
Hierarchy based 3D Visualization of Large Software Structures

Michael Balzer and Oliver Deussen

University of Konstanz, Germany

ABSTRACT

Modern object-oriented programs are hierarchical systems with
many thousands of interrelated subsystems. Visualization helps de-
velopers to better comprehend these large and complex systems.
This work presents a three-dimensional visualization technique that
represents the static structure of object-oriented software using dis-
tributions of three-dimensional objects on a two-dimensional plane.
The visual complexity is reduced by adjusting the transparency of
object surfaces to the distance of the viewpoint. An approach called
Hierarchical Net is proposed for a clear representation of the rela-
tionships between the subsystems.

CR Categories: D.2.7 [Software Engineering]: Distribution,
Maintenance, and Enhancement—; I.3.8 [Computer Graphics]:
Applications

1 INTRODUCTION

Software systems belong to the most complex artifacts. In many
domains of applications, object-oriented systems with millions of
lines of code and many thousands of interrelated components are
constructed. Typically, they run through a long evolution process,
and the expenses for maintenance and reengineering by far surpass
the cost of the original design and implementation. Visualization
can serve in maintenance and reengineering of software and help to
comprehend existing software more efficiently and accurately.

There are many visualization approaches showing different as-
pects of programs, like the static structure, the runtime behavior, the
evolution, or the development process [1, 2]. In this work we focus
on the visualization of the static structure, an aspect that is com-
monly used in the comprehension, quality assessment, and reengi-
neering of large software systems.

Our approach resulted from an exploratory study of how to vi-
sualize the static structure of real-world software systems with the
landscape metaphor. They combine three-dimensional images of
landscape elements, customized layouts, and hierarchical intercon-
nection networks, to represent program entities, their hierarchy, and
their relationships. Dynamic transparencies enable the viewer to
move seamlessly between abstract and detailed views.

2 A MODEL OF OBJECT-ORIENTED SOFTWARE

The models distinguish four types of software entities: packages,
classes, methods, and attributes. Each package can contain other
packages and classes, and each class can contain methods and at-
tributes. In Java and other object-oriented programming languages,
classes may also contain other classes. Because the contained
classes are mostly very simple and tightly coupled to their con-
taining classes, each class is collapsed with their contained classes.
The gain of simplicity (in the schema and, more importantly, in the
visualizations) through this collapsing by far outweighs the minor
loss of precision. Besides containment, the models distinguish three
other kinds of relationships between the entities: classes can inherit
from other classes, methods can call methods, and methods can ac-
cess attributes. The schema of the models is shown in Figure 1.

a c c e s s e s

i n h e r i t s

c a l l s

p a c k a g e

c l a s s

m e t h o d a t t r i b u t e

Figure 1: Schema for models of object-oriented software systems

Such models can be automatically extracted from the source
code of object-oriented software systems. In our experiments, we
used the tools SNiFF+ [7] and Sotograph [6] to extract graph mod-
els from Java programs. The extracted graphs are stored in files
in Rigi Standard Format [8]. Through the separation of extraction
from visualization, and the use of a standard exchange format for
graphs, it is possible to visualize data from many sources. In partic-
ular, they can be applied to software in any programming language
for which an appropriate extractor is available.

3 HIERARCHY BASED LAYOUT OF ENTITIES

The layouts in this work are based on the hierarchy of packages,
classes, methods and attributes in the visualized software system.
The hierarchy of packages, which can be arbitrarily deep, is rep-
resented by nested hemispheres. The outermost hemisphere stands
for the root of the package hierarchy. It contains hemispheres which
represent the packages that are directly contained in the root pack-
age. These hemispheres for the second level packages again contain
hemispheres for the third level packages, and so on. The size of the
hemispheres is adjusted to the number of methods and attributes
contained in the package and all sub-packages. After arranging the
packages, the positions of the classes within the center of the ac-
cording packages are defined. Each class is represented as a circle
with a surface area related to the number of contained methods and
attributes. Within these circles the methods and attributes are posi-
tioned as simple box objects. Figure 2 illustrates the result of this
arrangement pattern.

As a tool for the generation of this distributions we use a relax-
ation based on Voronoi diagrams [3, 4]. Thereby all objects are
trying to expand their size as much as possible under the constraint
that the relation between their sizes is fixed.

4 HIERARCHICAL NETS

Aside from the hierarchy of the entities, the relations between the
entities are an important part of the structure of software systems.
If these relations would be represented as simple direct line connec-
tions between the entities of a given two-dimensional level, very un-
clear representations with many overlappings and occlusions would
result, which make a differentiation and a closer investigation of the
individual relations almost impossible.



Figure 2: Hierarchy based 3D representation of a software system

We propose a solution called Hierarchical Net. Thereby the re-
lations are routed according to the hierarchy levels of the software
entities. For example, if a relation exists between a class X in pack-
age A and a class Y in package B, and furthermore, the packages A
and B are contained in package C, then the connection is routed
from class X to package A, to package C, then to package B, and
lastly to class Y . For this purpose a point is defined above every
object, where the connections of the objects of the lower hierarchy
levels are combined and forwarded to the next level. This point al-
ways rests within a fixed relative distance above the center of the
considered object. Since the objects at higher hierarchy levels are
larger, this results in a three-dimensional tree of connections, as
shown in Figure 3.

The type of the relations is shown by the color of the connec-
tions. Relations of the same type, and with the same start and end
points, are combined to one connection. Thereby their quantity is
mapped to the size of the new connection, so that thicker connec-
tions stand for a larger quantity of represented relations.

In order to analyze the relations the user can control the visu-
alization. The first possibility is to select only specified types of
relations, e.g. the user can solely view all inheritances. The second
is to choose an entity, whereby a list with all connected relations is
presented, and additionally only relations connected to this entity
are drawn in the visualization. These two alternatives enable the
better traceability of the relations.

5 UTILIZING TRANSPARENCY FOR LEVEL OF DETAIL

As already explained, nested hemispheres are used for the arrange-
ment of packages. Pursuant to [5] the representation of the hemi-
spheres takes place with the help of transparencies. Thus a view
into the system is possible, while at the same time the presented
amount of information is reduced. If the surfaces of the hemi-
spheres would be completely transparent, i.e. only the silhouettes
are drawn, it would be difficult to interpret the visualization due to
the overabundance of information. If the surfaces were perfectly
opaque, objects within or outside the presently viewed packages
would be invisible. The use of transparencies solves both problems.

Contrary to [5] the degree of transparency is not fixed in advance,
but adapts dynamically to the position of the viewer. If the distance
of the viewpoint to a hemisphere is more than five times the hemi-
sphere’s radius, then the hemisphere is drawn perfectly opaque. If
the distance of the viewpoint is less than two times the hemisphere’s
radius, then the hemisphere is completely transparent. Between

Figure 3: Visualization of entity relations using a Hierarchical Net

these two distances, seamless cross fading takes place.
Fading out distant levels allows to clearly represent also scenes

with a very deep hierarchy. This level of detail technique also
improves the rendering performance of the visualization, because
the inside of completely opaque hemispheres does not have to be
drawn, and normally more than 90 % of all hemispheres are opaque.

6 CONCLUSION AND FUTURE WORK

It is significant to note that the presented visualization is an interac-
tive real-time application, which runs on a workstation with 3 GHz
and a Nvidia GeForce 5800 graphics adapter with 20 to 60 frames
per second.

In future works, more possibilities of the landscape metaphor in
the context of software visualization are to be examined. One direc-
tion will be the examination of layout methods which are not only
based on the hierarchy of the software system, but also involve the
relations in the layout generation process. The information density
in the visualizations can be further improved by mapping values of
software metrics on objects in the visualization. For example, the
height of the objects that represent methods could be proportional
to the size of the methods, measured by the number of lines of code.

REFERENCES

[1] Proceedings of the 1st International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT). IEEE Computer Society,
2002.

[2] Proceedings of the ACM Symposium on Software Visualization (SOFT-
VIS). ACM, 2003.

[3] Oliver Deussen, Stefan Hiller, Cornelius van Overveld, and Thomas
Strothotte. Floating points: A method for computing stipple drawings.
Computer Graphics Forum, 19(3):40–51, 2000.

[4] Kenneth E. Hoff, John Keyser, Ming C. Lin, Dinesh Manocha, and
Tim Culver. Fast computation of generalized Voronoi diagrams using
graphics hardware. In Proceedings of the 26th Annual Conference on
Computer Graphics (SIGGRAPH), pages 277–286. ACM, 1999.

[5] Jun Rekimoto and Mark Green. The Information Cube: Using trans-
parency in 3d information visualization. In Proceedings of the 3rd
Annual Workshop Information Technologies & Systems (WITS), pages
125–132, 1993.

[6] Software-Tomography GmbH. http://www.softwaretomography.com.
[7] Wind River Systems Inc. http://www.windriver.com.
[8] Kenny Wong. Rigi User’s Manual, Version 5.4.4, 1998.

http://ftp.rigi.csc.uvic.ca/pub/rigi/doc/.


