
Level-of-Detail Visualization of Clustered Graph Layouts
Michael Balzer Oliver Deussen

Department of Computer and Information Science
University of Konstanz, Germany

ABSTRACT

The level-of-detail techniques presented in this paper enable a com-
prehensible interactive visualization of large and complex clustered
graph layouts either in 2D or 3D. Implicit surfaces are used for the
visually simplified representation of vertex clusters, and so-called
edge bundles are formed for the simplification of edges. Addition-
ally, dedicated transition techniques are provided for continuously
adaptive and adjustable views of graphs that range from very ab-
stract to very detailed representations.

Keywords: Graph visualization, level-of-detail, clustered graphs,
implicit surfaces, edge bundles.

Index Terms: I.3.6 [Methodology and Techniques]: Interaction
Techniques; H.5.2 [Information Interfaces and Presentation]: User
Interfaces;

1 INTRODUCTION

The visualization of graphs plays a vital role in the field of informa-
tion visualization, and an enormous number of layout algorithms as
well as a broad variety of visualization techniques exist. However,
a major problem of these commonly known techniques is the limi-
tation of current display devices, and the human cognitive system in
general. A graph visualization containing more than a few hundred
vertices and edges, results in incomprehensible representations with
many overlappings and occlusions, which make a differentiation
and a closer investigation of individual vertices and edges almost
impossible. Furthermore, the performance limitations of graphics
hardware restrict the interactivity of graph visualizations. In fact,
real world data sets have grown by magnitudes and often consist of
thousands or even millions of vertices and edges, such as in data of
transportation networks, financial transactions, social networks of
internet communities or software structures.

For the investigation of these large and complex data sets, it is
necessary to provide abstracted views that reduce the amount of
presented information and simultaneously limit the geometric com-
plexity of the representation in order to enable interactivity. An ob-
vious solution is an automatic or user-driven collapsing of parts of
the graph. The disadvantage of this method is that the structure of

the graph is modified, which often results in an unavoidable recom-
putation of the layout, and eliminates relevant information about
the collapsed vertices and edges.

This paper presents a level-of-detail approach that only modifies
the visual representation of the graph and does not alter the structure
or the computed layout of the graph. Level-of-detail techniques are
commonly used in computer graphics for the viewpoint-dependent
rendering of objects, in which distant objects are rendered with less
detail to decrease the polygon count. The approach presented in
this paper uses level-of-detail to reduce the polygon count for inter-
actively visualizing large and complex graphs, as well as to reduce
the visual complexity of the information in general.

Level-of-detail techniques are based on the substitution of a
complex object by a simplified object or the substitution of a group
of objects by a single one. In the here presented level-of-detail ap-
plication, groups of vertices and groups of edges are substituted.
Consequently, the prerequisite is grouping information at different
abstraction levels based on the spatial distribution of the vertices.
Thus, this approach is specific to clustered layouts.

In the following Section 2, related work is addressed, and ba-
sic knowledge of clustered graphs and level-of-detail is imparted.
Section 3 presents the level-of-detail approach for clustered graph
layouts based on implicit surfaces and edge bundles. Finally, a dis-
cussion of the achieved results is given in Section 4.

2 BACKGROUND

2.1 Related Work
An enormous amount of work has been published in the field of
graph drawing to generate meaningful visualizations of graphs—
overviews can be found in [4, 14]. Most of previous as well as
ongoing work concentrates on graph layouts, thus focusing on the
spatial distribution of the vertices and the routing of the edges of
the graph. The visualization itself is generated by drawing an ob-
ject for each vertex at its computed positions and representing edges
by direct line connections or curves. Visualizing large and complex
graphs with these basic techniques result in ambiguous representa-
tions with many overlappings and occlusions.

Approaches that take advantage of meta data, like clustering or
hierarchical information, are rare. If meta information is consid-
ered, mostly the structure of the graph is modified by collapsing
groups of vertices to one single vertex and the connected edges re-
spectively. Thereby relevant information about the collapsed sub-
graph is largely lost. Approaches that consider meta information
and do not alter the structure and/or the layout of the graph are
presented in [10, 6, 19, 7]. Here, hyperspheres, ellipsoids, or rect-
angles are wrapped around clusters of vertices, with the disadvan-
tage that the vertex distribution within the clusters is not very well
represented because of the non-adaptive shapes. A more advanced
approach that uses implicit surfaces to extract and visualize vertex
clusters in graphs is presented in [8, 18]. The thereby generated
cluster representations are much more adaptive to the spatial struc-
ture of the contained vertices. Because of the focus on cluster ex-
traction, this approach neither considers hierarchical clustering nor
level-of-detail representations. Another approach [1] of the authors
of the here presented paper already used implicit surfaces to em-
phasize two-dimensional graph structures, but without considering

multi-level clustering or level-of-detail representations.
Another approach for emphasizing the clustering of graph ver-

tices is presented in [20], which uses spheres with constant size in
screen space for the representation of vertices, whereby partly over-
lapping spheres visually abstract vertex clusterings. This method
has the disadvantage that the visual sizes of the clusters strictly de-
pend on the density of the clusters. Additionally, this visualization
determines the clustering method itself, so that alternative cluster-
ings can not be visualized.

An approach for the hierarchical abstraction of edges based on
spline curves is presented in [11], which is related to the here pre-
sented edge bundle approach. The difference is that [11] uses point
position for the edge deformation, whereas in the here presented
method edge bundles are created based on the implicit surfaces of
the clusters. Furthermore, this method does not avoid edge occlu-
sions so that the size of the edge bundles can hardly be compared,
and it does not support locally different levels of detail.

2.2 Clustered Graph Layouts
A graph G = (V,E) consists of a finite set of vertices V and a finite
set of edges E with E ⊆V×V . Each vertex v∈V and each edge e∈
E may be attributed with a weight w ≥ 0, if not, w = 1 is assumed.
A clustered graph C = (G,T) consists of a graph G and a rooted
tree T such that the vertices of G are exactly the leaves of T . Each
node n of T represents a cluster V ′(n) with V ′(n) ⊆ V that are
the leaves of the subtree rooted at n. Thereby the rooted tree T
describes an inclusion relation between clusters. The weight w(n)
of a cluster V ′(n) is the sum of the weights of the contained leaves
of n. The height h(n) of a node n ∈ T is defined as the depth of
the subtree of T rooted at n. A n-dimensional layout of a clustered
graph C = (V,E) is a vector of vertex positions (xv) with v ∈V and
xv ∈ Rn. Usually, graph layouts are embedded in R2 or R3. The
structure of a clustered graph is illustrated in Figure 1.

Figure 1: The Structure of a clustered graph.

2.3 Level-of-Detail for Graph Visualization
Level-of-detail in the context of computer graphics is used to rep-
resent a model or object with different resolutions depending on its
distance to the viewer. The motivation is to decrease the polygon
count, whereas the reduced visual quality of the model or object
ideally remains unnoticed due to its smaller size as a result of its
distance and the usage of a perspective projection.

In the context of graph visualization, polygon reduction is just a
welcomed side effect that enables interactivity even for very large
graphs. The important point is to reduce the amount of presented
information, whereas in contrast to level-of-detail applications in
computer graphics, visual changes are deliberate. The fundamental
idea is to represent a cluster of vertices of a clustered graph by a
single object depending on its distance to the viewer, while the ap-
pearance of this object is highly simplified to reduce the perceptual
effort of the user. Each of these cluster representing objects allows
an identification and recognition of the characteristics of the cluster.

Since neither the structure nor the layout of the underlying graph
should be modified, the clustered graph is generated based on the

spatial clustering of the vertices given by the layout. For the de-
termination of the clusters it is possible to use conventional cluster
analysis [5, 13], a visualization oriented approach [9, 18] or to uti-
lize the hierarchical information that may be part of the data set.
The choice of the clustering method is in principle not important
for the application of the here presented level-of-detail techniques,
but it has of course influence on the resulting visualization. Thus, it
may be chosen according to the demand of the user and the appli-
cation. For a description of the clustering strategy see Section 3.

Clustered graph layouts focus on the spatial grouping of vertices,
whereas the edge routing or the minimization of edge crossing is of
less importance. Hence, the representation of the edges is strictly
constrained by the vertex positions in the layout. This means that an
edge is simply visualized by a direct connection between two ver-
tices and all edges between two clusters of vertices are represented
as one aggregated edge that is also visualized by a direct connection
between the clusters.

The handling of the changeover between different detail levels
is of crucial importance for the rendering of level-of-detail repre-
sentations. The naive way is to switch between two representa-
tions at a given distance threshold. This is adequate to conventional
level-of-detail approaches in computer graphics, where the visual
appearance of the model or object is similar for both detail levels.
However, for an application with different appearances at different
levels as presented here, this abrupt change would distract the user.
A continuous change between the detail levels is necessary to pre-
serve the mental map of the user and to enable the comprehension
of the abstraction process in the graph visualization.

3 CONTRIBUTION

This section describes the approach for the level-of-detail visual-
ization of clustered graph layouts. A discussion of the hierarchical
clustering strategy are given in the next subsection. Subsections 3.2
and 3.3 separately describe the level-of-detail representations for
the clusters and the edges of the clustered graph, including the dif-
ferent handling of the changeover between the detail levels. Again
it must be emphasized, that this level-of-detail approach for clus-
tered graph layouts is not restricted to special clustering methods
and can be used for two- and three-dimensional layouts.

3.1 Hierarchical Clustering Strategy
To generate the clustered graph C from the graph G, which has a
given layout, a root node nr is defined for the rooted tree T that
contains the complete set of vertices V of the graph G. Then V
is partitioned into the subsets {V1, ...,V j} that form the clusters
{V ′(n1), ...,V ′(n j)} of {n1, ...,n j} as children of nr in T . After-
wards, each of these clusters V ′(ni) with 1 ≤ i ≤ j is again par-
titioned recursively into smaller clusters as their according child
clusters in T . This recursion stops if no further partitioning of a
subset of vertices is desired.

The selection of the clustering algorithm and its parameters may
vary with regard to the application. For example, the resulting clus-
ters could roughly contain the same number of vertices or the clus-
ters could enclose almost equal areas in 2D or volumes in 3D within
each hierarchy level etc. Likewise the resulting rooted tree T does
not have to be balanced, rather it can have any structure that is use-
ful for the given layout and the targeted application.

3.2 Cluster Representation Using Implicit Surfaces
For the visualization of the vertices of the graph, it is assumed that
they already possess a given visual representation, which is not
changed in the level-of-detail enhancement. Additionally, objects
are added that represent the clusters of the graph. By visualizing a
cluster by one single object, it is important to represent the distribu-
tion and attributes of the contained vertices as precisely as possible.
If the distribution of vertices in the cluster is shaped like a sphere,

the representation of the cluster should look like a sphere; if it is
shaped like a cylinder or like a torus, the representation of the clus-
ter should also look like a cylinder or a torus. Thus, for perceptual
reasons it is not adequate to use just one single primitive or even
a set of primitives for the representation of the clusters. Rather
the representations of the clusters must be directly generated out of
the contained sub-clusters or vertices in order to allow statements
about the properties of the cluster, even if it is shown from a distant
viewpoint. A very adaptive concept for complex shapes is offered
by implicit surfaces based on density fields defined by generator
sets. This concept is explained in the subsequent Section 3.2.1,
starting with the simple case of points as generators and then ex-
tending to arbitrary generator objects. Section 3.2.2 illustrates the
application of implicit surfaces for graph cluster visualization, and
Section 3.2.3 describes their level-of-detail representation.

3.2.1 Implicit Surfaces
Following the Metaball concept presented in [17], an implicit sur-
face s can be described by a set of generator points P, whereby each
generator point pi ∈ P has a radius of influence ri. The influence
of a single generator point pi at a point q is described by a density
function Di(q) defined as

Di(q) =

(

1−
(
‖q−pi‖

ri

)2
)2

, if ‖q− pi‖< ri

0, if ‖q− pi‖ ≥ ri

. (1)

The summation of the density function for all generator points
forms the density field F as

F (q) = ∑
i

Di(q)− τ (2)

with τ ≥ 0. Thus, the implicit surface s with F (q) = 0 is defined as
those points q where the sum of the density values of all generators
equals the threshold τ . Note that any vector norm can be used for
the distance computation in Equation 1. For all examples in this pa-
per, the Euclidian norm is used. Figure 2 shows an implicit surface
defined in R2 by two generator points and a threshold of τ = 0.3.

Figure 2: An implicit surface defined in R2 by two generator points p1
and p2 with radii of influence r1 and r2 and a threshold of τ = 0.3.

The implicit surface concept based on generator points can be
easily extended to arbitrary generator objects by substituting the
distance computation between the point q and the generator pi in
Equation 1. The radius of influence ri for each generator pi is pre-
served and the computation of the density field is the same as in
Equation 2. This generalization allows to compute implicit surfaces
for any generator shapes, such as spheres, lines or even polygo-
nal objects—an example is presented in Figure 3. Depending on
the application, volume enclosing generators, e.g. spheres, may be
considered as solid objects, where the interior has a distance of 0
or as hulls with standard distance computation to the surface of the
generator.

Figure 3: An implicit surface defined in R2 by a circle, a line, and a
triangle with a threshold of τ = 0.3.

The general shape of an implicit surface can be influenced by the
global threshold τ in Equation 2. Greater values describe a closer
modulation of the implicit surface to its generator set. Values of
τ > 1 result in surfaces that do not necessarily enclose the generator
set, and should therefore be avoided. Furthermore, a global user
defined parameter that is multiplied with the radius of influence of
every generator can be introduced. This also allows to control the
modulation of the surface to its generators, by which greater values
result in surfaces that enclose larger volumes and modulate less to
the generators.

The extraction of implicit surfaces is performed by the Marching
Cube algorithm [15]. Its result is a polyline in 2D or a triangle mesh
in 3D, which approximates the implicit surface at a regular grid
with a user specified resolution. Especially for 3D, an additional
mesh optimization [12] may be applied to the resulting surface ap-
proximation to obtain a homogeneous mesh with a lower number
of primitives and better vertex normals. By choosing appropriate
parameters for this re-meshing, the changes of the surface topology
are not noticeable for the user.

3.2.2 Graph Cluster Surfaces

The utilization of implicit surfaces allows us to generate clustered
graph visualizations by a bottom-up approach:

First, an implicit surface s is generated for each cluster V ′(n) of
a node n in the rooted tree T that has an height of h(n) = 1, which
means that the children of n are vertices. Thereby the graphical
representations of these vertices form the generator set P of the im-
plicit surface s. Any geometric input is possible as generator, rang-
ing from simple points, circles or spheres, to complex polygonal
shapes. The implicit surface perfectly adapts to its generating ver-
tex representations. The position of the generators is given by the
graph layout. The radius of influence ri of each generator is derived
from the weight wi of the associated vertex. According to experi-
ence, the following formula provides good results, where δ = π is
used for all examples in this paper.

ri =
√

wi

δ
·δ (3)

To generate the implicit surfaces of clusters at higher levels, the
graphical representations of the vertices could also be used as gen-
erators. Since the radius of influence of each generating vertex
had to be increased level by level, the result would be more and
more sphere like clusters that do not preserve the distribution of
the vertices. Instead, the implicit surfaces of the child clusters
{V ′(n1), ...,V ′(n j)} of the node n according to the rooted tree T
are used as the generators for the implicit surface representation
of the cluster V ′(n). Thus, implicit surfaces are generated out of
other implicit surfaces. This allows to identify the shapes and the
distribution of the sub-clusters, and at the same time preserves a
homogeneous representation at every detail level. The position of
the generator clusters is given by the underlying vertex positions of

the layout. The radius of influence is computed by means of Equa-
tion 3, where the weight of a cluster wi is the sum of the weights of
its contained vertices. Note that the implicit surface s of a cluster
may not be cohesive, but may rather consist of a set of sub-surfaces
{s′1, ...,s

′
n} with s′i ⊆ s,1 ≤ i ≤ n, depending on the degree of dis-

ruption of the cluster. Several examples for clustered graph repre-
sentations by implicit surfaces are given at the following pages.

The specific algorithms for the distance computation in Equa-
tion 1 result from the individual shape of the generator objects, in
which the generators are treated as solid objects with an interior dis-
tance of 0. The visual representation of the vertices is usually very
simple, so that their interior test and distance computation should
be fast. In contrast, the implicit surface representations of the clus-
ters normally consists of a few hundred line segments in 2D or a
few thousand triangles in 3D, for which the interior test and the dis-
tance computation is quiet expensive. By using hierarchical meth-
ods, like binary space partitioning or bounding volume hierarchies,
for the distance computation of implicit surfaces, this performance
issue is largely eliminated.

3.2.3 Level-of-Detail Representation
The smooth transition between the different detail levels is of great
importance for a comprehensive visualization and for preserving
the mental map of the user while navigating within the clustered
graph. For the changeover, the transparency approach presented
in [2] is applied and generalized, where the opacity of an object
adapts dynamically to the position of the viewpoint. Therefore the
clustered graph is rendered from top to bottom. First, the root node
nr ∈ T is rendered, and if nr has an opacity of or < 1 then the child
nodes {n1, ...,n j} of nr are rendered as well. If each child node ni
with 1 ≤ i ≤ j again has an opacity of oi < 1 then the child nodes
of ni are rendered accordingly, and so on.

For the determination of the opacity the following procedure is
used: Let S be the set of implicit surfaces that represent the clusters
in a clustered graph. The point ci is the center of mass and di the
diameter of the surface si ∈ S, where di is specified by the average
of the differences between the minimum and maximum coordinate
values of si in each dimension. Additionally, two global parameters
σ and ρ are introduced, which are chosen by the user. The opacity
oi of si with regard to the current viewpoint v is then computed by

oi =

 0, if oi ≤ 0
oi, if 0 < oi < 1
1, if 1≤ oi

with oi =
‖ci− v‖−di ·σ

di ·ρ
. (4)

The global parameter σ influences the position of the distance in-
terval in which the change of the opacity takes place, while the
global parameter ρ has an influence on the size of the interval.
If oi = 1, then the implicit surface si is drawn fully opaque. A
semi-transparent drawing with a transparency t = 1− oi is applied
if 0 < oi < 1. For opacity values of oi = 0 the drawing of the implicit
surface si is omitted. Figure 4 additionally illustrates this procedure
and the influence of the global parameters σ and ρ on the opacity
oi. An example with different levels of detail based on this opacity
computation is given in Figure 8 at the end of the paper.

3.3 Edge Representation Using Edge Bundles
The clusters of a clustered graph C are obtained from by the set
of vertices V of the underlying graph G. The set of edges E of G
usually does not affect the cluster computation. Therefore, it exists
no counterpart of edge clusters in the layout of a clustered graph.
In fact, the vertices that are connected by an edge may be part of
the same sub-cluster or may be far away in the layout as well as
in the cluster hierarchy. Nevertheless, it is possible to generate ag-
gregated edge representations by utilizing the cluster information
of the vertices. Therefore, an edge is not just considered as a direct
connection between two vertices, rather it is routed according to the

Figure 4: The opacity oi ∈ [0,1] of an implicit surface si depends on
the center ci and the diameter di of si, the distance between ci and
current viewpoint v, and the global parameters σ and ρ.

clusters of the graph. This routing information is then used to form
edge bundles, which group edges according to the cluster hierarchy.
Based thereon, the visible parts of the edges are extracted with re-
gard to the current viewpoint, thereby providing smooth transitions
between the different detail levels. The following Section 3.3.1 de-
scribes the edge routing, and the preceding Section 3.3.2 presents
the approach of edge bundle. Finally, their level-of-detail represen-
tation is explained in Section 3.3.3.

3.3.1 Edge Routing
To generate the routing of an edge e ∈ E of the clustered graph C
that connects the vertices v1,v2 ∈V , first the parent node np ∈ T of
C is determined, which has both v1 and v2 as its leaves, whereby no
other node n ∈ T with a height of h(n) < h(np) exists that has v1
and v2 as its leaves. We also say that the node np is the owner of
the edge e. Afterwards, we create an ordered set of nodes of N ⊆ T
in two steps. In the first step, by starting at v1 and ascending in the
rooted tree T , each visited node ni with h(ni) < h(np) is inserted
in the ordered set according to the ascent sequence. In the second
step, by starting at v2 and again ascending in the rooted tree T , each
visited node ni with h(ni) < h(np) is inserted in the ordered set, but
now according to the reversed ascent sequence. As result, the edge
e = (np,N) is now defined by a node np ∈ T , which is the owner of
e, and an ordered set N = (v1,n1, ...,n j,v2) with N ⊆ T and np /∈N.
This edge routing is further outlined in Figure 5(b).

The ordered set of nodes N in the definition of an edge e =
(np,N) describes the routing of e between the vertices v1,v2, which
are the first and the last element of N, as edge segments between
neighboring nodes in N. The notation ni ≺ n j with ni,n j ∈ N de-
notes that ni is a predecessor of n j in the ordered set N. For each
node n ∈ N a so-called port is computed, which specifies an end-
point of the edge segments of e in the graph visualization. Note that
each node may not only have one port, but rather many ports. The
computation of the ports is based on the clustering and the location
of v1 and v2 as a top-down approach according to the rooted tree
T . First, the nodes n1,n2 ∈ N with v1 � n1 ≺ n2 � v2 in N, and
h(n1) > h(ni),h(n2) > h(ni),h(n1) = h(n2) are identified, where
ni ∈ N and ni 6= n1,ni 6= n2. The nodes n1 and n2 are necessarily
children of np. The edge segment between n1 and n2 is located at a
higher level of T than all other segments of e. The ports of n1 and
n2 are defined by the endpoints of the shortest connection between
the representations of n1 and n2 that contain v1 and v2 respectively.
This means that if a node n is a leaf of T , and thereby a vertex, the
representation of n containing the vertex v is the visual representa-
tion of v. If a node n is an inner node of T , and thereby a cluster of
vertices that is visualized by an implicit surface s, then the repre-
sentation of n containing the vertex v is the sub-surface s′ ⊆ s that
encloses v. Starting from n1 and n2, the ports of the other nodes of
N are now determined by descending T separately towards v1 and
v2 according to the ordered set N. Therefore, n1 and its predeces-

Figure 5: Edge Bundle Generation: The existing (a) straight edges are routed according to the (b) cluster tree to obtain (c) routed edges
that incorporate the hierarchy of the clusters. This routing information enables the generation of (d) edge bundles, which may additionally be
(e) smoothed by using Bèzier curves. This allows for an easier tracking of the individual edges, and enables smooth level-of-detail transitions.

sor n≺ in N are taken, then the port of n≺ is defined by the new
endpoint of the shortest connection between the port of n1 and the
representation of n≺ containing v1, and after all, n1 is substituted
by n≺. This is repeated until n1 has no predecessor in N. The same
procedure is performed with n2 and its successor n� accordingly
towards v2.

The result is an ordered set of ports for each edge that enables
the drawing of edge segments that are routed correspondent to the
implicit surfaces of the clusters. Figure 5(c) further illustrates the
edge routing and clarifies that the route of an edge is its shortest path
between two nodes in the cluster tree. This routing information is
now used to form edge bundles as described in the next section.

3.3.2 Edge Bundling
After performing the edge routing for the complete clustered graph,
many edge segments use the same ports. Thereby edge segments
between the same two ports are occluding each other. Thus the in-
formation about the number, the weight, and the structure of the
edges is lost for these edge segments. The idea for eliminating
this occlusion is to form so-called edge bundles, with the individual
edges as their fibres. A real world analogy for an edge bundle is a
cable loom that is tied up out of single cables (the edges) at differ-
ent branching points (the ports). Within each edge bundle segment,
the contained edges are close-packed with minimal intersection be-
tween neighbors. The aggregated weight of the edges between two
ports is thereby reflected by the weight of the according segments
of the edge bundle.

An edge bundle b = (E,B′) consists of a set of edges E and a
set of edge bundle segments B′. An edge bundle segment b′p1↔p2

=
(p1, p2,E ′) is defined by two ports p1, p2, and a set of edge seg-
ments E ′, whereby b′p1↔p2

= b′p2↔p1
. Each edge bundle segment

b′pi↔p j
has a weight wpi↔p j , which is the sum of the weights of the

contained edge segments. The weight of an edge segment is equal
to the weight of the edge the segment belongs to.

An edge bundle bp = (E,B′) is generated for each pair of child
nodes {n1,n2} of the node np ∈ T that are connected by a set of
edges E = {e1, ...,en} with ei = (np,Ni),1≤ i≤ n, and n≥ 2. The
node np is thereby necessarily the owner of the edges in E and
also the owner of the edge bundle bp. This means that the edge
bundle bp is only drawn if the implicit surface sp of the node np
has an opacity of op < 1, so that the interior of np is drawn. This
mechanism highly reduces the amount of drawn edges in the visu-
alization. Furthermore, the set B′ of bp contains all edge bundle
segments b′pi↔p j

= (pi, p j,E ′) that connect the ports pi and p j by
an edge segment of an edge e ∈ E. The set E ′ of b′pi↔p j

contains

all edge segments that connect pi and p j.
The individual endpoint positions of the edge segments are com-

puted bottom-up as a translation in relation to the position of the
corresponding port, which is additionally outlined in Figure 6. In
the first step, the translation vectors are determined for each port p0
of a leaf node n0, which means that p0 is located at a vertex and
h(n0) = 0. Therefore, a translation vector is computed considering
all edge segments that are contained in the set E ′p0↔p1

of the edge
bundle segment b′p0↔p1

= (p0, p1,E ′p0↔p1
). In the second step, the

translation vectors are computed for each port p1 of the node n1
with h(n1) = 1, which means that p1 is located at a cluster. In con-
trast, the translation vectors are now determined as a summation
of the already computed translation vectors of the first step at the
port pi, and of a translation vector for each edge bundle segment
b′pi↔p1

= (pi, p1,E ′pi↔p1
), where pi is a port of the node ni with

h(ni) = 0. In the third step, the translation vectors are computed for
each port p2 of the node n2 with h(n2) = 2 accordingly. Now the
translation vector of each edge segment are determined similarly
to the second step as a summation of the translation vectors at the
port pi, and of a translation vector for each edge bundle segment
b′pi↔p2

= (pi, p2,E ′pi↔p2
), where pi is a port of the node ni with

h(ni) = 1. This iterative computation continues while a further as-
cent in T is possible. In each step after the first one, the translations
are a combination of the translation of the edge bundles of the lower
level and the already computed translations of the lower level ports.

The computation of the individual translation vectors at the ports
for 2D is a non-overlapping side by side placement of the edge seg-
ments at a linear cross section of an edge bundle. A detailed de-
scription of this trivial placement procedure is omitted. In 3D, this
computation can be understood as a circle packing problem [3] for
a circular cross section of an edge bundle, and is implemented as
an adaption from [16] as follows: The set of circles C is derived
from the considered set of edge segments E ′ or from the considered
set of edge bundle segments B′. The radius ri of a circle ci ∈C is
defined by the weight of the according edge segment in E ′ or edge
bundle segment in B′. The center pi of a circle ci ∈C relates to the
translation value of the single endpoint of the according edge seg-
ment in E ′ or relates to the endpoints of the edge segments of the
according edge bundle segment in B′. The circle packing procedure
determines the center pi for each circle ci ∈C, while the radius ri
of ci is fixed. Therefore, the set of circles C is sorted according to
the radius ri of each circle ci ∈C in descending order. Afterwards,
the circles in C are laid out in concentric bands. Therefore, the
largest circle c0 is placed in the center. Then a new band around c0
is created with its width equal to the diameter of c1, which is the

second-largest circle in C. This band is then filled with the next m
circles {c1, ...,cm} ⊆ C in their given order side by side until the
band is full. The remaining circles {cm+1, ...,cn} ⊆C are laid out
similarly within the necessary number of new bands. In some cases
with a small set of circles c, sometimes a layout within one single
band with an inner radius of 0 is equally or more compact than a
layout with a center circle. Lastly the layout is translated so that
an enclosing circle located in the origin completely encloses the set
of circles C while having a minimal radius. This circle packing
scheme is further illustrated in Figure 6.

Figure 6: Circle Packing of Edge Bundles: The edges are laid out by
a circle packing algorithm at each branching point of an edge bundle.
This computation is performed bottom-up within the edge routing tree
by using the layout of lower levels as input circles in higher levels.

The result is a distribution of the circles defined by their center,
which is interpreted as translation vectors for the determination of
the endpoints of the edge segments of an edge bundle segments.
If an edge bundle is drawn with these values, the weight of the
edge bundle segments does most likely not appear as the sum of the
weights of the contained edge segments. This is a consequence of
the gaps in the circle layout in 3D as well as of the often non-linear
mapping between the weight and the visual size of the edges, either
in 2D or 3D. The straightforward solution is to scale the translation
vectors such that the size of each edge bundle segment has the iden-
tical size of the aggregated weights of the contained edge segments.
This entails an overlapping of the single edge segments within each
edge bundle segment, which is acceptable for aimed purpose.

By finally combining the different translation vectors to the final
endpoint positions of the edge segments, the result are edge bundles
that are routed according to the cluster tree as shown in Figure 5(d).
Each edge bundle segment thereby provides a general idea of the
structure and the weights of the contained edge segments. Addi-
tionally, a ‘smoothing’ may be applied, to eliminate the angular
appearance of the edge bundles as shown in Figure 5(e). Therefore,
each edge segment is not drawn as a direct connection between its
endpoints p1 and p2, rather it is represented as a cubic Bézier curve,
which is further described as part of the level-of-detail representa-
tion in the next section. These smooth edge bundles allow for an
easier tracking of the individual edges within an edge bundle, and
enable smooth transitions between the different views.

3.3.3 Level-of-Detail Representation

By now having the segmented edges with the individual port infor-
mation, which contains the according endpoint and the associated
cluster or vertex, it is possible to extract an edge visualization that
considers the visibility of the clusters and vertices for all potential
viewpoints. The intention is to treat every vertex or opaque cluster
in the same way. This means that edges of the graph are considered
as interconnections between visible nodes, which can be clusters or
vertices. Non-visible parts of the edge are omitted. Because of the
fact that the opacity of the clusters, and thereby also the visibility
of other clusters and the vertices, is changing continuously while
navigating through the visualization, the topology of the intercon-
nections is changing continuously as well. Hence, similar to the

vertex and cluster representation, a smooth transition between the
different interconnection states at different detail levels is crucial.

Both, the determination of the interconnections for each view-
point, and the transition between two different interconnection
topologies, is based on the opacity of the implicit surfaces of the
clustered graph. Therefore, an edge transition value ti is determined
for each visible node ni of the rooted tree T . If ni is a vertex then
ti = 1; if ni is a cluster then ti is calculated in dependency on the cur-
rent opacity oi of its implicit surface si by the following formula:

ti =
{

0, if oi ≤ 0.5
2 ·oi−2, if oi > 0.5 (5)

Thereby the linear gradient of the opacity in the interval [0,1] is
mapped to a linear gradient of the edge transition values in the in-
terval [0.5,1]. The reason for this mapping is to have a faster level-
of-detail changeover for the edges than for the clusters, which is
according to experience more comprehensible for the user.

By having an actual edge transition value ti for each visible
node ni, the visible edge bundles are visualized by separately draw-
ing each of their edges. This procedure is described in the next
paragraphs, where e = (np,N) denotes an edge of the edge bundle
b = (E,B′) with e ∈ E that connects the vertices v1,v2.

Before the actual drawing step is executed, it is necessary to ex-
tract the relevant edge segments of e considering the current view-
point. Therefore, in the first step, it is determined between which
nodes n1,n2 ∈ N, with v1 � n1 ≺ n2 � v2 in N, an interconnection
exists. Thereby the node n1 is the node that contains the vertex v1,
whereas all other other nodes ni ∈ N that contain v1 have either an
edge transition value of ti < 1 or an height of h(ni) < h(n1). The
same applies to n2, which contains v2. These nodes n1,n2 are the
only visible nodes in N with a transition value ti = 1 considering the
current viewpoint, and thus define the visible part of the edge. In the
second step, it is determined between which nodes n′1,n

′
2 ∈ N, with

n1 � n′1 ≺ n′2 � n2 in N, a direct link exists. Thereby the node n′1
contains v1, whereas all other nodes ni ∈ N that contain v1 have ei-
ther an edge transition value of ti = 0 or an height of h(ni) > h(n′1).
The same applies to n′2, which contains v2. This means that the im-
plicit surface of any node ni ∈ N, with n′1 ≺ ni ≺ n′2, is not visible.

After the relevant edge segments have been determined, the final
positions of each endpoint of the considered edge segments with re-
gard to the current viewpoint can be determined—see also Figure 7.
The final positions f1 and f2 for the endpoints at the nodes n1 and
n2 are the positions of their ports p1 and p2. Each other final posi-
tion fi, where fi 6= f1, fi 6= f2, is a linear interpolating between the
position of the according port pi of the node ni, and the intersection
point p′i of the direct link from n1 to n2 with the implicit surface si of
the node ni, based on the opacity oi of si by fi = oi · pi +(1−oi) · p′i.
The exact route of the interconnection of the edge e is specified by
these final positions of the edge segments of e, so that now the inter-
connection can be drawn. The part of the edge e between n′1,n

′
2 is

drawn as a direct link, e.g. a straight line or cylinder segment. The
parts between n1,n′1 and n′2,n2 are drawn as Bèzier curves accord-
ing to the edge segments of the edge e between n1,n′1 and n′2,n2 re-
spectively. An Bèzier curve B(t) = {P0,P1,P2,P3} is thereby spec-
ified by its control points P0,P1,P2,P3. These control points are de-
fined by the endpoints f1, f2 of the considered edge segment, their
edge transition values t1, t2, and their preceding endpoint f ′1 and
succeeding endpoint f ′2, if any, by P0 = f1, P3 = f2,

P1 =

{
f1 + t1·(f2− f1)+(1−t1)·(f1− f ′1)

3·‖ f1− f2‖ , if f ′1 exists

f1 + f2− f1
3 , if f ′1 does not exist

, (6)

P2 =

{
f2 + t2·(f1− f2)+(1−t2)·(f2− f ′2)

3·‖ f1− f2‖ , if f ′2 exists

f2 + f1− f2
3 , if f ′2 does not exist

. (7)

Figure 7: Edge Drawing: The visibility of the clusters determines the
visible interconnection of the edge. The endpoint of an edge seg-
ments fi is a linear interpolation between its port pi, and the inter-
section point p′i of the corresponding implicit surface with the direct
link between the ports of the two opaque clusters with t = 1.

An example for the rendering of edges at different detail levels
based on the opacity of the clusters is given in Figure 8.

4 DISCUSSION

This paper presents an approach for the level-of-detail represen-
tation of clustered graph layouts. The usage of implicit surfaces
for the visual simplification of graph clusters enables a comprehen-
sible interactive visualization of the vertices and their distribution
within the clusters. Depending on the viewpoint of the user, a graph
cluster is thereby represented just as an abstract surface that allows
basic statements about its properties or it reveals its contained sub-
clusters and vertices respectively. This results in a visualization that
does not show a cluttered mass of thousands of vertices, but rather
presents a manageable number of abstracted clusters and in detail
drawn vertices. Edge bundles are proposed for a comprehensible
visualization of the edges between the vertices and clusters. Again,
depending on the viewpoint, these bundles present aggregations of
an arbitrary number of edges between the currently visible vertices
and clusters, while simultaneously reflecting the structure and the
weights of the represented edges.

Furthermore, smooth changeover techniques are provided for the
visualization of vertices and clusters as well as for the edges of the
graph, to enable continuous transitions between different views and
abstraction levels of the visualization. These changeovers are both
based on the individual opacity values of the implicit surfaces of
the clusters, which depend on the distance from the corresponding
cluster to the viewpoint. The opacity values are influenced by two
global parameters that allow the user to easily manipulate the level
of abstraction and the duration of the changeover independently.

The future work of the authors will address improvements for
the arrangement of edges within the edge bundles. Currently, a
straightforward circle packing solution with a short runtime is im-
plemented. Its drawback are suboptimal positions of the individual
edge segments that sometimes produce too large gaps or crossings
between different edge bundle segments. Methods of resolution are
an energy-based relaxation and the analysis of the connected nodes.

Finally, an example of a complex graph is presented in Fig-
ure 9. This real world graph contains more than 1500 vertices and
1800 edges within 126 clusters, and represents inheritance relations
within a large software system. It can be explored in real-time with
high frame rates, whereby the preprocessing step for the computa-
tion of the implicit surfaces and the edge bundles required less than
one minute.

REFERENCES

[1] M. Balzer and O. Deussen. Exploring relations within software sys-
tems using treemap enhanced hierarchical graphs. In Proceedings of
the 3rd IEEE International Workshop on Visualizing Software for Un-
derstanding and Analysis 2005, pages 89–94. IEEE Computer Society,
2005.

[2] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz. Software land-
scapes: Visualizing the structure of large software systems. In Joint
Eurographics and IEEE TCVG Symposium on Visualization, pages
261–266. Eurographics Association, 2004.

[3] J. H. Conway and N. Sloane. Sphere Packings, Lattices, and Groups.
Springer-Verlag, 1999.

[4] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[5] B. S. Duran and P. L. Odell. Cluster Analysis: A Survey, volume 100
of Lecture Notes in Economics and Mathematical Systems. Springer-
Verlag, 1974.

[6] T. Dwyer and P. Eckersley. Wilmascope - an interactive 3d graph
visualisation system. Lecture Notes in Computer Science, 2265:442,
2002.

[7] Y. Frishman and A. Tal. Dynamic drawing of clustered graphs. In Pro-
ceedings of the IEEE Symposium on Information Visualization, pages
191–198. IEEE Computer Society, 2004.

[8] M. Gross, T. C. Sprenger, and J. Finger. Visualizing information on a
sphere. In Proceedings of the IEEE Symposium on Information Visu-
alization, pages 11–16. IEEE Computer Society, 1997.

[9] B. Heckel and B. Hamann. Visualization of cluster hierarchies. In
R. F. Erbacher and A. Pang, editors, Proceedings of SPIE Conference
on Visual Data Exploration and Analysis, volume 3298, pages 162–
171, 1998.

[10] R. J. Hendley, N. S. Drew, A. M. Wood, and R. Beale. Case study:
Narcissus: visualising information. In Proceedings of the IEEE Sym-
posium on Information Visualization, pages 90–96. IEEE Computer
Society, 1995.

[11] D. Holten. Hierarchical edge bundles: Visualization of adjacency re-
lations in hierarchical data. In Proceedings of the IEEE Symposium
on Information Visualization. IEEE Computer Society, 2006.

[12] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Mesh optimization. In Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, pages 19–26. ACM
Press, 1993.

[13] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice
Hall, 1988.

[14] M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and
Models, volume 2025 of Lecture Notes in Computer Science. Springer,
2001.

[15] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. In Proceedings of the 14th annual
conference on Computer graphics and interactive techniques, pages
163–169. ACM Press, 1987.

[16] T. Munzner. H3: Laying out large directed graphs in 3d hyperbolic
space. In Proceedings of the IEEE Symposium on Information Visual-
ization, pages 2–10. IEEE Computer Society, 1997.

[17] S. Murakami and H. Ichihara. On a 3d display method by meta-
ball technique. Transactions of the Institute of Electronics, Informa-
tion and Communication Engineers, J70-D(8):1607–1615, 1987. In
Japanese.

[18] T. C. Sprenger, R. Brunella, and M. H. Gross. H-blob: a hierarchical
visual clustering method using implicit surfaces. In Proceedings of the
Conference on Visualization, pages 61–68. IEEE Computer Society
Press, 2000.

[19] T. C. Sprenger, M. H. Gross, A. Eggenberger, and M. Kaufmann. A
framework for physically-based information visualization. In Pro-
ceedings of Eurographics Workshop on Visualization ’97, pages 77–
86, 1997.

[20] F. van Ham and J. van Wijk. Interactive visualization of small world
graphs. In Proceedings of the IEEE Symposium on Information Visu-
alization, pages 199–206. IEEE Computer Society, 2004.

Figure 8: Different Levels of Detail: The opacity of the clusters determines the visibility of the contained clusters, vertices, and edges. Further-
more, it influences the topology and the exact route of the edges. This approach enables seamless transitions between the detail levels.

Figure 9: Views of a real world graph in R3 (left, upper right) and R2 (lower right) representing relations within a software system. The graph
contains 1539 vertices, 1847 edges, and 126 clusters. The computation of the implicit surfaces end edge bundles required less than one minute.

