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ABSTRACT

Automatic tracking of the movement of bee’s antennae and
mouthparts is necessary for studying associative learning of
individuals. However, the problem of tracking them is chal-
lenging: First, the different classes of objects possess similar
appearance and are close to each other. Second, tracking gaps
are often present, due to the low frame-rate of the acquired
video and the fast motion of the objects. Most existing in-
sect tracking approaches have been developed for slow mov-
ing objects, and are not suitable for this application. In this
paper, a novel Bayesian framework is proposed to automati-
cally track bees’ antennae and their mouthparts. This frame-
work incorporates information about their kinematics, shape,
order and temporal correlation between neighboring frames.
Experimental evaluation demonstrates the effectiveness and
efficiency of the proposed framework.

Index Terms— multi-target tracking, bee antennae and
mandibles and proboscis, splitted detections, merged detec-
tions

1. INTRODUCTION

Honeybees are a powerful model to study the neuronal mech-
anisms of learning and memory. Associative learning of indi-
vidual, fixed bees can easily be studied by classical condition-
ing, where an odorant is paired with a sugar reward. Whether
a bee has learnt the association between odorant and sugar
is usually assessed by its proboscis extension reflex [1]. The
proboscis is the tongue of a bee, and is extended reflexively
when the bee is stimulated with sugar water or with a pre-
viously conditioned odorant. We imaged honeybees’ heads
during a learning and memory task and analyzed the move-
ment of their proboscis, antenna and mandibles (each object
is shown in Fig. 1a). Automatic tracking of the movement of
bee’s antennae, mandibles and proboscis provides quantita-
tive information about antenna and proboscis movement, thus
enables a more fine-grained analysis of learning and mem-
ory performance and opens the way to new questions in be-
havioural insect studies. Tracking of insects antennae and
mouthparts is a difficult problem, due to the low frame-rate of
the acquired video (30 frames/s), motion blur resulting from

the high speed of movement, and the complicated motion
model of the bee’s antenna. In this paper, a Bayesian-based
framework is proposed to automatically track the movements
of individual bee’s antennae, mandibles and proboscis.

Fig. 1. Example of bee video and the segmented bee head.

Only few methods addressing this problem are reported in
the literature. A method for antennae tracking is proposed in
[2], but it requires initial manual labelling for each video. In
recent work [3], the movements of antennae only are tracked
by selecting the two largest clusters, but mandibles and pro-
boscis are not considered. Some research on tracking bees
uses particle filtering to maintain identity through video se-
quence [4], which is not applicable here. As pointed out in
[5], particle filtering is often only effective over short track-
ing gaps and the search space becomes significantly larger
over long gaps. The main problem of our data is that the
tracking gap of each moving object is relatively long given
the low frame-rate. The antennae move rather fast, and they
cannot be detected when they move above the bee’s head due
to the low contrast. The mandibles and proboscis move in-
frequently, thus their tracklets are short. The resulting gaps
incur an issue similar to long gaps in that the frame-rate of the
recorded videos is usually low and thus the potential matches
on the far side of the gap are difficult to predict. Moreover, the
detection errors produced by typical moving object detectors
such as false, missing, splitted or merged measurements in-
crease the difficulties of assigning correct identity and main-
taining identity.

In this paper, we propose a novel tracking framework
that incorporates prior information about the kinematics and
shapes of antennae, mandibles and proboscis. The overall
tracking framework consists of three levels: object level,
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frame level and temporal level. At object level, a Naive
Bayesian Classifier is used to compute the prior probability
that an object is identified as antenna, mandibles or proboscis.
At frame level, the identification of each object is assigned
according to the sequence in which the objects are arranged,
and the probability that the assignment corresponds to its
ground truth is computed based on the prior probability and
the prior information of all the objects’ order. The frames
with the highest probability are treated as benchmarks. The
final assignment is fulfilled by frame-to-frame linking be-
tween benchmarks and their temporal neighbours. As a
result, the transitive update of the assignment generates the
most probable identifications. The experimental results show
that the proposed framework is capable of reliably detect-
ing and tracking individual bee’s antennae, mandibles and
proboscis.

2. PRELIMINARIES

Each individual bee is imaged using a ”FMVU-03MTM/C”
firefly camera which is capable of acquiring a video at
30 frames/s, in order to record the head with proboscis,
mandibles and antennae. Stimulus delivery (odour) is mon-
itored by lighting an LED within the field of view of the
camera, so that data analysis can be done relative to stimu-
lus delivery. Sixteen bees are harnessed on a platform, with
their head in fixed positions, but able to move antennae and
mouthparts freely. For each trial, the position of the platform
is adjusted manually. The camera is set on top of an individ-
ual bee. The camera is fixed, and the platform where the bees
are fixed is moved when changing a new bee for recording.
Unlike the high speed camera used in [6], which is capable
of capturing video at 500 frames/s, the frame-rate of the ac-
quired bee movies in this paper is only 30 frames/s. Although
it would be possible to record with a high speed camera, we
aim at developing a framework that uses affordable cameras
such as web-cam or consumer level cameras, which keeps the
data volume low. Each video is about 30 minutes long and
consists of four trials, for which each has 16 individual hon-
eybees. Thus, a single video to be processed is approximately
30 s and the frame size is 480× 640 pixels.

To extract the information of the relative position of each
object, it is required to set up the coordinate system. As
the base is not static during the changing of bees, the scene
change is detected to ensure a static background before the
actual tracking procedure starts. After the background has
stabilized, the mean of the first 10 frames is used to estimate
the bee head’s position. After thresholding, a dark region with
the greatest circularity value and an area within the range of
[1000, 8000] pixels is selected as the segmented bee head.
Then, the position of the mandibles is estimated as the most
left point of the segmented bee head (as shown in Fig. 1b).
With the mandible position (marked as point ”o”) and the cen-
troid of the bee’s head (marked as point ”c”) estimated, a new
coordinate system is established by using the mandible as the

origin, line ”oc” as x axis and the line orthogonal to ”oc” as y
axis.

3. TRACKING FRAMEWORK

3.1. Object detection

For detecting moving objects, Gaussian Mixture Model
(GMM) background modelling [7] is used. The object de-
tector generates an unordered set of false measurements
(e.g. shadows, reflection and bee’s legs), missing measure-
ments (motion blurred antennae or antennae above the head),
splitted measurements (splitted bounding boxes of the same
antenna), merged measurements (one bounding box includ-
ing two or three objects) as shown in Fig. 3, which make the
following tracking task difficult. Therefore, pre-processing
operations include shadow removal [7], exclusion of unde-
sired objects by incorporating position information, merging
splitted measurements, and splitting merged measurements.
These pre-processing operations greatly reduce the undesired
detection measurement, but some false, missing, splitted and
merged measurements may still remain. Thus the tracking
algorithm is required to tackle this problem.

3.2. Appearance Model

A feature vector fi,j = [fi,j(1), . . . , fi,j(7)]T is extracted for
the ith object zi,j , i = 1, . . . , nj in the jth frame Zj , j =
1, . . . , N to indicate its position, shape, texture and speed,
where nj is the number of the detected objects in Zj and N
is the number of frames. To represent the position of each
bounding box, the vertices nearest or furthest to point ”c” are
extracted. Whether point ”o” is within the bounding box is
also included in the feature vector to identify the object, as
the bounding box of an antenna seldom includes point ”o”.
The shape of each object is indicated by its area. Also the
top-hat filter is used as a ridge detector to identify an antenna:
after thresholding and grayscale reversion, the top-hat filter is
performed on the image block within its bounding box. How-
ever, an antenna with severe motion blur cannot be detected
by the top-hat filter (e.g. the left antenna in Fig. 1a). The mo-
tion vector, which is the relative displacement between each
bounding box in its previous frame and current frame is esti-
mated by the template matching method [8]. The seven fea-
tures used to represent the appearance model are: distance
between the nearest vertex and mandible fi,j(1), distance be-
tween the furthest vertex and the tongue line fi,j(2), area of
the object fi,j(3), motion vector (fi,j(4),fi,j(5)), area of top-
hat filtered output fi,j(6), and a logical variable indicating
whether the mandible is within the bounding box fi,j(7).

3.3. Object Level

The objective of the proposed tracking algorithm is to assign
each object zi,j with labels li,j , where li,j ∈ {1:right antenna;
2:right mandible; 3:proboscis; 4:left mandible; 5:left antenna;
6:false positive}.

4113



At object level, the probability P (ci,j |fi,j) of each object
zi,j for each class ci,j (where ci,j ∈ {1:antenna; 2:mandible;
3:proboscis}) is computed given its feature vector fi,j . Among
the seven features, fi,j(1), . . . , fi,j(3) are assumed to follow
a Gaussian distribution whose means and standard devia-
tions are learned from the training set, i.e. a set of annotated
objects. Let us pack the three features into a vector and de-
note it as f̄i,j = [fi,j(1), . . . , fi,j(3)]T . Thus the conditional
probability is

P (ci,j |̄fi,j) =
1

(2π)3/2|Ci,j |1/2
exp[−1

2
(̄fi,j − ui,j)

T

· C−1
i,j (̄fi,j − ui,j)]

(1)

where ui,j and Ci,j are the mean vector and the covariance
matrix of f̄i,j , respectively.

The other features fi,j(4), . . . , fi,j(7) are modeled as dis-
crete variables with constant prior probabilities assumed to be
known. The class-conditional probability density function of
a feature fi,j is computed based on Bayes’ rule

P (ci,j |fi,j)
=P (ci,j |̄fi,j , fi,j(4) ∈ Φ4, . . . , fi,j(7) ∈ Φ7)

=
P (ci,j |̄fi,j)P (fi,j(4) ∈ Φ4|ci,j)

P (̄fi,j)P (fi,j(4) ∈ Φ4)

·
7∏

p=5

P (fi,j(p) ∈ Φp|ci,j)
P (̄fi,j , fi,j(4), . . . , fi,j(p− 1))P (fi,j(p) ∈ Φp)

(2)
where Φp is the set that represents the constraint of fi,j(p),
and the conditional probability P (fi,j(p) ∈ Φp|ci,j = k) is
assumed to be known and set as a constant, e.g. P (fi,j(6) >
0|ci,j = 1) = 1, since an antenna must have top-hat filtered
pixels, while P (fi,j(6) > 0|ci,j = 3) = 0.05, since the prob-
ability that a bounding box of proboscis may include anten-
nae or its reflection, which may also pass through the top-hat
filter, is rather low. The other unknowns of Eq. 2 can be ob-
tained by solving the equations combining the constraint that
each object must be antenna, mandible or proboscis:

3∑
k=1

P (ci,j = k|fi,j) = 1 (3)

Given estimates for P (ci,j |fi,j), a Naive Bayesian Clas-
sifier is performed for each object to decide which class it
belongs to according to the highest conditional probability.
However, a high accuracy is not guaranteed using this ap-
proach due to the similarity of the shape of different classes,
and in some cases different objects possess similar position
and speed. The proposed framework improves the tracking
results by incorporating information of the sequence in which
the objects are ordered in the same frame (frame level) and the
temporal correlation between neighbouring frames (temporal
level).

3.4. Frame Level

At frame level, li,j is assigned to zi,j based on its esti-
mated class ci,j in the jth frame Zj incorporating the ap-
pearance information of a bee, i.e. the position and the
order of zi,j . As a result, an ordered collection Lj =
{l1,j , . . . , li,j , . . . , lnj

} is constructed, where nj is the num-
ber of the detected objects in the jth frame. P (Lj |Cj), where
Cj = {c1,j , . . . , ci,j , . . . , cnj ,j} is computed as

P (Lj |Cj) =


0 if ‖c1‖ > 2 or ‖c2‖ > 1 or ‖c3‖ > 2

or ∃li,j > lk,j ,∀k < i

1 if Lj = {1, 5} or Lj = {2, 4}(
5
nj

)
otherwise

(4)
where ‖ci‖ is the number of ci.

3.5. Temporal Level

At temporal level, the temporal correlation between neigh-
bouring frames is taken into account to generate the final
assignment. The frames Lc with the highest conditional
probability P (Lj |Cj) = 1 are regarded as the most con-
fident frames, and their less confident neighbours Lc±1

are updated by minimizing the pairwise linking costs be-
tween Lc and Lc±1. The optimal assignment for all frames
L̂ = {L̂j , j = 1, . . . , N} is found by solving the optimization
problem

L̂ = arg max
L

∏
c∈Ψ

P (Lc±1|Lc) (5)

where Ψ is a set of frames such that c ∈ Ψ : P (Lj |Cj) =
1&P (Lj±1|Cj±1) 6= 1.

To solve Eq. 5, the assignment of each frame and the cor-
responding probability is updated as follows:

While ∃Lj , j = 1, . . . , N not updated do:

• Find theLc with the highest probability P (Lc|Cc = 1).

• The frame-to-frame linking between Lc and Lc±1 is
found by forming a n × n cost matrix M = {Mi,j}
with

Mi,j = −logP (li,c 7→ lj,c±1)

=
∥∥̄fi,c − f̄j,c±1

∥∥
where n = max(nc, nc±1) and the sign ”7→” denotes
a correspondence. The Hungarian algorithm [9] is ap-
plied to find the optimal linking.

• Update P (Lc±1|Cc±1) as

P (Lj |Cj)
t =


0 if ‖c1‖ > 2 or ‖c2‖ > 1 or ‖c3‖ > 2

or ∃li,c±1 > lk,c±1,∀k < i

or ∃li,c±1 is null match
1 otherwise
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• If P (Lc±1|Cc±1) = 1, update Lt
c±1 by the linking of

the Hungarian algorithm. Otherwise, Lt
c±1 = Lt−1

c±1.

• Mark Lc, Lc±1 as updated.

Output L̂.

4. EXPERIMENTAL RESULTS

In our experiments, 16 bee videos are used to test the perfor-
mance of the proposed framework. ”bee C”, ”bee E”, ”bee
G”, ”bee L” and ”bee M” are selected as representative test-
ing videos because they are the most challenging cases. The
appearance model is trained on 40 manually annotated anten-
nae, 10 mandibles, and 18 proboscis from the video ”bee E”.

To evaluate the proposed framework, we manually gener-
ated ground truth tracks for each object. The tracking perfor-
mance is measured in two ways: the no. of tracking errors TE
(the no. of incorrectly labeled objects) defined in [10] and the
total no. of times that a tracked trajectory changes its matched
ground truth identity IDS defined in [11]. The description of
each video is characterized by five values: the no. of frames
N , the no. of groundtruth trajectories GT, the detection errors
after pre-processing operation described in Sec. 3.1 including
the no. of splitted detections SD, the no. of merged detections
MD, the no. of false detections FD.

The complexity is measured by processing time. The
proposed algorithm is run using Matlab on an Intel Core
i7-2600K CPU at 3.4 GHz with 16 GB RAM, and the over-
all processing time is only about 7.5 s per frame, while the
computation in Sec. 3.4 and Sec. 3.5 takes 0.5 sec for all the
videos (10781 frames in total). Table 1 shows the results
of data association method used in [12] (implemented using
Hugarian algorithm), Naive Bayesian Classifier (NB) and the
final outputs on the tested videos of bee C, E, G, L, M. It is
seen that the method in [12] cannot handle the case of vari-
able number of moving objects, and is not robust to detection
errors. Moreover, the final results significantly improve the
tracking performance over NB even in ”bee M”, which is the
most challenging case (GT=5).

To show the pattern of movement, the position of the tip
(which is estimated as the furthest point of the object to the
point ”c”) of each identified object by the proposed frame-
work is demonstrated in Fig. 2 for ”bee L”. The proposed
framework accurately tracks each object despite of several
long tracking gaps for the left antenna (magenta), the longest
amounting to about 50 frames.

Illustrative examples of the tracking procedure from bee
C, G and M are shown in Fig. 3. The first row shows the mov-
ing regions output (white regions) by the detector. The second
row shows the tracking results with a bounding box around
the moving object and the corresponding label li,j . The tip of
each object is marked by ”*”. It is shown that moving objects
are correctly tracked despite of the false detection in ”bee C”,

Table 1. Tracking performance on tested videos
Bee TE IDS GT N SD MD FD

C
[12] 484 20 3 652 1 9 1NB 21 11

Final 1 1

E [12] 1045 78 5 688 0 36 1NB 41 17
Final 3 5

G [12] 844 11 4 702 5 2 7NB 12 4
Final 0 0

L [12] 362 2 2 658 0 0 0NB 1 1
Final 0 0

M [12] 837 63 5 693 3 54 1NB 44 20
Final 8 8

Fig. 2. Position of the tip of each object (green: right antenna,
magenta: left antenna) in ”bee L”.

splitted detection in ”bee G” and merged detection in ”bee M”
(highlighted by red rectangles in the first row).

5. CONCLUSION

It is a challenging task to track the movements of individ-
ual bee antennae, mandibles and proboscis in a video at low
frame-rate. The main problems result from long tracking gaps
and false, missing, splitted or merged detections. In this pa-
per, a Bayesian framework is proposed to address these issues
by incorporating the prior information about the appearance
model (object level), the order of the objects (frame level) and
temporal correlation (temporal level). Experimental results
prove the efficacy and efficiency of the proposed framework.

Fig. 3. Samples from bee C (left), G (middle) and M (right)
with FD, SD or MD.
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