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Abstract. We propose a new method for detailed insect pose estima-
tion, which aims to detect landmarks as the tips of an insect’s anten-
nae and mouthparts from a single image. In this paper, we formulate
this problem as inferring a mapping from the appearance of an insect
to its corresponding pose. We present a unified framework that jointly
learns a mapping from the local appearance (image patch) and the global
anatomical structure (silhouette) of an insect to its corresponding pose.
Our main contribution is that we propose a data driven approach to
learn the geometric prior for modeling various insect appearance. Com-
bined with the discriminative power of Random Forests (RF) model,
our method achieves high precision of landmark localization. This app-
roach is evaluated using three challenging datasets of insects which we
make publicly available. Experiments show that it achieves improvement
over the traditional RF regression method, and comparably precision to
human annotators.

Keywords: Insect pose estimation - Landmark detection - Random
forest

1 Introduction

Automated image based tracking and pose estimation receives increasing inter-
ests of both biology and computer science community, as its developments enable
remotely quantify and understand individual behavior previously impossible [1].
Therefore, automatic insect tracking techniques have been an research topic in
biological image analysis [2-4]. The movements of harnessed insects’ bodyparts,
such as antennae or mouthparts, provide information for behavioral study. Moti-
vated by latest behavioral studies in biology [5], we aim to localize the landmark
as the tips of bodyparts (e.g. a bee’s antennae or tongue shown in Fig.1) to
provide detailed pose information.

In contrast to most existing works that aim at estimating the center of mass
(position), detecting the detailed body posture and position of appendages (pose)
is more challenging. Most existing tracking/pose estimation algorithms are not
applicable for our task, due to a number of specific challenges and constraints:
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— Occlusion. Insect body parts are highly clustered due to their small sizes,
thus self occlusions are prevalent in insect body parts (Fig. 1b). As a result, it
is difficult to estimate the pose.

— Unstructured appearance. Insect body parts have dark appearance, similar
shape and no texture. Moreover, our image data is a set of 2D videos, and
does not contain depth information. Their unstructured appearance makes
them difficult to differentiate.

— Complex motion. A varying number of body parts are observed in consec-
utive video frames (e.g. the bee tongue does not appear in Fig. 1c), thus we
have incoherent motion paths and the trajectories have long tracking gaps.
Motion cues furthermore provide only little information to predict the current
pose.

In the videos to be analyzed, the insect will be fed with sugar water by a stick
and it may respond by extending its tongue. It is required to infer the presence
of the tongue before localizing it. Similarly, an antenna may be absent when it
moves above the head (Fig. 1d) or suffers from heavy motion blur (Fig. le). As
pointed out in [6], the state-of-the-art tracking algorithms do not perform well
when applied to our task. In [6], a track linking approach was used for estimating
landmarks in merge conditions, i.e. the tips of two body parts are bounded
within the same bounding box (BB). In contrast to our fully automated method,
the approach in [6] is a multi-frame pose estimation framework, and it requires
additional human intervention to rectify probable erroneous hypotheses at some
frames. In this paper, we formulate this problem as inferring a mapping from
the appearance of an insect to its corresponding pose. We focus on single-image
pose estimation, because this strategy could further improve the performance of
a multi-frame framework as per-frame initialization and recovery.

Some related pose estimation techniques have been proposed, such as model
based methods [4,7] and Random Forest (RF) regression methods [8]. There are
some recently emerged studies on pose estimation of humans [9], heads [10], and
hands [11], as well as medical image analysis for localization of landmarks [12,13].
The success of these RF regression methods comes from two factors. One is the
discriminative power of RF model. The other factor is the strategy of localizing
landmarks by estimating its relative displacements with regards to other image
patches, making it suitable for highly structured objects but not for our case.
For example, these relative displacements do not change dramatically in medical
images in 2D grids. Similarly, relative positions between joints of body parts are
relatively stable for humans, heads or hands in 3D coordinates, so that these
methods work well with depth images [9-11]. Our task is more challenging, due
to the large variance of relative position between landmarks in 2D grids. Besides,
it is difficult to infer the configuration (pose) with varying number of landmarks
based on local appearance.

To address these aforementioned issues, we present a unified framework that
incorporates the geometric model as the prior, and utilizes the RF model to
estimate the possible positions of body part in pixel precision. Under this frame-
work, the maximum a posteriori (MAP) estimation is found as the landmarks
positions.
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Fig. 1. Example frames of various poses and the outputs by our method. The tips of
three body parts are marked in different colors: a blue circle represents for the left
antenna, red for the tongue and green for the right antenna. (a) all body parts are
present; (b) the tongue is partially occluded by the right antenna; (c¢)—(e) some body
parts are absent; (f) in some rare cases, the antennae move backwards. (Color figure
online)

The main contributions of our work are:

— To the best of our knowledge, the proposed framework is the first method for
detailed insect pose estimation from a single frame.

— This is an exemplar of random forest based pose estimator with data-driven
regularization. Given the landmark candidate positions predicted by Ran-
dom Forests, we propose a data-driven approach to adaptively weight and
select precise landmark positions, incorporating probable global structure of
the anatomy to be estimated.

— We benchmark our approach on a set of large challenging datasets and make
it publicly available for future studies.

2 Related Work

Animal tracking. Recently, a number of tracking techniques emerged in biology
for tracking various types of animals [1]. Particle filtering is used in some insect
tracking algorithms to maintain the identity of objects throughout a whole video
sequence [2,14,15]. However, as pointed out in [16], particle filtering is often only
effective for short tracking gaps and the search space becomes significantly larger
for long gaps. Similarly, data association techniques that have been applied in
[17] are also not able to tackle the tracking gaps. To develop a more efficient algo-
rithm, some studies incorporate higher level attributes that characterize specific
insect motion into a learning diagram. In [18], overlapping larvae are separated by
assigning object labels to each pixel, given user-annotated examples of encoun-
ters of two larvae as boundary conditions. For modeling occluded spatiotemporal
regions, dozens of examples of encounters of two larvae need to be selected. A
behavior model is proposed in [14] by firstly abstracting local motions and by
modeling the behavior as a dynamical model on such local motions. However,
the Markov model used in [14] for behavior limits its applications to some latest
behavioral studies which require multi-target tracking, because the number of
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parameters to specify the transition and observation models is exponential in
the number of moving objects.

Pose estimation. While some animal tracking algorithms also provide some
information about pose (e.g. orientation of the animal) based on contour models
[4], few works have been done for directly addressing the pose estimation prob-
lem. Given a rough initial guess of the pose parameters, a cascaded pose regres-
sion is proposed to progressively refine the pose estimation until it converges [7].
Our task is more challenging in that we have to address the self-occlusion prob-
lem. Moreover, instead of an iterative solution, we present a one-pass algorithm.
Different from [6] and [7], our algorithm does not require an initial guess of the
target position.

Random Forest based pose estimator/landmark detector. Random
Forests (RF) [19] describe an ensemble of decision trees trained independently
on a randomized selection of features. Recent works on Hough Forests [8] have
shown that objects can be effectively located by training RF regressors to predict
the position of a point relative to the sampled region, then running the regressors
over a region and accumulating votes for a likely position. In these studies, the
final estimation is found as the center of the densest vote mass by mean shift [20].
If the objects are occluded or missing on the test image, the candidates of the
target point returned by the trained RF regressor will contain outliers. There-
fore, it is crucial to remove such outliers to guarantee a reasonable estimation
under the condition of occlusion. In [10], the authors assume the pose parameters
stored in a single leaf will follow a Gaussian distribution, and discard the leaves
with high variances by simple thresholding when performing mean shift. Simi-
larly, the hand pose estimator in [11] is refined by a mean shift based method
to recover the poorly detected joints when they are occluded or missing. Besides
the occlusion problems our input images have also less informative visual fea-
tures for disambiguating objects with similar appearance. As pointed out in [12],
landmark detectors based on classification may produce highly interchangeable
responses due to very similar local appearance patterns of different anatomical
body (sub)parts. Further disambiguation is required that incorporates the global
structure of objects. Existing works on medical image analysis for localization
of landmarks exploit global landmark relation represented by either repetitive
anatomical patterns [12] or shape models [13] for regularization. In our task,
however, such stable global landmark relation is not applicable. In this paper,
we propose a method to learn the global landmark relation from training data
based on a graph based geometric model.

3 Problem Statement

In this paper, we aim to estimate the pose X = {x"|1 < n < N,Vx™ € R} from
a single image I, where the state of part n is defined as x™ = {y”, 6", s",t"}.
y™ is the position of the landmark in our defined coordinate system as shown
in Fig.2, " is the angle, and s™ is the scale. Specifically, t" = {0,1} is the
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Fig. 2. The coordinate is defined by setting the centroid of head as the origin o, the
line from the origin towards the mouth center as the x-axis. The head centroid and the
mouth center are assumed to be known.

state indicating the presence of part n. The images are acquired from the top
view of observed individual insects. Six example frames of an insect images with
the outputs of our method are shown in Fig. 1 to visualize various insect poses.
Taking a bee for example, we aim to estimate the tips of its three body parts:
left antenna (blue circle), tongue (red circle) and right antenna (green circle).
Figure 1b illustrates that these body parts are highly clustered, and self-occlusion
usually occurs. Body parts may be present or absent. The antennae usually move
forwards while occasionally backwards.

4 Combined Landmark Position Proposals

To map the image I to the corresponding pose X is difficult because the map-
ping from visual input to poses is highly complicated, our framework imposes
constraints to the solution space based on two cues: local appearance and global
structure. On one hand, we use RF model for predicting the class label ¢ (¢ = {1:
right antenna, 2: left antenna, 3: tongue} and 0 as background.) at pixel preci-
sion based on patch appearance. On the other hand, we propose a method based
on Pictorial Structure (PS) model [21,22] to learn the global structure. We do
not make any specific assumption about the anatomical model of an insect’s
head (which was done in [6]), instead we use a common assumption that holds
for generic objects: for the same type of insects, they have similar appearances
when they are in similar poses. The global structure of an insect is represented by
its silhouette, which is a d-dimensional datapoint f € ®¢. Based on this assump-
tion, it is expected that these datapoints will lie on or near a low dimensional
manifold, in which the neighborhood of each datapoint is preserved. The likeli-
hood of global structure of the unknown pose is learned by the nearest neighbor
(NN) method, and used as a constraint to regularize the mapping estimated by
the RF model.
Given the image I, the posterior probability p(X|I) is computed as

p(XI[I) < p(I[X)p(X) (1)

where p(I|X) is the likelihood of the image evidence given a particular pose,
and the p(X) corresponds to a tree prior according to the PS model. Both terms
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are learned from training data. Specifically we propose a method to adaptively
construct the graph for the insect geometric model.

4.1 Geometric Model

Typical PS models assume that, an object can be decomposed into parts con-
nected with pairwise constraints that define the prior probability of part config-
urations. As we aim to estimate the tips of body parts appended to the insect’s
head, we build a complete graph based on the pairwise relations between tips
as well as each tip x™ and the centroid of the head x°. Then the PS model
G = (V,E) is learned from the training data by computing the minimum span-
ning tree of a graph. The resultant F is the set of pairs of each tip and the
centroid, and the centroid is the root. Based on the assumption that part likeli-
hoods are conditionally independent [21], Eq. (1) is factorized as

p(X|I) o p(x Hp rlx") [ e %)) (2)

n=0 (id)EE

where p(r"|x™) is the likelihood of position based on local appearance r™. The
joint probability p(x‘,x7|®;;) indicates the spatial relations between x* and x7
with parameters @;;.

Although we model the global structure as the form of Eq. (2), it is different
from typical PS models that assume all parts are present. As we focus on pose
estimation rather than detecting the insect head, x° is assumed to be known. To
represent the global structure of a pose, we extract a feature vector f € R?¢ for
each image combining five types of silhouette features: Edge Histogram Descrip-
tor [23], the Geometrical Feature [24], the Shape Signature Histogram [25], the
Fourier Descriptor [26] and the Hu moments [27]. The dimensionality of f is
d = 88, thus no dimensionality reduction is required. For a new visual input
represented by silhouette features f of image I, we find its K neighbors in the
visual feature space and construct the neighborhood K in the pose space.

As the nodes of landmarks of G are all leafs, and the likelihood of individ-
ual landmarks are conditionally independent, the node representing x™ will be
removed if the frequency of the presence of x® € K is lower than a threshold
value 7. The new graph G* = (V*, E*) remains a tree structure. Based on G*,
Eq. (2) is changed to

p(X[I) o< [T pe"[x")p(x", x"|no) 3)
nekE*

We assume that &,,9 takes the form of unimodal Gaussian distribution over
y",s™, and the von Mises distribution over ™. Thus, the model parameters
(ty, X9), (ug,0y) and (ug,oy) are learned from the training samples in K. The

joint probability is computed as

p(x", x| Pro) = N (y" |1y, Z9)IN (8" |1, o) M(0" |y, o5 (4)
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4.2 Random Forest Based Classifier

We use RF model to compute the likelihood of landmark position based on local
appearance evidence p(r"|x™). Taking bee images for example, each datapoint in
the training dataset D is an image patch (I(y;), where y; is the image coordinate)
sampled in the following way: We randomly sample the patches with centroids
located along the contour (see the light blue contours in Fig. 3) as examples of
corresponding class ¢ and the patches with centers inside or outside the contour
as examples of background. A class labels ¢ is assigned to every datapoint. As
shown in Fig.3a, a class label ¢ € [0, N] of each patch (colored square) is the
index of its closest tip (colored circle) along the contour: {1: right antenna, 2:
left antenna, 3: tongue} and 0 as background. A similar sampling strategy is
applied for ant images, as shown in Fig.3c. N = 3 for a bee and N = 2 for an
ant. We classify left or right antenna to balance the distribution of classes, since
the samples of class ¢ = 3 are much fewer than the class ¢ =1 or ¢ = 2.
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Fig. 3. The image sizes of Dataset A, B and C are (a) 275 x 235, (b) 350 x 320 and
(c) 415 x 420 in pixels, respectively. The patch size (denoted by a square) is 16 x 16
pixels. The images have been scaled for better visualization.

To train the forest R, we randomly extract patches from D and use the
information gain criterion to select the split function. The split function of a node
is represented by a simple two-pixel test as in [9]. The forest R is constructed,
with each leaf L; created when the maximum depth is reached or a minimum
number of patches are left. Each leaf stores the patches from D that end here.
Each patch of a given test image I passes down a tree and ends in a leaf L;(y;),
which gives the class probabilities p(c|I(y;)). A class label ¢ is assigned to each
pixel with the highest p(c|I(y;)), and p(r|x°) is set to be 1. Specifically, we set
p(r€|x°) = 1,Ve = 1,2, since the RF model may not correctly differentiate the
left or the right antenna. We will address this problem by solving Eq. (3).

4.3 Final Landmark Localization

According to Eq. (3), the posterior probability of configuration p(X|I) is com-
puted as the product of the posterior probability of the landmarks n € E*. We
construct a response image by computing the posterior probability for each of
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these landmarks at an image coordinate. To localize a landmark, a simple strat-
egy by selecting the pixel with highest probability may fail due to the outlying
pixels. Instead, we use mean shift [28] with a flat kernel to find the modes of
probability mass for each part, and assume that it lies in the connected compo-
nent that contains the landmark. Finally, the landmark is simply estimated as
the furthest pixel within the connected component.

5 Experiments

As pointed out in [6], the state-of-the-art tracking algorithms do not perform
well when applied to our task. In this experiment, as our method combines the
strength of the traditional regression forest [8] and Pictorial Structure model, it
is compared with the methods directly applying these two concepts.

5.1 Datasets and Evaluation Metric

In this experiment, our method was evaluated on three challenging datasets of
individual insects (i.e. bees and ants) during a behavioral experiment, among
which two datasets of individual bees are recorded in different light conditions
or other experimental settings. For example, Dataset A contains images from
a video recording a bee in different trials of experiments, while Dataset B is of
various bees in different trials. The image data comes from our biological partner:

— Dataset A (bee): 5633 training images, 2788 testing images
— Dataset B (bee): 3625 training images, 9003 testing images
— Dataset C (ant): 215 training images, 238 testing images

The spatial resolution is 39 pixels per um for bee images and 22 pixels per
pm for ant images. More details about the three datasets are shown in Fig. 3.

As our method directly estimates the position of landmarks, it does not pro-
duce bounding box (BB) hypotheses. Some popular pose estimation metrics,
such as average precision of keypoints (AFK) [29], require ground truth BBs for
evaluation, thus not suitable for our method. Results of our method are com-
pared with the two aforementioned methods as well as ground truth landmark
positions, which are manually annotated by a human. We compute the rate of
false positives (FP) and false negatives (FN) of inferring the presence of each
landmark to validate the adequacy of our geometric model, e.g. a FP of the
tongue indicates that the tongue is inferred to be present while it is absent actu-
ally. The accuracy of localization is measured by the average Euclidean distance
in pixels between the results and the groundtruth.

5.2 Implementation Details

For learning the geometric model, we found K = 100 nearest neighbors to con-
struct K in Sect.4.1. We construct 10 trees for the RF and each tree has the
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depth of 5. Each tree converges until the maximum tree depth is reached or the
amount of remaining patches is less than 50. The bandwidth of meanshift kernel
is set as 0.05 for all images.

The complexity of the algorithm is measured by the processing time. For
constructing a random forest, we use the code of Hough Forest [8]. Using a
Matlab implementation of our method, testing takes around 4 seconds per frame
on an Intel i7 machine with 8 GB RAM. It takes about 1s for RF classification,
and 3s for computing Eq. (3) and final landmark localization.

5.3 Results and Discussion

For quantitative evaluation, Table1 shows the average position error (pixels)
in three datasets. The average position errors of each part are merely 10.2, 5.3
and 18.0 pixels, respectively. They are rather small compared to the size of an
insect head (shown as Fig. 3). The position error on Dataset C is larger than the
others because ant images have more severe motion blur (e.g. the right antenna
in Fig. 5f), and the exact positions of landmarks are ambiguous.

Table 1. Quantitative evaluation on three datasets.

Datasets | Position error (pixels) | FN (%) | FP (%)
A 10.2 0

B 5.3 0.2

C 18.0 0

To validate the advantage of our method over RF and the typical PS model,
we compare the three methods on Dataset A, which is the most challenging one
due to the complex background. The typical PS model in Eq. (2) assumes that
all landmarks are present, and the spatial relations between parts are learned
from all the training samples. As shown in Table 2, this method produces a high
FP rate when inferring the presence of the tongue. With the learned geometric
model in Eq. (3), our method achieves a significant improvement over both the
PS model and the RF regressor in terms of both the localization precision and

the ability to disambiguate different objects.

Table 2. Comparison of three methods on dataset A.

Methods | L. antenna Tongue R. antenna
pos. error | FN(%) | FP(%) | pos. error | FN(%) | FP(%) | pos. error | FN(%) | FP(%)
Ours 10.2 4 0 14.9 11 0 8.4 3 0
PS 17.6 2 0 18.4 4 13 16.7 4 0
RF 24.5 2 0 26.3 26 44 25.3 8 0
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Figure4 shows the localization errors of each landmark from Dataset A for
a more detailed discussion. We show nine image sequences where either the RF
or the PS method produces large localization errors, while our method achieves
very low position errors in most of the frames.
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Fig. 4. Quantitative results by our method (green), RF regressor (blue) and PS model
(red). (Colour figure online)

We visualize more results in Figs.5 and 6 to discuss the advantage of our
method in more details. As shown in Fig.5a and e, our method successfully
localizes the two antennae even in complex background, while the RF regressor
fails to distinguish the left antenna from the noise of background and thus pro-
duces high position errors. Besides, the RF regressor may incorrectly recognize
an antenna as the tongue (as shown in Fig. 5¢—d), indicating a high FP rate
of the tongue in Table2. In contrast, our method is able to disambiguate the

tongue and the right antenna even when they are very close to each other (see
Fig.5a).
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Fig. 5. Qualitative results by our method (the first row), RF regressor (the second
row) and RF classification (the bottom row).
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Fig. 6. Qualitative results by our method (the first row), PS model (the second row)
and RF classification (the bottom row).
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Figure 6 shows the advantage over typical PS models in inferring the number
of landmarks present. Without inferring the presence of a landmark, it will be
localized at some position. A naive approach for rejecting the potentially incor-
rect position is that a landmark falling inside the region of insect head will be
rejected, e.g. the tongue has been rejected in Fig. 6a and d. But it cannot deal
with more general cases as shown in Fig. 6b and e. Moreover, the spatial relations
between parts learned from all training data provides little information in our
case, since the possible positions of antennae in all training images are nearly
uniformly distributed. As shown in Fig.6a and d, the left antenna is incorrectly
located in the right antenna. In contrast, our method is capable of inferring the
absence of a landmark by the learned geometric model.
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Fig. 7. Comparison between human annotators and our method: the means and stan-
dard deviations of the Euclidean distance between the landmark positions of human
annotator A vs. the results of our method (blue), human annotator B vs. our method
(green) and between human raters only (red). (Colour figure online)

As for the running time of the three methods, our method is the fastest. The
PS model takes 8s for computing Eq. (2), while ours only takes 3s for Eq. (3).

To validate that the localization precision of our method are comparable
to human annotators, we also compare the pixel error between two annotators
and our method. The means and standard deviations of the Euclidean distance
between the landmark positions of human annotator A vs. the results of our
method (blue), human annotator B vs. our method (green) and between human
raters only (red), are illustrated in Fig.7. The results show that the estimation
of our method is comparably accurate as human annotators in most cases.

6 Conclussion and Future Work

In summary, we presented a new algorithm exploiting local appearance and
global geometric structure of an insect to infer its pose from a single image. Our
method is a data-driven approach to incorporate geometric constraints. The
model parameters are learned from the training data. Our method addresses
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the issue of interchangeable estimations by solely using RF model for landmark
detection, and presents nice interplay between RF and PS model. The perfor-
mance of our method has been validated on three large challenging datasets of
different types of insects, which achieves comparable position accuracy to that
of human annotators.

Future work includes incorporating our method into a multi-frame pose esti-

mation framework. Given the high accuracy of pose estimated based on single
frames by our method, merging it into an interactive tracking framework such
as [6] could result in a new approach for insect behavioral analysis.
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