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Figure 1: (Left) 1024 points with constant density in a toroidal square and its spectral analysis to the right; (Center) 2048 points with the
density function ρ = e(−20x2−20y2) + 0.2 sin2(πx) sin2(πy); (Right) 4096 points with a density function extracted from a grayscale image.

Abstract

We present a new general-purpose method for optimizing existing
point sets. The resulting distributions possess high-quality blue
noise characteristics and adapt precisely to given density functions.
Our method is similar to the commonly used Lloyd’s method while
avoiding its drawbacks. We achieve our results by utilizing the con-
cept of capacity, which for each point is determined by the area of
its Voronoi region weighted with an underlying density function.
We demand that each point has the same capacity. In combination
with a dedicated optimization algorithm, this capacity constraint
enforces that each point obtains equal importance in the distribu-
tion. Our method can be used as a drop-in replacement for Lloyd’s
method, and combines enhancement of blue noise characteristics
and density function adaptation in one operation.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Antialiasing I.4.1 [Image Processing and Computer
Vision]: Digitization and Image Capture—Sampling

Keywords: importance sampling, Lloyd’s method, blue noise, ca-
pacity constraint, Voronoi tessellations, Poisson disk point sets

1 Introduction

Point distributions are ubiquitous in computer graphics and are used
in such diverse domains as sampling, object and primitive distribu-
tion, halftoning, point-based modeling and rendering, and geome-
try processing [Pharr and Humphreys 2004]. One desirable prop-
erty of point distributions in these contexts is that they possess blue
noise characteristics, with large mutual distances between points
and no apparent regularity artifacts. Another desirable property is

that point distributions adapt to a given density function in the sense
that the number of points in an area is proportional to the density.

The iterative method by Lloyd [1982] is a powerful and flexible
technique that is commonly used to enhance the spectral properties
of existing distributions of points or similar entities. However, the
results from Lloyd’s method are satisfactory only to a limited ex-
tent. First, if the method is not stopped at a suitable iteration step,
the resulting point distributions will develop regularity artifacts, as
shown in Figure 2. A reliable universal termination criterion to
prevent this behavior is unknown. Second, the adaptation to given
heterogenous density functions is suboptimal, requiring additional
application-dependent optimizations to improve the results.

We present a variant of Lloyd’s method which reliably converges to-
wards distributions that exhibit no regularity artifacts and precisely
adapt to given density functions. Like Lloyd’s method it can be
used to optimize arbitrary input point sets to increase their spectral
properties while avoiding its drawbacks. We achieve the quality of
our results by applying a so-called capacity constraint. This con-
straint enforces that each point in a distribution has the same ca-
pacity. Intuitively, the capacity can be understood as the area of the
point’s corresponding Voronoi region weighted with the given den-
sity function. By demanding that each point’s capacity is the same,
we ensure that each point obtains equal importance in the resulting
distribution. This is a direct approach to generating uniform distri-
butions, whereas Lloyd’s method achieves such distributions only
indirectly by relocating the sites into the corresponding centroids.

Based on this capacity constraint, we utilize an iterative algorithm
based on [Balzer and Heck 2008] to optimize given point distribu-
tions. An evaluation of the results confirms that our constraint is re-
sponsible for improved blue noise characteristics and precise adap-
tation to density functions. Due to its similarity to Lloyd’s method,
our method can be used as a substitute in applications that currently
benefit from Lloyd’s method, albeit at a higher computational cost.
In addition, it combines enhancement of blue noise characteristics
and density function adaptation in a single operation.

The remainder of the paper is structured as follows: In the next
section we review work related to Lloyd’s method and its applica-
tion in computer graphics. In Section 3 we discuss the theoretical
background of Lloyd’s method and present our variant of capacity-
constrained point distributions. In Section 4 we provide a critical
evaluation of our results and those of Lloyd’s method. Finally, in
Section 5 we draw some conclusions.
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Figure 2: Lloyd’s method generates point distributions with regular structures if it is not stopped manually. This becomes evident by color
coding the number of neighbors for the Voronoi region of each point. The example set of 1024 points was computed with Lloyd’s method to
full convergence and contains large patches of hexagons. These patches are separated by just a few heptagons and pentagons in between.
Due to the higher variance in the number of neighbors, the result of our method does not exhibit such regularities. The spectral analysis to
the right confirms this. The mean periodogram is much smoother, with less turbulent radial power and lower anisotropy.

2 Related Work

To solve the aliasing problem in computer graphics, Dippé and
Wold [1985], Cook [1986], and Mitchell [1987] introduced non-
uniform sampling. In this process, Poisson disk distributions were
identified as a spectrally near optimal sampling pattern, having blue
noise characteristics similar to those of receptors in primate’s retina
[Yellott 1983]. The associated early dart throwing algorithm to gen-
erate such point distributions was provided by Cook [1986] and ac-
celerated by McCool and Fiume [1992] with their relaxation dart
throwing algorithm. McCool and Fiume [1992] also introduced
Lloyd’s method to computer graphics, as they recognized that it fur-
ther improved the spectral properties of their results. They already
found that Lloyd’s method should be stopped after a few iterations
to prevent regularity artifacts.

Since then, several techniques have emerged that try to generate
point distributions with blue noise characteristics while reducing
the runtime. These techniques typically involve some tiling ap-
proach, allow progressive refinement, and decrease the generation
time to real-time speeds. The approaches are either deterministic
tilings, such as the Penrose or polyomino tilings of Ostromoukhov
et al. [2004; 2007], or they work on precomputed sets of single tiles,
such as [Hiller et al. 2001; Lagae and Dutré 2006; Kopf et al. 2006].
Each of these techniques requires preprocessing to gain blue noise
characteristics, and incorporates Lloyd’s method at that point.

In addition to these complex construction methods, recent tech-
niques showed significant progress in the generation of Poisson disk
distributions, equivalent to those generated by dart throwing, such
as [Jones 2006; Dunbar and Humphreys 2006; White et al. 2007;
Wei 2008]. Since none of these techniques is able to combine blue

noise characteristics, progressive refinement, and density function
adaptation in an equally effective way, Lloyd’s method remains piv-
otal in the context of sampling in computer graphics.

Lloyd’s method was not used for the adaptation to given density
functions in the aforementioned real-time techniques. However,
it was used for density adaptation by offline techniques, such as
[Secord 2002] for non-photorealistic rendering, [Kollig and Keller
2003] for image based lighting using high dynamic range images,
or [Surazhsky et al. 2003] for geometry processing. In these cases,
Lloyd’s method had to be combined with other heuristics or opti-
mization approaches to improve the adaptation to density functions.
In contrast, Chen [2004] suggested a mesh optimization method
based on centroidal Delaunay triangulations, which tends to pro-
duce regularity artifacts as well.

3 Capacity-Constrained Point Distributions

In this section, we present our method for generating capacity-
constrained point distributions. First, we provide theoretical back-
ground by introducing centroidal Voronoi tessellations and present-
ing Lloyd’s algorithm as a construction method for such tessel-
lations. Then we introduce and motivate the concept of capac-
ity and describe an algorithm for computing capacity-constrained
Voronoi tessellations. Finally, we present our method for generat-
ing capacity-constrained point distributions.

Throughout this section and the following Section 4, we refer to
the points of our distributions as sites. In contrast, the term point is
used for the points of the underlying space.



Centroidal Voronoi Tessellations A set S of n sites in Eu-
clidean d-space Rd induces a partition of Rd into n regions. Each
such region Vi belonging to a site si ∈ S consists of all points x that
are closer to si than to any other site sj ∈ S, i 6= j. This partition
is known as the Voronoi tessellation V(S) of S in Rd. A centroidal
Voronoi tessellation is a Voronoi tessellation in a bounded space
Ω ⊂ Rd with the property that each site si coincides with the cen-
troid of its Voronoi region Vi. The centroid pi of a Voronoi region
Vi is calculated as

pi =

∫
Vi
xρ(x)dx∫

Vi
ρ(x)dx

, (1)

where ρ(x) ≥ 0 is a given density function defined on Ω. In other
words, a centroid is the center of mass of a Voronoi region with re-
spect to the density function. The importance of centroidal Voronoi
tessellations is established by their relation to the energy function

F(S,V) =

n∑
i=1

∫
Vi

ρ(x) |x− si|2 dx, (2)

where Vi ∈ V and si ∈ S. A necessary condition for F to be
minimized is that V is a centroidal Voronoi tessellation of S. For a
comprehensive treatment of the topic, we refer to [Du et al. 1999;
Okabe et al. 2000].

Lloyd’s Method A common way to generate centroidal Voronoi
tessellations is the method introduced by Lloyd [1982]. This itera-
tive algorithm performs the following steps:

1. generate the Voronoi tessellation V(S) in Ω;

2. move each site si ∈ S to the centroid pi of the corresponding
Voronoi region Vi ∈ V;

3. if the new sites in S meet some convergence criterion, then
terminate; otherwise return to step 1.

Due to the fact that each relocation of a site to its centroid reduces
the energy F , the algorithm converges to a local minimum of F ,
in which each site coincides with the centroid of its Voronoi region.
Hence, Lloyd’s method is a gradient descent method that minimizes
the energy function F [Du et al. 1999]. Similar gradient descent
methods for F , such as [Liu et al. 2008], generate equivalent re-
sults.

Lloyd’s method can either be performed in continuous or in dis-
crete spaces. An implementation in continuous spaces is usually
faster, but also more complex and less flexible. Especially the in-
corporation of density functions is intricate in the continuous case.
It is therefore common to use discrete implementations, where the
bounded space Ω with density function ρ is represented by a set X
of m sample points. Based on this point set X , the Voronoi tes-
sellation is formed by an assignment A : X → S, which assigns
each point in X to the closest site in S. Consequently, the energy
function F in Equation 2, which is minimized by Lloyd’s method,
is substituted by

F ′(X,A) =

m∑
i=1

|xi −A(xi)|2 . (3)

The computational time complexity of Lloyd’s method in two-
dimensional continuous space with constant density is O(n logn)
for each iteration [Du and Emelianenko 2006], whereas for discrete
space with m sample points it is O(m logn). The memory com-
plexity of Lloyd’s method is at least O(n), or O(n + m) if it is
based on a non-regular discrete point set.

Capacity Constraint The concept of capacity is defined as fol-
lows. Consider a set S of n sites that determines a Voronoi tessel-
lation V(S) in the bounded space Ω with the density function ρ(x).
The capacity c(si) of a site si ∈ S with respect to its Voronoi
region Vi ∈ V is defined as

c(si) =

∫
Vi

ρ(x)dx. (4)

We say that a distribution of sites in S adapts optimally to the den-
sity function ρ, if the capacity of each site si ∈ S fulfills the con-
straint

c(si) = c∗, (5)

where c∗ is a globally defined scalar value given by

c∗ =

∫
Ω
ρ(x)dx

n
. (6)

The term c(si) = c∗ for each site si ∈ S is our capacity constraint.

Intuitively, the capacity of a site is equivalent to the area of its
corresponding Voronoi region weighted with the density function.
Hence, our capacity constraint enforces that each site in a distribu-
tion is equally important. This is directly related to the approach of
importance sampling [Halton 1970].

Capacity-Constrained Voronoi Tessellations An arbitrary dis-
tribution of n sites in S usually does not fulfill the capacity con-
straint c(si) = c∗ for all sites si ∈ S. Rather, such a distribution
has to be determined by generating a capacity-constrained Voronoi
tessellation V(S,C) based on a set C of n arbitrary non-negative
capacity values. In our case, all elements of C have the same value
c∗.

In general, the Voronoi tessellation of a fixed set S of sites will not
meet a given capacity constraint C. Aurenhammer et al. [1998]
showed, however, that any set of sites will always have a power
tessellation which does meet the capacity constraint. They also
showed that a power tessellation in discrete space minimizes the
function F ′ in Equation 3, regardless of the capacity constraint C.
Note that the power tessellation is a generalization of the ordinary
Voronoi tessellation.

Based on this work of Aurenhammer et al. [1998], we presented
an approach for the computation of capacity-constrained Voronoi
tessellations V(S,C) in n-dimensional discrete spaces [Balzer and
Heck 2008]. In this approach we start with a random assignment
A : X → S of m points in X to n sites in S that fulfills the ca-
pacity constraint C. In this discrete case, the capacity constraint
C is fulfilled if the number of points that are assigned to each site
si ∈ S equals the capacity c(si) ∈ C. After this initialization,
we minimize F ′(X,A) by continually swapping the assignment
between two points in X that belong to different sites in S if and
only if such swap reduces the energy in F ′. The restriction to swap
operations guarantees that the capacity constraint C is maintained
throughout the minimization. The assignment swaps are performed
until no further swap reduces the energy and the algorithm stops in
a stable state that represents a local minimum of F ′. Such local
minimum is achieved by optimizing the assignment A, not by relo-
cating the sites in S as it is done by Lloyd’s method. Our approach
is further formalized in Algorithm 1.

The result of our algorithm is an assignment A : X → S that
represents a power tessellation of S in X and fulfills the capacity
constraint C. The computational time complexity of the algorithm
is O(n2 + nm log m

n
), and its memory complexity is O(n + m).

For more details consult our paper [Balzer and Heck 2008].
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Figure 3: Our method takes an existing site distribution and transfers it to a random discrete assignment in which each site has the same
capacity. This assignment is then optimized so that Voronoi regions are formed and sites are relocated to the centroids of their regions, while
simultaneously maintaining the capacity for each site. The optimization stops at an equilibrium state with the final site distribution.

Algorithm 1: Capacity-Constrained Voronoi Tessellation
Input: Set S of n sites, Set X of m points, Set C of n capacities

with
∑
C = m

Output: Power tessellation A : X → S that fulfills the capacity
constraint C

Initialize a random assignment A : X → S that fulfills the
capacity constraint C;
repeat

stable := true;
foreach pair of sites (si, sj) with si, sj ∈ S, i < j do

Initialize two heap data structures Hi, Hj ;
foreach point xi with A(xi) = si do

insert xi into Hi with key |xi − si|2 − |xi − sj |2;
foreach point xj with A(xj) = sj do

insert xj into Hj with key |xj − sj |2 − |xj − si|2;
while |Hi| > 0 and |Hj | > 0 and
max(Hi) + max(Hj) > 0 do

modify the assignment A to A(max(Hi)) := sj

and A(max(Hj)) := si;
remove max(Hi) from Hi and max(Hj) from Hj ;
stable := false;

until stable = true ;

Capacity-Constrained Method The capacity-constrained as-
signments generated with the foregoing algorithm represent tes-
sellations that differ from ordinary Voronoi tessellations because
they are generated under the capacity constraint without modifying
the site locations. This difference is almost eliminated if two addi-
tional constraints are fulfilled: first, the capacity for each site must
be equal, and second, each site must reside in the centroid of its
Voronoi region. Our experiments showed that in this case less than
3 percent of all points in X are assigned to a site si ∈ S in the
capacity-constrained Voronoi tessellation V(S,C) while they are
assigned to another site sj ∈ S in the ordinary Voronoi tessellation
V(S) of the same set of sites S. Fortunately, the first constraint is
already assured by our capacity constraint c(si) = c∗ for each site,
and the second constraint can be easily achieved by iteratively mov-
ing the sites in the centroids of their regions, similar to the approach
by Lloyd.

To generate our capacity-constrained distributions we perform the
following steps, which are illustrated by Figure 3:

0. create a set X of m points that is a discrete representation of
the space Ω weighted with the density function ρ;

1. generate the capacity-constrained Voronoi tessellation
V(S,C) for the set S of n sites as an assignment A : X → S
where each site si ∈ S has the capacity c(si) = m

n
;

2. move each site si ∈ S to the center of mass of all points
xi ∈ X that are assigned to this site, A(xi) = si;

3. if the new sites in S meet some convergence criterion, then
terminate; otherwise return to step 1.

These steps are a variant of Lloyd’s method, in which the gener-
ation of the Voronoi tessellation is substituted with the capacity-
constrained optimization in discrete space.

The computational time complexity for each iteration of our method
for n sites and m points is O(n2 + nm log m

n
), which is higher

than Lloyd’s method withO(m logn) for each iteration. Point opti-
mizations are often performed as a pre-processing step, and in these
situations the running time is not a significant drawback. Thus, our
method allows the same application scenarios as Lloyd’s method,
especially since it converges much faster. After only about five it-
erations, our results exhibit very good properties, with most of the
remaining computation time necessary for the subtle improvements
towards the final equilibrium state, while Lloyd’s method converges
much slower and is highly dependent on the initial distribution.

4 Evaluation of Results

In the previous sections, we stated that Lloyd’s method generates
point distributions that possess suboptimal blue noise characteris-
tics and do not adapt well to given density functions. We also stated
that the results of our method are better with respect to these two
properties. In this section, we substantiate these claims by an ex-
tensive analysis of the results of Lloyd’s method and those of our
method. Furthermore, we illustrate why our capacity constraint is
reasonable. Finally, we present two application examples.

For the evaluation of blue noise characteristics, we restrict our-
selves to point sets in a toroidal square with constant density. This
is necessary to evaluate spectral properties, but the findings are still
valid for other spaces and arbitrary density functions.

Blue Noise Characteristics Figure 2 shows a representative dis-
tribution of 1024 random points that was generated with Lloyd’s
method until no further relocation of sites occurred. The distri-
bution clearly exhibits patches of hexagonal lattices. These regu-
lar structures are reflected in the corresponding mean periodogram
[Ulichney 1987], which is not smooth, having turbulent radial
power and significant anisotropy. This mean periodogram is cal-
culated from the results of Lloyd’s method for 10 different initial
random sets of 1024 points. In contrast, our capacity-constrained
distributions, which were computed with the same initial point sets,
show substantially better results: regularities are much less appar-
ent in the representative example, and the mean periodogram is
smoother, with less turbulent radial power and lower anisotropy.
This observation is independent of the initial point distribution.
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Figure 4: Comparison of result sets with 1024 sites: (a) our method generates less hexagons than Lloyd’s method. (b) our method generates
regions with more uniform areas than Lloyd’s method. Comparison of result sets with different numbers of sites in (c): our results have a
normalized radius α within the preferable interval [0.65, 0.85], and near the reference value α ≈ 0.75 by Lagae and Dutré [2008].

The reason for the development of regularity artifacts when using
Lloyd’s method is the minimization of the energy function F in
Equation 2. The minimal value for this function in two-dimensional
space would result if all Voronoi region were circles of equal size,
which is impossible. Instead, a global minimum of F is achieved
if the sites form a regular hexagonal lattice. Since such lattice can-
not be generated for any number of sites, tessellations approach
local optimality with respect to F by embedding non-hexagons in
between. This is in line with observations in the domain of circle
packing [Szabó et al. 2007]. Furthermore, a region that forms a
n-gon is less optimal with respect to F than a region that forms a
(n+ 1)-gon having the same area. Therefore, an arbitrary distribu-
tion of sites optimized by Lloyd’s method approaches a tessellation
which consists of hexagonal patches that are as large as possible.
These patches are connected by a few smaller n-gons with n < 6,
and a few larger n-gons with n > 6. Our constraint of equal ca-
pacity significantly improves on this behavior due to the fact that
all regions are equally sized throughout the minimization, so that
the energy can no longer benefit from area differences between n-
gons and (n + 1)-gons. This effect is illustrated by the neighbor
diagrams next to the point sets in Figure 2. These diagrams show
hexagonal patches for Lloyd’s method, whereas our result is much
more heterogeneous with fewer noticeable regularities.

These theoretical considerations are confirmed by our experiments,
as illustrated in Figures 4(a) and 4(b). Here, we present an analysis
of 10 different distributions of 1024 sites that have been optimized
with Lloyd’s method until all sites were stable. This analysis iden-
tifies that 87.8% of the Voronoi regions are hexagons, 6.1% are
pentagons, and again 6.1% are heptagons. Furthermore, the pen-
tagons are significantly smaller than the hexagons, which in turn
are significantly smaller than the heptagons. A similar analysis of
the results of our method based on the same initial site sets shows
that our method yields a larger variance in shape, with only 69.6%
hexagons, 15.5% pentagons, 14.7% heptagons, and even a small
fraction of quadrilaterals and octagons. Furthermore, the area of
these groups of n-gons are more uniform.

Termination Criterion for Lloyd’s Method The development of
regularity artifacts in distributions generated with Lloyd’s method
is well known in computer graphics. A common solution is to stop
Lloyd’s method after a few iterations. Lagae and Dutré [2008] sug-
gest the normalized Poisson disk radius α ∈ [0, 1] as a quality mea-
sure for point distributions. This radius α is equal to zero if any two
points in the distribution coincide, equal to one for a hexagonal lat-
tice, and is considered optimal for α ≈ 0.75, the value employed
by Lagae and Dutré [2008] for a reference point set obtained via

dart throwing. The convergence of α can be utilized as a termina-
tion criterion, where we stop Lloyd’s method as soon as α is stable.
However, our experiments show that this approach is rather unre-
liable. Figure 5 demonstrates this for a set of 1024 points as well
as a set of 5122 = 262144 points that is used for the sampling of
the zone plate test function (x, y) 7→ sin(x2 + y2). The example
shows that α strongly depends on the number of points and the ini-
tial distribution. This is explained by the character of the Poisson
disk radius, which is determined by the smallest distance between
any two points, while being a representative for the overall distri-
bution. Using Lloyd’s method, it is common that a small fraction of
closely packed points remains stable, while the overall distribution
is still changing.

Identifying a universal termination criterion for Lloyd’s method
with respect to the blue noise characteristics is an unsolved prob-
lem. This necessitates either a manual intervention, or an intricate
search for an application-specific criterion. In contrast, our method
does not approach any critical states and terminates reliably at an
equilibrium with good properties. Our results demonstrate better
blue noise characteristics for the set of 1024 points with α ≈ 0.77,
as well as a low-artifact sampling of the zone plate test function
with α ≈ 0.63. In general, our method generates results that are
close to α ≈ 0.75, as illustrated by Figure 4(c). Here, we used
a large number of different initial point sets generated by different
methods such as random sampling or dart throwing as input for our
method. The plot shows that all results are within the recommended
interval, and close to the reference value α ≈ 0.75.

Density Function Adaptation In Section 3, we introduced our
concept of equal capacity which is directly related to importance
sampling in computer graphics. The capacity offers the possibility
to measure the quality of a density function adaptation by a distri-
bution of sites via the normalized capacity error

δc =
1

n

n∑
i=1

(
c(si)

c∗
− 1

)2

. (7)

Site distributions that are well adapted to their underlying density
function have δc close to zero.

We observed in our experiments that if the density is constant,
Lloyd’s method generates a uniform distribution with a small ca-
pacity error. In contrast, if the density is not constant, Lloyd’s
method generates site distributions with a large capacity error and
suboptimal density function adaptation. In particular, areas with
high density contain too few sites, and areas with low density con-
tain too many sites. This indicates that Lloyd’s method implic-
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Figure 5: An initial set of 1024 points is optimized by Lloyd’s method. After 40 iterations the points are well distributed with a normalized
radius of α ≈ 0.75 and good blue noise characteristics. Further optimization deteriorates the spectral properties and introduces hexagonal
structures. In contrast, α ≈ 0.75 proves to be ill-suited for the sampling of the zone plate test function with 5122 points as strong artifacts
become apparent. Relying on the convergence of α is also not an option as only marginally fewer artifacts can be observed. In this sampling
scenario, stopping Lloyd’s method after about 10 iterations with α ≈ 0.53 would provide the best sampling results. Our method converges
reliably to an equilibrium with better properties in both scenarios.

itly blurs the density function. This erroneous behavior can be at-
tributed to the local operation of centroid relocation, which disre-
gards any global characteristics of the underlying density function.

The implicit blurring of the density function in Lloyd’s method is
illustrated by Figure 6. Here, a quadratic ramp is used as den-
sity function in (a). The percentages indicate the density ratios
that are contained in each quarter of the ramp. An initial set of
1000 sites in (b) is chosen via random sampling, and has a capac-
ity error of δc = 0.25622. The percentages of the quarters denote
the ratios of contained sites, showing a reasonable first approxima-
tion of the density function. By applying Lloyd’s method to this
initial distribution, at first the capacity error decreases to a mini-
mum of δc = 0.01206 in (c). Afterwards, the capacity error again
steadily increases. The final result in (d) has a capacity error of
δc = 0.08233, where the leftmost quarter contains only 0.83% of
the overall density but 4.0% of the sites, and the rightmost quar-
ter contains 59.32% of the overall density but only 48.9% of the
sites. This behavior illustrates the suboptimal density adaptation
of Lloyd’s method. Of course, the capacity error can be used as
a termination criterion for Lloyd’s method, but even the minimum
capacity error is in general far from optimal. Usually, such a min-
imum already contains regularity artifacts, which can be observed
in image (c) as well. In contrast, our method generates the distri-
bution in (e) from the same initial sites. It adapts precisely to the
given density, and yields a capacity error of δc = 0.00131. The
ratios of sites and density per quarter are also highly correlated.

Application Examples To further demonstrate the quality of our
distributions beside their spectral properties, we present two appli-
cation examples. Non-photorealistic stippling places small black
dots in such a way that their distribution gives the impression of
tone. One prominent example for this technique is the approach
by Secord [2002], which uses weighted centroidal Voronoi tessel-
lations to generate stipple drawings from a given grayscale image.
A result of this approach is shown in Figure 7. By applying our
capacity-constrained method without any modification to the same
grayscale image, we obtain the stipple drawing in (c), with a com-
putation time of 17 minutes on Intel Core 2 hardware. Both results
use 20000 dots with equal radius. Our result reproduces the con-
trast of the grayscale original more faithfully and contains fewer
regularity artifacts.

The second application samples high dynamic range images with
respect to their radiance and/or luminance. The resulting samples
are then used for image based lighting. The density distribution
in such images is characterized by large regions with low density,
and small light emitting regions with density values that are orders
of magnitude higher. Although Lloyd’s method usually fails in the
density adaptation of such images, it is nevertheless employed in
combination with improvements that reduce its erroneous behavior
[Kollig and Keller 2003; Ostromoukhov et al. 2004]. By applying
our capacity-constrained method without any modification, we are
able to create a distribution that precisely adapts to the underlying
lighting information. An example of a resulting importance sam-



0.83% 9.05% 30.80% 59.32%
(a) density function

0.9% 7.4% 33.2% 58.5%
(b) initial set of 1000 sites via random sampling, δc = 0.32711

3.3% 13.2% 30.8% 52.7%
(c) best intermediate result of Lloyd’s method, δc = 0.01206

4.0% 15.4% 31.7% 48.9%
(d) final result of Lloyd’s method, δc = 0.08233

0.9% 8.9% 30.9% 59.3%
(e) final result of our method, δc = 0.00131

Figure 6: The quadratic ramp in (a) is used as density function.
Starting with the initial sites in (b), Lloyd’s method continually
blurs the density function. In contrast, our result shows precise
adaptation. The percentages indicate the amount of density or the
number of points contained in each quarter.

pling of the luminance of a high dynamic range image is given in
Figure 8. Here, the distribution of 3000 samples exhibits no regu-
larity artifacts and extracts even subtle features in areas with maxi-
mum density such as the cross of the main window. The computa-
tion time was 8 minutes on Intel Core 2 hardware.

5 Conclusion

We presented a new general purpose method for optimizing point
distributions. Our method improves on the established Lloyd’s
method by utilizing the concept of capacity as an optimization con-
straint. The resulting capacity-constrained point distributions ex-
hibit improved blue noise characteristics, having a large mutual dis-
tance and no apparent regularity artifacts. Arbitrary density func-
tions can be utilized to control our point distributions and, again,
the capacity constraint guarantees their precise adaptation.

An important advantage of our method is the reliable quality of
the results. After only a few iterations, the point distributions pos-
sess significantly improved blue noise characteristics and are pre-
cisely distributed according to the underlying density function. In
the remaining process, these properties are further improved, until
an equilibrium state is finally reached. The quality of the final result
is neither dependent on the initial distribution nor is it worse than
earlier results during the optimization.

Our method is sufficiently simple, having a similar implementa-
tion effort as Lloyd’s method. Simultaneously, it avoids the draw-
backs of Lloyd’s method and does not require manual intervention
or an application-dependent termination criterion. In addition, the
enhancement of blue noise characteristics and the density adapta-
tion can be combined in one operation. In most applications, our
method can be used as a drop-in replacement for Lloyd’s method.
To support its implementation, we provide C++ code through an
open source project at http://ccvt.googlecode.com.
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