered parts of the point cloud. This method results in shapes that are oriented arbitrary in a 3D feature 
space [22]. Another method to segment areas in airborne scanned Lidar data is based on the elevation of each data point. 
This implies that the ground must be relatively flat [16]. Also by using a region growing segmentation data, filtering is 
possible. Neighboring points belong to the same cluster if these fulfill criterions like small pair wise distance and 
similarity of normal vectors [24]. 

2.2 Morphological filters 

To find a digital terrain model, morphological filters are a common method. As proposed by Arefi and Hahn, this method 
describes a dual rank filter based on dilation and erosion. The method is applicable to airborne laser data arranged in a 
grayscale depth image [17]. Arefi's and Hahn's method is also based on dilation with different window sizes to increase 
the ability to detect objects in different sizes [1]. These methods can be extended by using progressive window sizes 
changes for the dilatation and erosion filters [27]. 

2.3 Interpolation methods 

Based on a linear least-square interpolation, Kraus [13][14] presented an iterative approach with adaptive weight 
functions. Schickler and Thorpe tested this filter in a mapping project [23] in applications with both forests and break 
lines [14], and build-up areas [4], and additionally improved the filter for applications in forest areas [14]. These 
methods are limited in data with rough terrain and slopes on the surface [19]. Another method is based on a facet model 
[28]. 

2.4 Deployed ground segmentation during flight 

Additionally there is a method to deploy ground segmentation for dividing ground points from elevated data for 
helicopter flights. This method is based on a Laplacian pyramid [31] and its classification result is shown in Figure 1(c). 
The ground points found by this method are not used to generate a realistic terrain model. Its main objective is to find the 
obstacles that are above the ground, such as power lines or trees. For this purpose, the terrain includes lower vegetation 
or small rocks in addition to the actual ground. This method is used as a comparison for our algorithm. 

2.5 Iterative Triangulation Methods 

A common method for classification without using databases with already known terrain information is an iterative 
triangulation procedure [2][3][12][18]. As a reference to our proposed method, we implemented a variant of Peter 
Axelson’s system [3] where Triangular Irregular Networks are used for classification. The measured points are sorted 
according to their height. A first triangle is constructed by the three lowest points; by sorting in new points a 
triangulation is created using Delaunay triangulation. For each new point the nearest neighbor vertex of the triangulation 
is found and the angle α between triangle and its normal is calculated. If α is greater than a threshold ሺߙ ∈ ሾ75°. .90°ሿሻ, 
the point is classified as ground and inserted into the triangulation. A point not classified as ground, is rejected. To 



 
 

 

 

 

generate the TIN, we used the Delaunay triangulation implementation in the OpenCV library [5]. Figure 3 shows how 
the TIN evolves for a set of Lidar points. To generate classification results for comparison, we implemented this 
triangulation method in addition to the deployed ground segmentation algorithm for Lidar data. 

2.6 Active Contour Methods 

Elmqvist et al. [8][9] propose an approach for generating terrain models based on active contours. Such contours are 
used to approximate a shape of an object of which only noisy points are known. The method contains a convolution as an 
iterative process in each step. Consequently, the method is not very efficient to generate a terrain-based classificator. 
Since time is critical, we extended this method in order to be more efficient. This will be described in the next session. 

 

3. ACTIVE SURFACES FOR GROUND GENERATION 

An active couture model is a concept for fitting the shape of objects in 2D images and 3D scenes to parametric curves or 
surfaces. An active contour or surface is influenced by internal forces, e.g. smoothness, and external forces computed 
from the underlying data. If the external force is formed by the gradient of an image, the contour is drawn in the direction 
of lines and edges. When the contour reaches a position where its energy is minimal, it stabilizes and the result is taken. 
This minimization problem is solved by regularization for internal and external forces [15][26]. In order to evolve our 
method for real-time capability, we use a simplified version of active contours that only regularizes internal forces. We 
decided to use Elmqvist’ method as basis for our algorithm, because most of the related work is used in Lidar data, 
obtained in birds eye perspective. In addition, none of the compared methods are designed to be used in real-time 
application where data changes frequently. 

Given a data set ݀ ൌ ሼሺݔ௜, ,௜ݕ ௜ሻݖ ∈ Թଷሽ௜ୀ଴
ேିଵ provided by the sensor, we use the minimization to fit the ground surface 

from below to the data points. Figure 4 shows how such a contour evolves iteratively in 2D on a point distribution as it 
occurs in Lidar point clouds and how the classification due to this fitting should be. 

 

Figure 4. (a) Beginning with a horizontal line, the regularized contour is drawn upward until a stable solution is achieved. 
(b) Points below and slightly above the terrain contour will be classified as ground (blue dots). 

3.1 Fitting the classificator to scanned points 

The mathematical description of regularization is derived from the formulations of Terzopoulos' equations [11][21][29]. 
Suppose that the data set ݀ ൌ ሼሺݔ௜, ,௜ݕ ௜ሻݖ ∈ Թଷሽ௜ୀ଴

ேିଵ has been obtained by the Lidar sensor, then each of the data points is 
derived from a function that describes a surface model or rather the environment. A terrain-based classificator, described 
by a function ݂:Թଶ → Թ, shall be recovered from this data. This is an ill-posed problem because the number of possible 
terrain models is infinite. 

In order to select one particular solution, a priori knowledge like smoothness of the searched function is needed and is 
taking into account by using the first derivation ሾܦଵ݂ሿሺݔ,   .ሻ as proposed for the surface model "membrane" in [30]ݕ
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Additionally, the function ݂ should be close to the measured data. Therefore, a distance measure is needed, in our case 
we choose the squared distance in height, otherwise the function would not be differentiable. Another reason is that the 
contour should lie in the minimal possible distance below or above to the point. 

A solution to these two requirements is found by minimizing the following functional ܪ: ଵሾԹଶ,Թሿܥ → Թ:  

ሾ݂ሿܪ  ൌ ,ݔሺ݂ൣܧ׬ ,ሻݕ ௫݂	ሺݔ, ,ሻݕ ௬݂ሺݔ, ,ሻݕ ,ݔ ݕ݀ݔ൧݀ݕ → ݉݅݊ (2) 

where ܪሾ݂ሿ ൌ ,ௗሾ݂ܪ ݀ሿ ൅  ௗܪ ௣ሾ݂ሿ with Data Termܪ ൌ
ଵ

ଶ
∑  ሺݔ௜, ,௜ݔ௜ሻሾ݂ሺݕ ௜ሻݕ െ ݀௜ሿଶ௜  and Model Term ܪ௣ሾ݂ሿ ൌ

ሾܦଵ݂ሿሺݔ, ሻ. The regularization parameterݕ is a positive number that controls the tradeoff between Data Term and 
Model Term. The Data Term guarantees the closeness to measured data and the Model Term the smoothness.  is a 
weighting function that indicates whether a data point was measured on position ሺݔ௜,  .௜ሻݕ

  :ሾ݂ሿ is solved with Euler-Lagrange-Equation by building the partial derivations and results in a linear equation systemܪ

ሺ݀ߢ  െ ݂ሻ ൅ ݂∆ߣ ൌ 0 (3) 

By interpreting the input grid ݀ and ݂ as 1D vectors and setting up the Model Term ∆ after solving ܪሾ݂ሿ and the 
weighting function  in the matrices ܯ and ܭ a linear equation system with a stationary solution instead of an iterative 
function is formulated:  

 ൫ܭ റ݀ െ ܭ റ݂൯ ൅ ܯߣ റ݂ ൌ 0 ⇒ റ݂ ൌ ሺܭ െ ܭሻିଵܯߣ റ݀ (4) 

with 	ܯ and ܭ in the following forms:  
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Terzopoulos proposes the second derivation as smoothness prior for surface reconstruction. For our classificator both the 
first and the second derivation yield the same result (cf. Figure 6). The benefit in using the first derivation is the 
possibility to construct a matrix ܯ for the Model term that simplifies the solution of the linear equation system with the 
conjugate gradient method. This approach is faster and more accurate as the iterative approximation shown in Chapter 3. 

The linear equation system is solved for a regular grid of points. If data points were collected in the vicinity of this grid 
point, the height is determined (see below) and the weighting function is set to 1 for this position, otherwise it is 0. The 
initialization for the elevation of the grid points is equal to the smallest elevation value min	ሺሼݖ௜ሽ௜ୀ଴

ேିଵሻ in the set ݀. The 
grid dimension of the terrain model that is also the domain of a function	݂: Թଶ → Թ  is based on the spatial dimension of 
the point cloud. If two or more data points of the sensor fall into the same grid cell, the one with the lower elevation is 
kept for computing the elevation of the cell. 

3.2 Classification procedure 

Having a ground layer available, we are able to classify the measured points as belonging to the ground or to artificial 
objects. We determine the orthogonal distance of all points to the terrain-based classificator. Points with a lower 
elevation than this model are assumed to belong to the ground, also points above the model if their distance is within a 
given threshold. 

 



 
 

 

 

 

 

Figure 5. Decision chain if a point ⊗ can be classified as ground: The first test is part of the progressive preprocessing. If all 

the points that match a cell in the classification membrane grid have a large variance in their elevation, the point can 

impossibly be a ground point. After this step, ⊗ is classified as ground if ⊗ lies below or slightly above the cell. The 

maximal distance ⊗ can have above the classificator to be a ground pixel is based on the sensor inaccuracy. 

For the classification of a data point, we identify the grid cell on the classifier membrane matching points' ݔ and ݕ 
coordinates. If the elevation of the grid cell is higher than the elevation of the point, it is classified as ground. Based on 
the statistical inaccuracy of height values of each pixel, also points slightly above the classifier are tagged as ground. The 
complete process is given in Figure 5. 

3.3 Progressive Runtime Optimization with different Levels of Details 

In practice, avionic computers are limited in their performance. Therefore, we propose an optimization to gain real-time 
behavior of the ground segmentation. The minimization procedure is limited in speed because of solving the linear 
equation to find the function ݂ for every data set ݀ every 300 milliseconds. In order to increase the speed, we have to 
reduce the accuracy of the grid in dependency to their spatial distribution and quality. The goal is to find the best ratio 
between Level of Detail (LOD) expansion and computation speed and correctness of classification. Points far away from 
the helicopter are handled using a coarser grid (cf. Figure 6), points close to the helicopter using a smaller grid. The 
resulting terrain-based classificator is approximated in a progressive behavior. 

In the classification of data recorded by a Lidar sensor mounted on a helicopter, we make a special statement: A spatial 
and temporal coherence between two sensor frames exists so that the terrain-based classificator of one frame provides a 
basis for the following frame. We perform a statistical analysis on all pixels in the area of a grid cell on the terrain-based 
classifier. This information is kept for the following frames and all pixels that are in the area of this grid cell not taken 
into account for solving the linear equation. This reduces the number of calculations to be done in the conjugate gradient 
method. 

This assumption is valid because of the correlation between the speed of the helicopter and the frequency of recording 
environmental data. The position and the viewing direction of the helicopter does not change significantly in the short 
time slot of 300 ms. In the best case, the sensor delivers the same information as in the previous frame and no adaption is 
necessary. This describes a theoretical optimum if the helicopter does not move. In practice, the sensor is biased by noise 
and errors in the helicopters positioning system. 

 

Figure 6. The hierarchical approximated terrain-based classificator in different LODs is calculated. This is possible in real-
time if the first order derivation model is used. 

 



 
 

 

 

 

4. RESULTS AND EVALUATION 

The triangulation method delivers terrain classification in real-time as well as the for operational issues established 
method, based on a laplacian pyramid. In both cases, the results satisfy the requirement to filter Lidar data for elevated 
points for further calculations like power line detection. Especially the operational method is usable for this purpose 
because irregular surfaces like forest areas are classified as ground. Our approach is slower than the two reference 
implementations, but its result is more usable for visualization aims and a candidate for a real-time application in avionic 
computers. The proposed method is an extension of the process Elmqvist et al. introduced in [8]. Our method has a few 
enhancements and differences to their method: 

 The generation of the terrain-based classificator is calculated in a fast way, meaning that the calculation can be 
done between two sensor frames and therefore fast enough for terrain visualization in real-time. 

 Progressive behavior: The spatial coherence between two sensor frames is used to reduce calculation 
complexity and duration.  

 As an additional application to determinate the terrain features, Elmqvist et al. propose change detection, based 
on environmental alternation over time. In their paper, they use as an example the building of a wall. In a time 
slot of 300ms it will not happen, that the environment changes in a drastic way. The differences between two 
sensor frames occur in form of outliers or not yet sampled surfaces. 

4.1 Evaluation of classification procedure 

The usage of different LODs and discrete grids for fitting a classificator surface under the point cloud effects not only the 
time complexity but also the classification result. In Figure 7 and 8 the classification results for different methods for  
arbitrary 3D point clouds is shown. The operational Laplace-based method classifies in the example with the rift ground 
in the almost flat part and not in the valley of the rift. The triangulation and our method detect the valley as ground. As 
similar is observed in the arbitrary point cloud in the shape of the tree. In comparison to the triangulation method, our 
result delivers more ground pixels. 

 

Figure 7. Classification results for three different methods an arbitrary point clouds in the shape of a rift. Black dots are 
ground pixels, boxes are unknown. (a) Operational Laplace-based method. (b) Triangulation method. (c) Our method. 

 

Figure 8. Classification results for three different methods an arbitrary point clouds in the shape of a tree. Black dots are 
ground pixels, boxes are unknown. (a) Operational Laplace-based method. (b) Triangulation method. (c) Our method. 

Figure 9 shows the classification result for our method in three different real and simulated cases. Cases (a) and (b) are 
synthetic sensor frames while (c) is recorded data from a real flight. The first column shows the range image, while the 
pictures in column 2 indicate the ground truth for (a) and (b). Column 3 shows the operational segmentation result and 
column 4 the result of the triangulation method. Our result is shown in column 5. The colors depict the class for each 
pixel. Ground pixels are dark and unknown pixels appear in light grey. Even more scenarios are shown in Appendix A. 



 
 

 

 

 

In scenario (a) the top side and a part of the cube's side in the foreground is misclassified as ground. Especially for initial 
sensor frames, misclassifications cannot be excluded. The rest of the image is mostly classified correctly. As illustrated 
in Table 1, the number of correct classified pixels in scenario (a) is larger than 90% (Correct Ground + Correct Non-
ground). For scenario (b) more than 50 % are misclassified ground pixels (cf. Table 1). This is due to the fact that only 
the point with the lowest elevation in a defined neighborhood is used for the construction of the classificator membrane. 
Many points lie above the classificator if the surface is not plain. Because our approach generates a smooth terrain 
classificator, pixels on the left side on the image lying on a ridge, are also not classified as ground. Nevertheless, both, 
the ground truth and our classification result when given as input for the ASVS, result in almost the same terrain 
visualization (cf. Figure 10). 

 

 

Figure 9. Three scenarios in different situations: (a) and (b) show synthetic sensor data with the range image in column 1 
and the ground truth classification in column 2 (brown is ground and green is unknown). Column 3 shows the operational 
segmentation result and column 4 the result of the triangulation method. The classification result of our system is given in 
column 5. Line (c) shows real flight data without ground truth. 

 

 

In comparison to the other methods, our method has view advantages on real data: The operational method misclassifies 
pixels near the real ground and all flat parts as ground. This behavior is demonstrated on the helicopter pixels in scenario 
(c, 3) and the top of the cubes in (a, 3). The triangulation method cannot deal with small changes in the slopes. Cubes on 
the hillside in scenario (b, 4) are partially misclassified. In addition, this method is noise sensitive (cf. Figure 9 (c, 4)). 

Our method increases the classification quality of the operational classification in scenario (c). The differences between 
Figure 9 (c, 3) and Figure 9 (c, 5) shows that the helicopter as well as the lower parts of the buildings' walls in the 
background are correctly classified as non-ground. As demonstrated on the surface reconstruction behavior for scenery 
(b, 1) in Figure 9, the noisy misclassification of the ground in the foreground will not influence correct ground 
visualization in the ASVS. The discretization and the resolution of the terrain-based classifier has a negative impact on 
the classification result. 



 
 

 

 

 

Table 1. Comparison between Ground Truth and our classification result. The amounts of pixels that are correct, 
respectively wrongly classified, are given in percent. 

Classification Synthetic scene with flat ground 
(Figure 9(a)) 

Synthetic scene with slope  
(Figure 9(b)) 

Correct ground 66,77 % 34,23 % 

Correct Non-ground 27,44 % 10,34 % 

False Ground 4,74 % 1,03 % 

False Non-ground 1,05 % 54,40 % 

 
 

 

Figure 10. Terrain generated with the synthetic sensor frame shown in Figure 9(b): (a) is generated with Ground Truth and 
(b) by our method with the classified pixels. Both show almost the same terrain. The only exception is the boarders of the 
terrain. This behavior is induced by the numerical solution of the linear equation system. 

 

Figure 11. Real sensor data recorded on a flat field. This scenery is one of the scenarios used for testing calculation speed on 
a mission computer. 



 
 

 

 

 

 

4.2 Evaluation of time complexity 

 

Figure 12. The box plots contain the computation time for 20 frames for each scenario between two sensor frames. (a) 

Calculation durations over three scenarios with () and without different LODs (⊗) on a PC. (b) Calculation duration with 

usage of different LODs on a PC (⊗) and on a mission computer ().  

To show the reducing of the computation complexity of Elmqvist et al. method with our approach with different LODs, 
we measured the calculation duration on a notebook (Quad core i5 CPU@2.4Ghz, 4GB RAM). For Elmqvist’s reference 
implementation, we used a grid with the resolution of the lowest LOD in our method. As input served sensor frames in 
scenarios of different complexity. For this comparison, we analyzed 20 frames for every flight scene. The computation 
times as box plots are shown in Figure 12. In scenario 1, the helicopter flies over a valley with bushes and woods on the 
sides. Scenario 2 is a flat field, and scenario 3 is an airport with hangars and electrical towers with power lines. One 
frame of scenario 1, 2, and 3 each is given in Figure 1, Figure 11 and 9c). Our approach takes less than 300 ms in all 
three cases. The computation speed of solving the linear equation in Chapter 3.1 depends on the grid size. It is therefore 
more efficient to use small dimensions for high LODs. We also tested our implementation on a mission computer with 
the real-time operating system VxWorks (Version 5.5.2, CPU: 833 MHz, PCI Bus: 33 MHz). The calculation times are 
slightly higher than on a PC, but with reduction of calculations in higher distances, the classification method is also real-
time capable on a mission computer. Based on the inaccuracy of the sensor in high distances over 500 meters, a ground 
classification might not be necessary. 

 

5. CONCLUSIONS AND FUTURE WORK 

In all of the presented methods, the classification generating terrain models can be computed for different purposes. The 
triangulation method and the Laplace based method deliver models that can be used as basis for obstacle segmentation. 
Both methods behave similar at classification in clearly elevated but almost homogeneous surfaces like bushes. In such 
regions ground is detected, which, although sufficiently allowing for preprocessing of obstacle classification, was not 
primarily conceptualized for visualization issues. In visualizations on basis of ground detected by the Laplace method, 
the pilot himself has to distinguish between ground and vegetation by comparing the real environment with the 3D 
visualization. In case of the triangulation, our method contains a major advantage: The cited procedure uses one 
reference triangle for classification. With the regularized grid, it is possible to classify a point with respect to the 
neighboring pixels because of the smooth classification membrane. Regularization, used in our approach, improves 
finding ground in Lidar data, but does not guarantee to find a completely correct terrain-based classificator. Especially in 
flights above forests, trees form an almost homogeneous surface and consequently lead to false classification.  



 
 

 

 

 

Our approach delivers a more realistic ground classification for visualization purposes. Our classification result has the 
quality to facilitate a more realistic terrain reconstruction for common scenarios. Additionally, we demonstrated that our 
technique is real-time capable on mission computers within the time frame of 300ms. The classified points serve as input 
for an "Advanced Synthetic Vision System" in order to generate a terrain model. Figure 13 shows how a visualization of 
the environment would look like for a pilot. The dark areas are constructed by as ground classified data points. The 
lighter parts of the ground surface are loaded from a digital terrain database. In theory we showed that it is possible to 
perform all calculations and visualization in real-time.  

Mission computers are limited in their performance, because different applications for pilot assistance run 
simultaneously and have to work as real-time applications. For the ASV application, with ground detection together with 
other parts as the obstacle detection and visualization, the requirement is to improve the developed calculation 
optimization to reduce the need for computation power. Consequently, for some of the calculations, e.g. the very time 
consuming solving of linear equations, a shader implementation on a GPU could be one possibility in future. Also a 
bilinear interpolation on the grid of the classificator will increase the number of correctly detected ground in areas with 
strong slopes as shown in Figure 9b). The usage of an efficient implemented bilinear or even higher order interpolations 
possibly on a GPU would result in better correct classification percentages than given in Table 1 and obtain the 
possibility to classify Lidar data for real-time visualization. 

 

Figure 13. A synthetic view with our "Advanced Synthetic Vision System" is created based on the new classification 
method. The artificial generated scene correlates to the image taken with an infrared camera at the same time. 

 



 
 

 

 

 

6. APPENDIX 

 

Figure 14. Classification results on perfect synthetic sensor images. Column 1 shows range images. Columns 2-4 show the 
classification result for operational, triangulation, and our method. 

 

Figure 15. Classification results on noised synthetic sensor images. Noise is generated by adding normal distributed values 
between -1 and 1 meter on the distance value. Column 1 shows range images. The classification result for operational, 
triangulation and our method is shown in columns 2-4. 



 
 

 

 

 

 

 

Figure 16. Classification results on real sensor images. Column 1 shows range images. Columns 2-4 show the classification 
result for operational, triangulation, and our method. 
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