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Figure 1: The honeybee brain encodes odors by activity patterns of units called glomeruli in the antennal lobe (AL). These patterns can be
observed in calcium imaging movies. For orientation, glomeruli 17 and 33 are labelled. Left: Frontal view onto an AL model with a total number
of 160 glomeruli. Right: Raw data (upper row) and visualisation result after processing with the presented method (lower row). We show
consecutive images before and during odor application.

ABSTRACT

We present a software solution for processing recordings of honey-
bee brain activity in real time. In the honeybee brain, odors elicit
spatio-temporal activity patterns that encode odor identity. These
patterns of neural activity in units called glomeruli can be recorded
by calcium imaging with fluorescent dyes, but so far glomerulus
segmentation was only possible offline, making interactive exper-
iments impossible. Our main contribution is an adaptive algo-
rithm for image processing, along with a fast implementation for
the graphics processing unit that enables semantic segmentation in
real time. Semantics is based on the temporal dimension, relying on
the fact that time series of pixels within a glomerulus are correlated.
We evaluate our software on reference data, demonstrate applicabil-
ity in a biological experiment, and provide free source code. This
paves the way for interactive experiments where neural units can be
selected online based on their past activity.

1 INTRODUCTION

Biological knowledge discovery is essentially based on manipula-
tion of living organisms. In the study of neural circuits, it is desir-
able to modify activity of neural units conditional on the activity
they exhibited before. Such interactions call for visualisation of
brain activity in real time, which allows for identifying the active
units already during the course of the experiment.

In our small-scale model circuit, the honeybee antennal lobe
(AL), odor molecules smelled by the bee are encoded as com-
binatorial activity patterns in neural units called glomeruli [12].
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Glomeruli in the AL are connected by a network of interneurons.
Manipulating glomeruli in this network by means of neuropharma-
cology, such as in [13], can help to unravel network structure and
function.

Activity patterns in the AL are accessible through calcium imag-
ing with fluorescent dyes (see e.g. [27, 24]). The goal of image
processing in this domain is to estimate the true signals from noisy
movie data and to perform semantic glomerulus segmentation based
on the fact that time series from the same glomerulus are correlated.

Extending our previous method [33], we present an adaptive
algorithm that can process imaging movies at constant cost per
time point. To the best of our knowledge, this is the first adap-
tive algorithm in this domain. Embedded in a matrix factorisation
framework, the algorithm leads to a rank-reduced representation of
the movie matrix such that glomerulus signals are highlighted, as
shown in Figure 1.

We provide an efficient General Purpose Computation on Graph-
ics Processing Unit (GPGPU) implementation written in C for
CUDA (Compute Unified Device Architecture) [3] to enable real-
time processing of calcium imaging data acquired from the hon-
eybee AL. Existing software tools are only suitable for post-hoc
analysis after the experiment [6, 7, 22, 33], which limits the range
of possible biological experiments.

Our software makes it possible to perform interactive exper-
iments in the honeybee AL, where interactions can range from
changes in recording parameters to neuropharmacological interven-
tions, such as artificially inducing activity in a particular glomerulus
using time cues that originate from the recorded data itself. Real-
time visualisation permits targeted interventions, as glomeruli can
be chosen both based on their anatomical position and their involve-
ment in activity patterns (see Figure 1).

In the following, we provide background on the biological appli-
cation scenario and summarise related work (Sections 2 and 3).



Figure 2: Experimental setup (curtains closed during experiments
with fluorescent dyes). Movie streams from the camera on top of
the microscope are processed in real time and appear on the visual-
isation screen. The imaging control unit triggers camera and excita-
tion light source. Dissolved odorants are applied with syringes (not
shown) and sucked out through the exhaust. The heat lamp keeps
the brain at ≈ 28◦C.

We then develop an adaptive algorithm for processing imaging
movies from the honeybee AL (Section 4). In Section 5, we eval-
uate both the algorithm and the software on reference data and
demonstrate applicability in a biological experiment.

2 BIOLOGICAL BACKGROUND

2.1 Observing the olfactory code
The olfactory system is a nice example for how brains process in-
formation in activity patterns across neurons. In the bee, 60,000 re-
ceptor neurons converge onto the 160 glomeruli (30-50 µm each) of
the AL, creating an information space with 160 dimensions: Each
activity pattern at any time can be fully described by a vector with
dimensionality 160. In higher-order brain centers, this space is then
read out by 160,000 target neurons (the Kenyon Cells in the mush-
room bodies), only to then collapse onto less than 100 ”executive
neurons” [11, 38].

Across species, olfactory coding is based on receptors with over-
lapping response ranges. Due to the vast number of chemical
molecules, there is typically not a one-to-one correspondence be-
tween odor molecules and receptors, but it is the combined activity
pattern of the entire receptor repertoire that encodes the odor [21].
This activity pattern is relayed to the AL, and a specific odor reli-
ably elicits the same glomerular pattern in different bees [12].

In vivo imaging with calcium-sensitive fluorescent dyes makes
it possible to record brain activity in the AL of the honeybee Apis
mellifera. Figure 1 shows glomerular activity before and after pre-
sentation of the odorant peppermint oil. Note that we have a frontal
view onto the AL that reveals between ca. 20 and 40 glomeruli de-
pending on the focal plane.

2.2 Experimental setup
Figure 2 shows the experimental setup used in this work to record
the calcium imaging movies. A CCD camera (Andor Clara, Andor
Technology PLC, Belfast, Northern Ireland) is mounted on top of a
fluorescence microscope (Axio Imager D.1, Zeiss, Göttingen, Ger-
many) equipped with a water immersion objective (20×, NA 0.95,

Olympus, Tokyo, Japan). Activity is recoreded from the opened
honeybee brain, processed incrementally and visualised on a com-
puter screen.

Experiments were performed with honeybee foragers (Apis mel-
lifera). The day before the experiments, bees were caught from
hives and the projection neurons of lateral and medial antenno-
protocerebral tract (l- and m-APT) were stained with the calcium-
sensitive dye Fura-2 dextran (Invitrogen, Molecular Probes, Eu-
gene, OR, USA). Projection neurons are the neurons that project
from the glomeruli to higher-order brain centers.

Calcium-imaging is a versatile technique for measuring neural
activity [14]. In the honeybee, changes in intracellular calcium cor-
relate with changes in projection neuron firing rate [10]. By excit-
ing the dye with UV light, we can measure the intracellular calcium
level and thus activity in all the glomeruli in the current focal plane.

A light source (Polychrome V, TILL Photonics, Gräfelfing, Ger-
many) provided excitation light. For each recording, four double
frames per second were recorded with 340 and 380 nm excitation
light. The input signal for processing was the ratio between consec-
utive images taken at 340 and 380 nm. This is a standard procedure
for this dye (see [23]). For further details on the experimental pro-
tocol, see [34].

3 RELATED WORK

Calcium imaging data from the honeybee AL is typically analysed
with semi-automatic methods, such as described in [6, 7, 8]. These
methods start with preprocessing to filter out noise and to visualise
correlations between the signals of neighbouring pixels, and then
require user interaction to select glomerulus positions based on vi-
sual inspection. This is not suitable for real-time processing where
decisions need to be made in fractions of a second.

A more advanced computational approach [30] involves fitting of
pre-defined model functions to the movie, e.g. components corre-
sponding to noise, signal, artifacts, slow and fast calcium dynamics,
etc. This synthetic method is designed for post-hoc data interpreta-
tion rather than for real-time visualisation.

Analytic methods attempt to decompose the data into compo-
nents that can be seen as latent factors underlying the data. They
do not require prior knowledge on e.g. the nature of slow and fast
calcium dynamics. Common approaches are Principal Component
Analysis (PCA), Non-negative Matrix Factorisation (NMF) and In-
dependent Component Analysis (ICA). Especially ICA has been
applied to various kinds of imaging data [2, 25, 31, 22, 32].

Methods based on ICA solve a blind source separation problem,
where signal sources are estimated from a signal mixture without
knowledge about the mixing process (denoted as ”blind”). The
set of solutions is, however, constrained by assuming a statistical
model. ICA estimates statistically independent source signals based
on the model assumption that the true sources, e.g. glomerulus sig-
nals, are in fact statistically independent, and, for all except one,
non-Gaussian.

The most recent approach is the convex cone algorithm [33]. As
opposed to the ICA-based methods which are variants of a general
independence paradigm, the convex cone algorithm (see Section 4)
is based on a data model explicitly designed for honeybee imaging
movies. No assumptions on statistical properties, such as indepen-
dence or non-Gaussianity, are made. Following a simple greedy
strategy, it is also faster than common iterative ICA methods (such
as [16]). This renders it suitable for repeated execution on a movie
stream, which is the strategy we pursue in Section 4.

Software is available for some of the methods described
above [6, 22, 7], yet none of these programs is able to read and
process imaging data in real time.



4 ALGORITHM

4.1 Matrix factorisation framework
A movie can be represented by a movie matrix Am×n, where m
refers to the number of time points, and n to the number of pix-
els. Individual images from the movie are flattened into length-n
vectors and filled into the rows of matrix A. In the following, these
m rows of A are denoted as A(i) and the n time series in the columns
of A are denoted as A( j).

As matrix A contains noise and irrelevant signals, an approx-
imation to A with rank k � m,n can be obtained without losing
biological signals. In fact, the approximation can serve to highlight
relevant features in the movie.

Our goal is to compute such a rank-k approximation Ak to the
movie matrix A. Formally, we write Ak as the product of a time
series matrix T m×k and an image matrix Sk×n:

Am×n : Ak = T m×k Sk×n =
k

∑
r=1

TIr SrJ (1)

This is illustrated in Figure 3, which shows a general matrix fac-
torisation framework. Please note that different method-specific
constraints will lead to different solutions. For example, Principal
Component Analysis (PCA) [18] would lead to k mutually orthog-
onal principal component vectors (images) in S.

Ideally, the k image vectors in the rows of S should indicate the
positions of the neural units and the k time series vectors in the
columns of T should be the corresponding signals. In our previ-
ous paper [33] we have introduced a non-negative mixture model
for imaging data from the honeybee AL that leads us to a sparse
solution to Equation (1) where this is in fact the case.

4.2 Convex cone algorithm
In the following, we briefly review the mixture model and the con-
vex cone algorithm from [33], before we then concentrate on adapt-
ing it to the data stream domain.

An imaging movie can be modelled by non-negative combina-
tions of basis time series in T , plus the residual noise N.

A = T S0++N (2)

The model assumption is that vectors A( j) from the movie are
either pure glomerular signals (plus noise) or linear combinations
of these pure glomerular signals with non-negative coefficients. In
the middle of a glomerulus, pure, unmixed signals exist, whereas in
regions of contact between the glomeruli signal mixtures can occur
due to light scatter from neighbour glomeruli. I.e. a weak signal
can appear stronger due to additive light scatter from a neighbour.

Glomeruli each have their individual signal due to individual
background activity and as they respond differentially to odors. Our
approach is to select a pure, unmixed time series from the middle
of each of the glomeruli into the columns of T . Geometrically,
these are the generating extreme vectors of a convex cone that con-
tains the data. Each time series vector from the movie can be re-
constructed as a conic combination of the generating vectors, i.e. a
linear combination with non-negative coefficients.

The 2D example in Figure 4 illustrates the special status of ex-
treme vectors. Given the non-negative mixture model, the generat-
ing pure signals from the middle of the glomeruli are the extreme
vectors of a convex cone that contains all time series vectors from
the movie. For more background on convex geometry refer also
to [26, 5].

The goal is thus to find the extreme, generating vectors as basis
vectors in the columns of matrix T in Equation (1). The algorithm
follows a greedy strategy to quickly enumerate c extreme time se-
ries vectors. It selects the column from A{1} := A which is least

Figure 4: 2D example for the convex cone view. Two basis vectors, t0
and t1, that contain pure, unmixed signals have been selected. They
are the extreme vectors of a convex cone. All mixed signals, i.e. data
points in the open-ended, coloured area, can be reconstructed by
conic combination of the generating extreme vectors.

explained by combinations of the vectors selected so far, i.e. the
column with the largest euclidean norm: argmaxp

∥∥∥A(p)
{1}

∥∥∥.
Before finding the next column, the influence of the selected col-

umn T (1) := A(p)
{1} is removed, forming the residual matrix A{2} :

A{2} := A{1}−T (1) S(1), where S(1) := AT
{1}T (1).

4.3 Working on a movie stream
For visualisation in real time we need to process a movie stream.
Now, A is a streaming matrix that grows by one row (image) per
time point. In terms of computational complexity, the convex cone
algorithm from [33] is in the order O(mnk), i.e. time consump-
tion depends linearly on the movie dimensions m and n. However,
repeatedly running the algorithm to obtain an updated solution at
every time point would require a much higher cost in the order
O(1nk+2nk+ ...+mnk).

Clearly, for fast processing in real time we should avoid costs
that grow with the time dimension. The idea is to utilise an incre-
mental PCA (IPCA) with constant cost per time point. IPCA serves
to buffer the movie stream, at each time point updating a matrix
Vk of the top-k principal components, such that the convex cone al-
gorithm is performed on the small, constant-size Vk instead of the
growing movie A.

Apart from dimensionality reduction to k� m,n principal com-
ponents, tasks such as selecting extreme vectors [33] and comput-
ing independent components [32] on imaging movies also benefit
from noise reduction by PCA. Signals that contribute to the vari-
ance are typically concentrated in the top principal components,
whereas noise components with lower eigenvalue can be cut off.

Thus, with appropriate processing by IPCA we can compute a
matrix Vk that is both noise reduced and has constant size at each
time point, allowing for robust and fast execution of the convex
cone algorithm on a movie stream. In the literature, a multitude of
IPCA algorithms is available [28, 29, 37, 41, 43, 15]. In particular,
Weng et al. [37] proposed the CCIPCA algorithm that has constant
computational cost of O(nk) per time point for updating the top-k
principal components. Several publications [40, 4, 19] have already
employed CCIPCA as a building block for incremental algorithms
that update the principal component matrix Vk with CCIPCA and
then perform the algorithm to be incrementalised, e.g. Independent
Component Analysis (ICA) [4]. Here, we rely on this principle to
incrementalise the convex cone algorithm.

A common way of computing PCA is by eigenvector decomposi-
tion of the covariance matrix. For large movie files, the dimension-
ality of the covariance matrix can, however, become inconveniently
high. In contrast, the CCIPCA algorithm avoids costly operations
on the covariance matrix. CCIPCA is an incremental approximation
to PCA that estimates each principal component as the mean of the
samples seen so far in the respective subspace, i.e. the first principal
component corresponds to the mean of the data vectors, the second



Figure 3: Illustration of the matrix factorisation framework. The movie matrix A is factorised into components with a temporal interpretation in T
and components with spatial interpretation in S. When spatial components are sparse and restricted to a single neural unit, the low-rank (rank-k)
reconstruction Ak provides a denoised version and visualisation of the original movie A.

principal component corresponds to the mean of the data vectors
after subtracting the projection onto the first principal component,
etc. For a convergence proof, see [42].

Briefly, CCIPCA is initialised with k random, orthogonal vectors
in Vk. At each time point i, one image A(i) arrives from the stream
and is used to update the r = 1, ...,k rows of Vk. For ease of notation,
let V :=Vk.

V {i}
(r) :=

i−1
i

V {i−1}
(r) +

1
i

A(i)A
T
(i)

V {i−1}
(r)∥∥∥V {i−1}
(r)

∥∥∥ (3)

Here, V {i}
(r) denotes V(r) at time point i. After updating the respective

V(r), its influence is removed from the current image A(i):

A(i) := A(i)−AT
(i)

V {i}
(r)∥∥∥V {i}(r)

∥∥∥
V {i}
(r)∥∥∥V {i}(r)

∥∥∥ (4)

This is repeated for all k principal components (Algorithm 1).
In practice, we preprocess the images A(i) by z-score normalisa-

tion, i.e. for each pixel we first subtract the mean µ and then divide
by the standard deviation σ , where both parameters are updated
incrementally.

4.4 Visualisation in real time
With the convex cone algorithm (Section 4.2) and the incremental
PCA (IPCA, Section 4.3) we now have tools at hand to process the
movie in real time and to provide a visualisation by low-rank ap-
proximation to the movie matrix. For a summary of the procedure,
see Cone updating (Algorithm 2): At each time point i, we up-
date the principal component matrix V with the current image A(i)
and then run the convex cone algorithm to find c extreme vectors of
the constant size, dimensionality-reduced k×n matrix V .

The convex cone algorithm selects extreme time series vectors
into matrix T , which are the pure glomerular signals, and it com-
putes the corresponding non-negative images in matrix S, which
indicate the spatial distribution of the signals.

The visualisation shown to the biologist when performing an ex-
periment is the low-rank approximation Ak = T S, which can be seen

as images in S being modulated by the time series in T . On a movie
stream, we obtain a low-rank approximation to each image A(i) by
projecting it onto the current version of the sparse matrix S at time
point i: A(i)S

{i}S{i}. Thereby, we incrementally construct a low-
rank approximation to the entire movie A (see also Figure 3).

Note that Update IPCA is peformed at each time point i us-
ing only the current image A(i) and the prior version of the prin-
cipal component matrix at time point i− 1, V {i−1}. Then, the
Convex cone algorithm [33] is performed on V {i}.

Algorithm 1 : V {i} = Update IPCA (V {i−1}, A(i), k , i)

for all r ∈ [0,k−1] do

V {i}
(r) := i−1

i V {i−1}
(r) + 1

i A(i)A
T
(i)

V {i−1}
(r)∥∥∥V {i−1}
(r)

∥∥∥
A(i) := A(i)−AT

(i)
V {i}(r)∥∥∥V {i}(r)

∥∥∥
V {i}(r)∥∥∥V {i}(r)

∥∥∥
end for

Algorithm 2 : S = Cone updating (A(m×n), c, k)

initialise V {1}
for all i ∈ [0,m−1] do

A(i) := z score normalise (A(i))
if i > 1 then

V {i} := Update IPCA(V {i−1}, A(i), k , i)
S{i} := Convex cone algorithm (V {i}, c )
Â(i) := A(i)S

{i}S{i} // low-rank approximation to image A(i)
end if

end for

For display, we apply a high-pass filter (0.025 Hz) to the images
Â(i) in order to remove long term trends such as dye bleaching dur-
ing the recording. This also compensates for level differences be-
tween glomeruli such that all glomerular signals can be displayed
using the same colour scale.



Implementation ms/frame complete in min
Java offline 134 68,15
Java online 65 39,26
GPGPU online 23 18,31

Table 1: Average computation time per frame and total computation
time (for all 11 movies).

4.5 Implementations
Reference implementations for the offline convex cone algorithm
from [33] and the incremental online variant proposed in this work
were written in Java and performed within the data pipelining envi-
ronment KNIME [1]. In the following, we refer to these implemen-
tations as Java offline and Java online, respectively.

Additionally, we consider an implementation of the in-
cremental online algorithm which takes advantage of
GPGPU (GPGPU online). In particular, the convex cone al-
gorithm was performed on the CPU, whereas z-score normalisation
and PCA were performed with GPGPU using the NVIDIA
CUDA [3] Basic Linear Algebra Subroutines (cuBLAS) 1 and the
CUDA Linear Algebra library (CULA) 2.

We used the TILL Photonics Live Acquisition (LA) Soft-
ware 2.0 [35] to configure experimental hardware, to determine ex-
citation light intensity and the focal plane of the recording. A soft-
ware interface provided by TILL Photonics allowed us to access the
movie stream directly, bypassing LA.

5 RESULTS AND DISCUSSION

In this section, the performance of the three implementations is
assessed (Section 5.1) which comprises evaluation of computing
times and a comparison between the results of the offline reference
and the online algorithm. Experiences from applying the approach
in a biological experiment are provided in Section 5.2, along with a
discussion of advanced experimental setups that require interactive
analysis of functional compartments of the AL.

5.1 Performance measures
5.1.1 Computing time
We evaluated computing time for each of the three implemen-
tations, Java offline, Java online and GPGPU online (see Sec-
tion 4.5) on reference data from [33]. The reference dataset consists
of 11 honeybee imaging movies. Movies vary slightly in image size
and recording time (≈ 170× 130 pixels, ≈ 3500 frames recorded
with variable frequency, in total ≈ 15 minutes recording time).

All time measurements were performed on an Intel Core i7 950
(3.07 GHz) machine with 4 GB RAM and a NVIDIA
GeForce GTX 285 (648 MHz, 1024 MB) graphics card on a 64 Bit
Windows 7 system. For the sake of comparability, running times for
Java offline and Java online do not include data transfer between
nodes in the KNIME workflow.

Computing times are reported in Figure 5 and Table 1. Replac-
ing the exact PCA from Java offline with the incremental approx-
imation (Java online) already lead to an approximately 1.5-fold
speedup. Running times were more variable for Java offline due to
different convergence times in the iterative PCA approach [39]. On
top of the algorithmical speedup, GPGPU online achieved another
approximately 2-fold speedup compared to the CPU implementa-
tion of the same algorithm in Java (Java online).

The speedup by GPGPU online is currently limited by initial
memory transfer overhead, but the parallelisation capabilities of

1http://developer.nvidia.com/cublas
2http://www.culatools.com/

Figure 5: Running times on 11 honeybee imaging movies of approxi-
mately 15 minutes length each (≈ 3800 frames recorded with variable
frequency). We tested the three implementations from Section 4.5:
Java offline, Java online and GPGPU online. Boxplots indicate me-
dian running time.

GPGPU ensure that running times scale favorably with future in-
creases in image size and resolution.

In summary, running times of GPGPU online are sufficient for
real-time application in biological experiments. Compared to the
offline reference implementation, improved running time can be
explained both by efficient computation with GPGPU and the in-
cremental approximation to PCA. Moreover, incremental computa-
tion has another major advantage in practice: Once enough data has
been recorded to detect all glomeruli, the incremental online algo-
rithm is already able to present a solution which will be refined fur-
ther as more data is acquired, whereas the offline algorithm would
only start computing.

5.1.2 Approximation quality

In the next step, the quality of the results computed by the in-
cremental algorithm (GPGPU online implementation) was evalu-
ated. Using the reference data from [33], we constructed glomeru-
lus maps of the AL by collapsing all spatial components from
matrix S into one image (Figure 6). Glomerulus maps provide
a quick overview of AL anatomy and they allow us to compare
whether the same anatomy could be recovered by the offline ref-
erence implementation Java offline and the incremental algorithm
(GPGPU online). In both cases we used identical parameter set-
tings (PCA k = 50, convex cone algorithm c = 50, Gaussian filter
with width 7 as preprocessing).

While glomerulus maps are not identical between the imple-
mentations, the incremental online algorithm can produce useful
glomerulus maps that provide visual orientation for the experi-
menter (Figure 6). We observed that quality of the results was lim-
ited by the incremental PCA that was very sensitive to imperfect
z-score normalisation in the online setting. Problems with incre-
mental z-score normalisation were caused by mean drifts during
the course of the movie stream. In future work, we plan to evaluate
alternative normalisation strategies, such as band-pass filters.



Figure 6: Top: Glomerulus maps for reference bees computed with the offline reference implementation Java offline (reproduced from [33]).
Bottom: Corresponding AL maps computed with the adaptive online algorithm (GPGPU online).

5.2 Biological experiment
Having evaluated algorithms and implementations on reference
data, we went into the lab to employ our software in an ac-
tual biological experiment. We used the experimental setup de-
scribed in Section 2 and the fastest of the three implementations,
GPGPU online, to record and process imaging movies from two
bees.

For a screenshot of our software, see Figure 7. During the ex-
periments, images are constantly updated, showing raw data, the
incrementally updated glomerulus map, and the low-rank approxi-
mation to the movie matrix. Figure 8 documents the development of
a glomerulus map (see Section 5.1.2) during the course of the exper-
iment. As we perform a semantic segmentation based on glomeru-
lus activity, more information is available at later time points, which
leads to a gradual buildup of the map. Experimental parameters and
the level of glomerular activity in the particular bee determine con-
vergence of the method. In this case, the glomerulus map converged
quickly towards its final state. All glomeruli were already present
in the map after about 1000 time points, while the additional itera-
tions improved the visual quality of the map. We have already given
an example for the low-rank approximated movie in Figure 1 that
shows glomerular activity patterns in response to an odor stimula-
tion. For another example, see Figure 9 where glomeruli exhibit
spontaneous background activity without odor stimulation when
the AL is apparently in an idle state. In humans, ongoing activ-
ity can cause sensory experiences in the absence of external stim-
uli. This has been analysed extensively in tinnitus research [36].
Results from [9] suggest that spontaneous activity could contain
information about the last odor the bee has smelled, i.e. a sort of
short term memory. Being able to respond to patterns that occur
in spontaneous background activity offers new possibilities to the
experimenter, such as performing manipulations conditional on the
presence of certain patterns, addressing the perceptual role that on-
going activity may play in neural networks.

From a biological point of view, real-time analysis of calcium
imaging movies allows for advanced experimental setups that re-
quire interactive analysis of functional compartments of the AL.
This comprises experiments where neural units can be selected on-
line based on their past activity, or in fact based on their instanta-
neous activity. This will allow us to address one of the basic ques-

tions in neuroscience: How does ongoing brain activity influence
the way that sensory input is processed? If an odor is given at a
point in time when the spontaneous activity resembles the combi-
natorial code of that odor, does that facilitate that particular pattern?
Conversely, does a complementary spontaneous activity pattern act
as a negative filter on incoming sensory experiences? From a hu-
man perspective: If spontaneous activity in the brain is already sim-
ilar to ”smelling a rose”, does the real rose become more vivid?

5.3 Supplementary Material
For a video documentation of an imaging experiment refer to the
movies in the online supplementary material that also comprises all
source code used in this work. Note that our software requires TILL
Photonics LA 2.0 [35] for configuring experimental hardware.

6 CONCLUSIONS AND OUTLOOK

We have introduced software for visualising activity patterns in cal-
cium imaging movies of the honeybee AL. Due to an adaptive al-
gorithm and efficient implementation, visualisation results can be
obtained in real time already during the course of an experiment.
This is a significant advantage over our previous offline implemen-
tation [33] and all other software tools in the field [6, 22, 7] that are
only suitable for post-hoc data analysis after the experiment.

Visualisations include an incrementally updated glomerulus map
(Figure 8) that provides orientation for the experimenter, allowing
to target specific glomeruli based on their position in the AL. A
low-rank approximation to the calcium imaging movie highlights
activity patterns (Figures 1, 9).

This enables e.g. targeted pharmacological manipulations of
glomeruli that responded to an odor. Furthermore, decisions can be
based on the occurrence of patterns in spontaneous activity. With
our adaptive algorithm and GPGPU-based implementation we pave
the way towards novel, interactive experiments in honeybee neuro-
science.

While the algorithm originates from a data-specific mixture
model, this does not limit its wider applicability. Apart from honey-
bees, we have already applied our method to similar imaging data
from the mosquito AL. The convex cone algorithm may also find
application in other domains, e.g. data mining [17] or general sci-
entific data analysis [20] with column-based matrix factorisations.



Figure 7: Screenshot. Left : Raw movie (fluorescence 340/380 nm), Middle: Incrementally updated glomerulus map. Right: Low-rank approxi-
mation to the raw movie. We employ a min-max (blue-red) colour scale, where min and max are updated over the course of the experiment.

Figure 8: Incremental map construction for one of the bees processed online with our imaging system. Parameter settings: k = 50 principal
components for CCIPCA, c = 50 for the convex cone algorithm. Principal components were spatially filtered with a Gaussian kernel (width=9).

Figure 9: Consecutive images from one one of the movies processed online with our imaging system. Top: raw data (ratio 340/380). Bottom:
processed. Glomeruli exhibit spontaneous background activity.
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