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ABSTRACT

Treemaps are a well-known method for the visualization of at-
tributed hierarchical data. Previously proposed Treemap layout
algorithms are limited to rectangular shapes, which causes prob-
lems with the aspect ratio of the rectangles as well as with identify-
ing the visualized hierarchical structure. The approach of Voronoi
Treemaps presented in this paper eliminates these problems through
enabling subdivisions of and in polygons. Additionally, this allows
for creating Treemap visualizations within areas of arbitrary shape,
such as triangles and circles, thereby enabling a more flexible adap-
tation of Treemaps for a wider range of applications.

CR Categories: H.5.2 [Information Interfaces and Presentation]:
User Interfaces; I.3.6 [Methodology and Techniques]: Interaction
Techniques; I.3.8 [Computer Graphics]: Applications
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1 INTRODUCTION

Hierarchical structures are an often used abstraction for the classi-
fication, sorting, and organization of a broad variety of data. Small
structures can be efficiently represented by graphs, whereas for the
visualization of large information spaces the approach of Treemaps
by Shneiderman and Johnson [11] is an approved method. The idea
is the space-filling recursive subdivision of a given area without
producing holes or overlappings, whereby area sizes correspond to
given attributes in the data set. Their wide variety of applications
ranges from family trees and organization structures over file sys-
tems and software structures [2] to financial analysis [13, 26, 27],
sports reporting [10], and many other areas.

Since the first presentation of Treemaps in 1991, many different
layout algorithms have been introduced. The main characteristic
of all existing Treemap layout algorithms is that they are based on
the subdivision in rectangles. In this paper, Treemaps based on the
subdivision in arbitrary polygons are presented. These have ad-
vantages concerning the aspect ratio of the subareas and the inter-
pretability of the hierarchical structure. Due to the recursive pattern

of Treemaps, this method is not limited to layouts within rectan-
gles, but rather enables Treemap layouts within circles, triangles or
other polygonal shapes. This allows for a more flexible adaptation
of Treemaps within a wider range of applications, e.g. the combi-
nation of Treemap layouts with other visualization techniques.

The basic idea for the generation of polygonal Treemap lay-
outs is the utilization of centroidal Voronoi tessellations [5]. This
method is widely-used for energy minimizations in many domains
of application, for example data compression, image processing,
mesh refinement, resource planning, scientific visualization [6]. In
the domain of information visualization, the underlying Voronoi
tessellation is commonly used [20, 22, 18, 9], whereas the enhance-
ment to centroidal Voronoi tessellations is uncommon.

In the following Section 2, fundamental aspects of Treemaps and
corresponding layout algorithms are discussed. Section 3 intro-
duces the concept of Voronoi Treemaps by explaining the theory
of Voronoi tessellations, their utilization for Treemaps, and the re-
sulting layout algorithm. A discussion of the achieved results is
given in Section 4.

2 BACKGROUND

The common approach for visualizing hierarchical structures, so
called trees, are graphs. They consist of nodes representing the ob-
jects in the hierarchy, and edges that illustrate the containment. This
method is ideal for small hierarchies, but not appropriate for hier-
archical structures with hundreds or thousands of nodes. The main
reason for this is the under-utilization of the available display area.
Unlike graphs, Treemaps [11] remedy this problem by subdividing
the given rectangular display area according to an attributed hier-
archy without producing holes or overlappings. Thereby the term
‘attributed’ signifies that each node in the hierarchy has a value
which represents its size relating to a given measurement.

The construction of Treemaps is exemplified in Figure 1. Each
node in the hierarchy has a name and an associated size, whereas the
size of an internal node is the sum of the sizes of its contained leaf
nodes. The Treemap is constructed via recursive subdivision of the
initial rectangle. The direction of each one-dimensional subdivision
step alternates per level: first horizontally, next vertically, again
horizontally, etc. The area size of each sub-rectangle corresponds
to the size of the represented node. As a result of its construction,
the Treemap reflects the structure of the tree and the sizes of its
nodes. This original Treemap layout is called Slice-and-Dice.

Figure 1: Tree and corresponding Treemap—each node is labeled
with its name and size; the area sizes in the Treemap correspond to
the node sizes



A substantial problem of this initial layout algorithm is the re-
striction of subdividing the plane in each step solely in one dimen-
sion. As a result, thin elongated rectangles with a high aspect ratio
between width and height emerge. Such rectangles are difficult to
see, select, compare in size, and label [7, 23, 3]. Figure 2 presents
an example of a real-world data set containing 698 nodes at 5 hi-
erarchy levels. The left image visualizes this hierarchy with nodes
of different sizes, whereby small nodes are hard to recognize. The
same hierarchy with nodes of equal size is presented in the right im-
age, illustrating the divergence of actual and perceived node sizes in
Slice-and-Dice layouts. The reason for both problems is unerringly
the high aspect ratio of the rectangles.

Figure 2: Slice-and-Dice Treemap layouts of 698 nodes at 5 hierarchy
levels with nodes of different sizes (left) and nodes of equal size
(right)—the high aspect ratio between width and height causes the
hard recognition of small nodes and the bad perception of node sizes

Consequentially, in the further developments of Treemap layout
algorithms mainly the issue of the high aspect ratio was addressed,
for instance in Clustered Treemaps [27], Squarified Treemaps [3],
Ordered Treemaps [21], and Modifiable Treemaps [25]. These
algorithms employ a two-dimensional subdivision in each recur-
sion step, meaning horizontally and vertically at the same time.
Their main optimization criterion is the approximation of the sub-
rectangles to the shape of a square, so that the overall aspect ra-
tio between width and height of the sub-rectangles is minimized.
Aside from the aspect ratio criterion, other criteria have also been
considered. For example, the order of nodes or the nearness of two
or more nodes, whereby these other criteria are mostly related to
the respective application domain. A demonstrative member of this
group of advanced Treemap layout algorithms is presented in Fig-
ure 3, visualizing the same data set as in Figure 2 with a Squarified
Treemap layout. Similarly, nodes of different sizes are shown in the
left image and nodes of equal size in the right image. Obviously,
this layout algorithm maintains a much better aspect ratio, resulting
in a better separation of the nodes and perception of their sizes.

Figure 3: Squarified Treemap layouts of the same data set as in Fig-
ure 2—the interpretation of the hierarchical structure is ambiguous
and often edges seemingly run into each other

Disadvantageous in the mentioned sophisticated algorithms is
the unclear representation of the hierarchical structure, whereas it
is preserved by Slice-and-Dice Treemap layouts. For example, Fig-
ure 2 clearly represents a hierarchy with a root node containing six
child nodes, which is conform to the data set. The indication there-
for is the alternating horizontal and vertical subdivision. In contrast,
this observation can not be made in Figure 3. Here the number of
child nodes of the root node is ambiguous. A variant is a root node
with two child nodes A and B, whereby A contains two and B four
of the original six child nodes. Aside from this example, more de-
lude interpretations are possible. The reason for not producing a
one-to-one mapping between the hierarchical structure and the cor-
responding Treemap layout, is the grouping of nodes during the
subdivision. For example, in the Squarified Treemap layout shown
in Figure 3 the two largest nodes are vertically divided from the
other four smaller nodes due to the functioning of the algorithm.
This ‘internal’ division step may be interpreted as branching in the
hierarchical structure.

Another problem of the existent algorithms are edges that seem-
ingly run into each other, whereby a distinction of nodes between
and within different hierarchy levels becomes even more difficult.
The reason is the still limited degree of freedom in each subdivi-
sion step. By aligning each edge only horizontally or vertically, the
probability that the end point of an edge is near the starting point
of another equally aligned edge is quite high, which results in the
impression of one single edge instead of two separate edges. De-
pending on the hierarchical position of the nodes that are separated
by these two edges, the interpretation of the hierarchical structure
may be further deluded by the visualization.

The representation of the hierarchical structure is a crucial re-
quirement to Treemaps. Already Shneiderman and Johnson en-
hanced their initial Treemap layouts by assigning borders in every
subdivision step, called Nested Treemaps [11]. The approach of
Cushion Treemaps [24] employs shading to improve the perception
of structure by feigning specular reflection and thereby simulating a
curved surface. This method is also adapted for the enhancement of
Nested Treemaps to Framed Treemaps [3], resulting in quasi-three-
dimensional borders. Another option is to use transparencies [2]
to hide uninteresting or unwanted parts of the hierarchy. These
layout-independent methods can be applied to the existing Treemap
algorithms and may reduce, but do not prevent, misinterpretations
concerning the hierarchical structure.

So far, all existent Treemap layout algorithms have one thing
in common: they are based on and are thereby restricted to axis-
aligned rectangles. A slight exception are ET-Maps [19] that gen-
erate shapes composed of axis-aligned rectangles, but their general
appearance is identical. This limited degree of freedom drastically
restricts the space of layout variability. The issues of high aspect ra-
tios and misinterpretations concerning the hierarchical structure are
consequential symptoms. Additionally, this restriction to rectan-
gles implies that the layout of Treemaps can only take place within
rectangular display areas. More complex shapes like circles, tri-
angles, and arbitrary polygons are not possible. Although, these
shapes may not be necessary if Treemap visualizations are used
independently. However, by embedding Treemap layouts within
more complex visualizations, a better adaptability is quite useful or
even necessary.

Hence, the approach of Voronoi Treemaps is presented, en-
abling a polygon-based two-dimensional subdivision following the
Treemap paradigm. It offers low aspect ratios, better interpretabil-
ity of hierarchical structures, and flexible adaptability regarding the
enclosing shape.



3 VORONOI TREEMAPS

Global application-independent constraints and optimization crite-
ria for a Treemap layout regarding the shape of the Treemap subar-
eas are:

1. Constraint: The division in subareas must fully utilize the
given overall area, thereby avoiding holes and overlappings.

2. Optimization criterion: Subareas should have an overall as-
pect ratio between width and height that converges to one.

3. Optimization criterion: Siblings in the hierarchy should not
be grouped during the layout process, thereby making the
identification of the hierarchical structure non-ambiguous.

4. Optimization criterion: Subareas of the Treemap should have
non-regular shape, so that edges between the subareas do not
seemingly run into each other.

Obviously, polygons can be used for the division of a given
area into subareas. A polygon is defined as a closed plane figure
with n sides. Each polygon can be subdivided into smaller poly-
gons, hereby satisfying the constraint number 1. Polygons can have
arbitrary shapes, and polygons with many sides can approximate
curves. Both refer to the optimization criteria number 2, 3, and 4.

The principle structure of the layout algorithm is similar to the
original Treemap layout algorithm. The first step is to create a
polygonal subdivision of the given display area according to the
top hierarchy level. The output is a set of polygons representing the
nodes of the top hierarchy level. For the next hierarchy level, this
procedure is performed recursively for all top level nodes within the
respective polygons. When the recursion ends, a complete Treemap
layout is obtained.

The basic concept for generating polygonal subdivisions is to
utilize Voronoi tessellations. They enable an iteratively computa-
tion of good layouts in accordance to the given constraint and op-
timization criteria. Finding an optimal solution is a NP-complete
problem—even for layouts based on axis-aligned rectangles. How-
ever, a good approximation is sufficient for Treemaps. To clearly
convey the idea of Voronoi Treemaps, necessary theoretical knowl-
edge of Voronoi tessellations is given in the subsequent Section 3.1.
The layout algorithm for computing Voronoi Treemaps is explained
in detail in Section 3.2.

3.1 Voronoi Tessellations

Voronoi tessellations enable the partitioning of a m-dimensional
space without producing holes or overlappings. For an easier un-
derstanding of their underlying theory, the explanations in this sec-
tion are restricted to relevant aspects regarding their application for
Treemap layouts. Here only planar Voronoi tessellations in the two-
dimensional Euclidian space are considered. All definitions and de-
notations are according to [17, 5].

Basic Properties: Let P := {p1, ...., pn} be a set of n dis-
tinct points in R

2 with the coordinates (x1,y1), ...,(xn,yn). These
points are the generators. The subdivision of R

2 into n Voronoi
regions V (pi), with the property that a point q(x,y) lies in the
region V (pi) if and only if distance(pi,q) < distance(p j,q) for
each pi, p j ∈ P with i 6= j, is defined as the Voronoi tessellation
V (P) := {V (p1), ...,V (pn)}. The denotation distance(pi,q) repre-
sents a specified distance function between the generator pi and
the point q. In general, a Voronoi tessellation is defined in an
unbounded space. Having a bounded space S, the set V∩S(P) :=
{V (p1)∩S, ...,V (pn)∩S} is called a bounded Voronoi tessellation

of P by S. An ordinary Voronoi tessellation Vε (P) is a Voronoi
tessellation using the Euclidian metric, defined by

distanceε (pi,q) := ‖pi −q‖ =
√

(xi − x)2 +(yi − y)2, (1)

as their distance function. The bisector of two regions Vε (pi) and
Vε (p j) of an ordinary Voronoi tessellations is the perpendicular bi-
sector of the generators pi and p j . Examples for an unbounded and
a bounded planar ordinary Voronoi tessellation are given in Fig-
ure 4.

Figure 4: Unbounded and bounded planar ordinary Voronoi tessella-
tion

Weighted Voronoi Tessellations: In the basic Voronoi tes-
sellation V (P) it is implicitly assumed that each generator has the
same weight. As an extension, a set of parameters W may be given,
and to each generator pi ∈ P a parameter wi ∈W is assigned. These
parameters are the weights. By using weighted generators, it is
possible to define weighted distance functions, generating weighted
Voronoi tessellations V (P,W ).

An additively weighted Voronoi tessellation Vaw(P,W ), briefly
the AW Voronoi tessellation, uses the following distance function
between a generator pi ∈ P with its assigned weight wi ∈ W and a
point q:

distanceaw(pi,wi,q) := ‖pi −q‖−wi. (2)

The bisector of two regions Vaw(pi,wi) and Vaw(p j,w j) of an AW
Voronoi tessellations forms a hyperbolic curve with foci pi and p j .
The left image in Figure 5 presents an example for an AW Voronoi
tessellation.

The distance function for the additively weighted power Voronoi
tessellations Vpw(P,W ), briefly PW Voronoi tessellation, is:

distancepw(pi,wi,q) := ‖pi −q‖2 −wi. (3)

This distance function yields a bisector of two regions Vpw(pi,wi)
and Vpw(p j,w j) that is a straight line. The bisector corresponds
to the perpendicular bisector of pi and p j moved away from their
midpoint depending on their weights wi and w j . The right image in
Figure 5 presents an example for a PW Voronoi tessellation.

Both, the AW and the PW Voronoi tessellation, may be illus-
trated as Voronoi tessellations that are using circles as generators.
This is obvious, if circles are considered as points with a size or
weight parameter. Thereby, the weight wi in the AW distance func-
tion represents directly the radius of the circle, whereas in the PW
distance function, wi is the square of the radius. To satisfy the con-
tinuity of AW Voronoi tessellations, the circles are not allowed to
overlap. Additionally, the abstraction of circles with negative radii
has to be made in order to achieve the complete spectrum of possi-
ble Voronoi tessellations for the AW and the PW distance function.



Figure 5: Weighted Voronoi tessellations using the AW and the PW
distance function

Centroidal Voronoi Tessellations: The center of mass, or
centroid, ci of a Voronoi region V (pi) within the Euclidian space
is calculated by ci =

∫

V (pi)
xdx. A centroidal Voronoi tessellation,

briefly CVT, is a special Voronoi tessellation with the property that
each generator pi is itself the center of mass ci of the corresponding
Voronoi region V (pi). Obviously, there exist many different CVTs
for a given number of generators.

The mathematical importance of the CVT is founded by its rela-
tionship to the energy function

K (P,V (P)) = ∑
i

∫

V (pi)
‖x− pi‖

2dx. (4)

It is proven that a necessary condition for K (P,V (P)) to be min-
imized is that V (P) is a CVT [5]. Since to find a CVT of a given
number of generators with K (P,V (P)) in a global minimum is
NP-complete [5], approximations of CVTs that are located in local
minima of K (P,V (P)) are used. CVTs can be iteratively com-
puted with the Lloyd’s method [16]: By starting with an initial dis-
tribution of generators P within a bounded plane S, in each iteration
step each generator pi ∈ P is moved into the center of mass ci of its
Voronoi region V∩S(pi) ∈ V∩S(P). This iterative computation stops
when the difference between each generator pi and its correspond-
ing center of mass ci is below a chosen error threshold ε . Figure 6
exemplifies this method.

Figure 6: Voronoi tessellation of 20 random points and an associ-
ated CVT—traces illustrate the movements of the points during the
computation of the CVT

The concept of CVTs can be generalized to non-Euclidian dis-
tance functions and spaces, and can also be extended to weighted
Voronoi tessellations. The only prerequisite is that the existence of
a however defined center of mass for each Voronoi region is guar-
anteed.

Computational Complexity and Algorithms: A lower
bound of the worst-case time complexity for constructing the or-
dinary Voronoi tessellation Vε (P) of n generators is O(n logn). A

lower bound of the space complexity for computing Vε (P) is O(n)
in the worst case. Both lower bounds for Vε (P) are tight in the
sense that actually there exist optimal algorithms having these lower
bounds [17].

The computations of the AW Voronoi tessellation Vaw(P,W ) and
the PW Voronoi tessellation Vpw(P,W ) have the same time and
space complexity as Vε (P) in the worst case. Optimal algorithms
are existent, for instance [8] for Vaw(P,W ), and [1, 14, 15] for
Vpw(P,W ).

The time complexity of the iterative computation of an approxi-
mation of a CVT is O(dOV ) with d as the number of iterations and
OV as the complexity of the used Voronoi tessellation. Thereby d
is not directly related to the number of generators, but rather to the
minimal approximation error that should be achieved, and it there-
fore does not affect the overall complexity. The complexity of the
calculation of the centers of mass of a Voronoi region does also
not affect the overall complexity, because it is only O(n), and each
Voronoi tessellation has at least a time complexity of O(n). Thus,
the overall time complexity for computing the approximation of a
CVT is equal to the time complexity of the used Voronoi tessella-
tion. Nevertheless, CVT algorithms are very time-consuming, since
often many iterations are necessary for obtaining a good approxi-
mation. By taking advantage of the fact that it is not necessary to
calculate the Voronoi tessellations itself for obtaining a CVT, it is
possible to use distributed computing environments for their com-
putation [12]. The idea is to calculate only the centers of mass in
each iteration step by using large random sets of discrete sample
points. This method achieves a nearly perfect linear speed-up with
the number of processors used, and has the same time complexity
as the respective Voronoi tessellation. The space complexity of the
iterative computation of an approximation of a CVT is O(n).

3.2 Voronoi Treemap Algorithm

The principle structure of the algorithm is similar to the recursive
structure of the original Treemap layout algorithm. The modifi-
cation for Voronoi Treemaps is applied to the subdivision in each
recursion step. Therefor the computation of the centroidal Voronoi
tessellation is utilized.

CVTs enable the subdivision of a given area without producing
holes and overlappings, which satisfies the constraint for Treemap
layouts. CVTs minimize the overall energy of the Voronoi tessel-
lation. The energy of the CVT is thereby equivalent to the overall
aspect ratio of the subareas of the Treemap layout [5], which refers
to optimization criterion number 2. In a Voronoi tessellation each
generator is treated separately from the other generators. CVTs
are special cases of Voronoi tessellations, and therefore also do not
group their generators. This refers to the optimization criterion
number 3. Non-degenerated vertices within Voronoi tessellations
arise from three generators that have the same distance to a point,
whereby each non-degenerated vertex is assigned to three edges.
The energy minimization in CVTs simultaneously minimizes the
number of degenerated vertices, and maximizes the distances be-
tween vertices and the angles between the edges of a vertex [5]. In
combination with the general non-regular topology of CVTs, this
refers to the optimization criterion number 4. Concluding it can be
stated that CVTs are suitable for generating good Treemap layouts
in reference to the given constraint and optimization criteria.

The essential characteristic of Treemaps is that their subarea
sizes correspond to the sizes of the nodes in the hierarchy. In stan-
dard CVTs using the Euclidian distance function, the sizes of the
Voronoi regions are roughly the same, which disqualifies them for
the generation of Treemap layouts. CVTs with weighted distance
functions have the property to produce divisions with variable sized
subareas. The problem is that during the computation of a CVT
with an arbitrarily defined distance function, the area sizes of the



Voronoi regions are not observed. For that reason, an extension of
the standard CVT computation method is necessary in order to con-
trol the size of every Voronoi region. The idea is to adaptively alter
the weight parameter of each generator in the next iteration step ac-
cording to the size of the dedicated Voronoi region in the current
iteration step. For example, if the size of a node in the hierarchy
is 20% of the size of the parent node, and in the current iteration
step the dedicated Voronoi region covers only 16% of the overall
area, it is tried to increase the area size of this Voronoi region in
the next iteration step from 16% to 20% by increasing the weight
of the generator by 25%. Due to the facts that the relation between
the weight of a generator and the area size of the dedicated Voronoi
region is not a linear dependency, and the weight and positions of
the other generators are changing at the same time, the correct area
size is most likely not achieved in the next iteration step. Rather it
is presumed that a better approximation is obtained. By performing
these adjustments of the generator weights in each iteration step,
the computation stops in a stable state, whereby the error between
the designated relative size of each node in the hierarchy and the
relative area size of the dedicated Voronoi region is below a chosen
maximum error ε . This extended computation method for weighted
CVTs for the generation of Treemap layouts is further outlined by
means of Algorithm 1.

Algorithm 1 Voronoi Treemap subdivision

Input: bounded plane S in R
2; set of n values Adesired :=

{a1desired , ...,andesired} with 0 < aidesired ≤ 1 and ∑aidesired = 1; er-
ror threshold ε

Output: subdivision of S in n disjoint subareas si ⊂ S with
∣

∣

∣

AreaSize(si)
AreaSize(S)

−aidesired

∣

∣

∣
< ε

1: initialize a set of n points P := {p1, ..., pn} with pi ∈ S, pi 6= p j
2: initialize a set of n weights W := {w1, ...,wn} with wi = 1
3: initialize a data structure for the Voronoi tessellation V∩S(P,W )
4: repeat
5: ComputeVoronoiTessellation(V∩S(P,W ))
6: stable = true
7: initialize a set of n values A := {a1, ...,an}
8: for each ai ∈ A do
9: ai =

AreaSize(V (pi,wi))
AreaSize(S)

with Voronoi region V (pi,wi) ∈

V∩S(P,W )
10: if |ai −adesired | ≥ ε then
11: stable = f alse
12: end if
13: end for
14: for each wi ∈W do
15: Ad justWeight(wi,ai,aidesired )
16: end for
17: MoveGenerators(P,W,V∩S(P,W ))
18: until stable == true
19: ExtractSubareas(V∩S(P,W ))

In general, arbitrary weighted distance functions may be used for
the described subdivision algorithm. However for the application of
Treemaps and the given optimization criteria, especially the addi-
tively weighted distance function—with restriction to distributions
equivalent to non-overlapping circles—and the additively weighted
power distance function are qualified. This is caused by the con-
tinuous topology of their resulting Voronoi regions. The difference
between the AW and the PW Voronoi tessellation is the shape of
the bisector of two regions. AW Voronoi tessellations create hy-
perbolic curves, and PW Voronoi tessellations create straight lines.
Thus, it has to be distinguished between AW Voronoi Treemaps and
PW Voronoi Treemaps. Additionally, the different characteristics of

the AW and PW distance functions necessitate a different handling
of the auxiliary functions Ad justWeight() and MoveGenerators()
in Algorithm 1.

During the computation of AW Voronoi Treemap subdivisions, it
is necessary that the weight parameter wi can have negative values.
If not, it may be possible that the area size error of small regions will
not get below the chosen error threshold ε . Furthermore, the special
case has to be observed that the weight wi in AW tessellations does
not become zero or nearby zero. Therefore, it has to be checked
against a very small value δ . In contrast, according to experience,
the convergence of the algorithm for PW Voronoi Treemap subdi-
visions is improved, if each wi ≥ 1. The resulting algorithms for
the Ad justWeight() function are outlined in Algorithm 2 for AW
Voronoi Treemaps and in Algorithm 3 for PW Voronoi Treemaps.

Algorithm 2 Ad justWeight() for AW Voronoi Treemaps
Input: weight value wi; area size value ai; desired area size value

aidesired 6= 0

Output: adjusted weight value wi

1: 0 < δ ≪ 1
2: if |wi| < δ then
3: wi = sign(wi) ·δ
4: end if
5: wi = wi + |wi| ·

aidesired −ai

aidesired

Algorithm 3 Ad justWeight() for PW Voronoi Treemaps
Input: weight value wi; area size value ai; desired area size value

aidesired 6= 0

Output: adjusted weight value wi with wi ≥ 1

1: wi = wi ·
(

1+
aidesired −ai

aidesired

)

2: if wi < 1 then
3: wi = 1
4: end if

For granting continuous AW Voronoi regions during the subdi-
vision algorithm, it is required that the distribution of generators
in combination with the according weights is equivalent to a distri-
bution of non-overlapping circles. This can be achieved by again
adjusting the weights after the generators have been moved into the
centers of mass of the dedicated Voronoi regions, while keeping the
ratio between the weights. Thereby all weights are multiplied by a
maximum factor, so that for each subset of generators {pi, p j} ⊂ P,
with i 6= j, their Euclidian distance is not smaller than the sum of the
assigned weights wi and w j . Algorithm 4 outlines the implementa-
tion of the function MoveGenerators() for AW Voronoi Treemaps.
For PW Voronoi Treemaps, no additional conditions must be sat-
isfied. Thus, the function MoveGenerators() for PW Voronoi
Treemaps is reduced to moving each generator pi into the center of
mass of the dedicated Voronoi region Vpw(pi,wi) ∈ Vpw∩S(P,W )).
The formal declaration of an algorithm is set aside.

For the standard CVT computation method with constant
weights, it has been shown that the energy Ki(P,V (P)) in itera-
tion i is lower than the energy Ki−1(P,V (P)) in iteration i−1, and
therefore the computation stops in a local minimum [5]. This can-
not be proven for the extended CVT computation method because
of the permanently changing weights of the generators. Neverthe-
less, from experience it can be stated that in most cases this ex-
tended CVT computation method also stops in a local minimum. If
not, this problem can be remedied by a re-initialization of the gen-
erators with new random positions. Aside from the energy of the



Algorithm 4 MoveGenerators() for AW Voronoi Treemaps
Input: set of n points P := {p1, ..., pn}; set of n weights W :=

{w1, ...,wn}; AW Voronoi tessellation Vaw∩S(P,W )

Output: set of n points P := {p1, ..., pn} with pi =
CenterO f Mass(Vaw(pi,wi)) and Vaw(pi,wi) ∈ Vaw∩S(P,W );
set of n weights W := {w1, ...,wn} with ‖pi − p j‖

2 − (wi +
w j) ≥ 0 for {pi, p j} ⊂ P, i 6= j

1: for each pi ∈ P do
2: pi = CenterO f Mass(Vaw(pi,wi)) with Vaw(pi,wi) ∈

Vaw∩S(P,W )
3: end for
4: f actorWeight = ∞
5: for each {pi, p j} ⊂ P with i 6= j do

6: f =
‖pi−p j‖

2

wi+w j

7: if 0 < f < f actorWeight then
8: f actorWeight = f
9: end if

10: end for
11: if f actorWeight < 1 then
12: for each wi ∈W do
13: wi = wi · f actorWeight
14: end for
15: end if

Voronoi tessellation, the area size error of each Voronoi region and
the overall area size error is also reduced during the computation.
Indeed, at the end of the computation, this error does not reside in
a local minimum, but rather below a chosen threshold ε . Figure 7
illustrates a typical convergence of the maximum area size error of
a Voronoi region and of the overall area size error of the Voronoi
tessellation during the computation of a CVT with an AW and a
PW distance function. The data set consisted of ten generators with
different sizes. The area size error of each Voronoi region was less
than 0.1% at iteration 185 for the AW distance function, and at it-
eration 206 for the PW distance function.

Figure 7: Typical convergence of the maximum area size error of
a Voronoi region and of the overall area size error of the Voronoi
tessellation during the computation of a CVT with an AW and a PW
distance function

The entire AW and PW Voronoi Treemap layouts are generated
by using the described computation of CVTs in the subdivision step
of the Treemap recursion. Figure 8 presents the result for a layout
with the AW distance function, and Figure 9 presents the result for a
layout with the PW distance function. All four images use the data

set with 698 nodes at 5 hierarchy levels, as in the examples of Slice-
and-Dice and Squarified Treemap layouts in Section 2. Again, the
left images visualize the hierarchy with nodes of different sizes, and
the right images with nodes of equal size.

Figure 8: AW Voronoi Treemap layouts of the same data set as in
Figure 2 with nodes of different sizes (left) and nodes of equal size
(right)

Figure 9: PW Voronoi Treemap layouts of the same data set as in
Figure 2 with nodes of different sizes (left) and nodes of equal size
(right)

Similarly to the other Treemap layout algorithms, enhancements
like borders, adaptive edge sizes, cushions, coloring, etc., may also
be applied to the described layout method. This additionally sup-
ports the user in the perception and interpretation of the Treemap
visualization. Examples for such enhanced Voronoi Treemap lay-
outs are presented in Figures 10–12.

4 DISCUSSION

This paper presents a new approach for the generation of Treemap
layouts. Contrary to existent layout algorithms that are based on
the subdivision in rectangles, this new layout algorithm enables
the subdivision in arbitrary polygons. This also allows to create
Treemap visualizations within areas of arbitrary shape, such as cir-
cles or triangles. The evidence for the suitability of the introduced
layout method has been produced by the constraints and global
application-independent optimization criteria for Treemaps. Espe-
cially, the minimization of the overall aspect ratio of the subareas
is explicitly attributed to the proven energy minimization in cen-
troidal Voronoi tessellations. This minimization does thereby not
entail ambiguities of the interpretability of the hierarchical struc-
ture in the visualization, such as observed in other Treemap layout
algorithms.

Because of the intricacy of the expanded degree of freedom for
these layouts, the presented method iteratively computes an approx-
imation of a layout with an error below a desired threshold. De-
pending on this threshold, the number of iterations required may



Figure 10: Enhanced AW Voronoi Treemap layout of 4075 nodes at
10 hierarchy levels (a brighter color indicates a lower hierarchy level)

become very large. Thus, with regard to computation time, other
Treemap layout algorithms outperform this method by far. This
problem is diminished by using distributed computing environ-
ments. The recursive structure of the Treemap algorithm and the
ability to massively parallelize the computation of the CVTs, enable
an almost perfect linear scalability with the number of processors
used. In the existing prototype implementation of the layout algo-
rithm, a variable number of compute servers is utilized to generate
even large Treemap layouts within a reasonable time—using eight
Intel Xeon CPUs each with 2.4 GHz, the computation of Figure 10
required 7:13 minutes, and that of Figure 11 required 5:48 minutes.
Indeed, this method is not appropriate for real time calculation.

In future work, the properties and abilities of the presented layout
method will be studied extensively. For example, the restriction of
the movement of the generators, and the temporal coherence of the
subareas, will be investigated. That will permit ordered layouts, and
the visualization of time-variant data sets respectively. Also, adap-
tations of the presented method to other layout problems outside
the Treemap domain will be addressed, such as the visualization of
georeferenced statistical data.
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